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Abstract

There are two types of non(anti-)commutative deformation of D=4, N=1 supersymmetric field
theories and D=2, N=2 theories. One is based on the non-supersymmetric star product and the
other is based on the supersymmetric star product . These deformations cause partial breaking
of supersymmetry in general. In case of supersymmetric star product, the chirality is broken by
the effect of the supersymmetric star product, then it is not clear that lagrangian or observables
including F-terms preserve part of supersymmetry. In this article, we investigate the ring structure
whose product is defined by the supersymmetric star product. We find the ring whose elements
correspond to 1/2 SUSY F-terms. Using this, the 1/2 SUSY invariance of the Wess-Zumino model
is shown easily and directly.

PACS codes: 11.10.-z, 11.30.Pb
keywords: non(anti-)commutative deformation, supersymmetric ∗ product, ring structure, 1/2
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Recently, non(anti-)commutative superspaces have attracted much interest [1] - [32]. Today’s activities
in this area are strongly motivated by several aspects of the superstring theory, or they occur in connec-
tions between supersymmetric field theories and supermatrix models [5],[25]-[32]. Independently of above
motivations, from the view point of both theoretical physics and mathematics non(anti-)commutative
superspaces are quite interesting subjects. As in cases of ordinary bosonic noncommutative field theories,
non(anti-)commutative deformations are implemented by star products [33]. Today, it is known that
there are two types of deformations which lead us to non(anti-)commutative superspace: (i) one is based
on the non-supersymmetric star product defined by using the supersymmetry generator Q; (ii) the other
is on the supersymmetric star product defined in terms of the covariant derivative D [6]. (In this article,
the symbol ⋆ denotes the non-SUSY star product and the symbol ∗ denotes the SUSY star product.
Concrete definitions of them will appear below.)

For D = 4, N = 1 superspace, as well as for D = 2, N = 2 one, we introduce (anti-)chiral superfields.
In usual (anti-)commutative supersymmetric field theories, using (anti-)chiral superfields we construct
a Wess-Zumino model, which is invariant under the supersymmetry transformation, from F-terms and
D-terms. In [5], Seiberg considered the deformation of type (i), and showed that the superalgebra is
deformed and 1/2 SUSY survive. (Obeying Seiberg [5], we call 1/2 SUSY as a half of supersymmetry
generated by either Q or Q̄.) By definition of the ⋆ product if A and B are (anti-)chiral superfield
A ⋆ B is trivially (anti-)chiral, in short the ⋆ product does not break (anti-)chirality. As a result, the
F-term is invariant under the surviving half supersymmetry. After all, the Wess-Zumino lagrangian is
invariant under 1/2 SUSY. On the other hand, in [6], Ferrara et al. investigated effects of the type (ii)
deformation. There, the scenario of survival of supersymmetry is different from the one in the case of
type (i). In contrast to the case (i), the superalgebra is not deformed. However the ∗ product does not
preserve (anti-)chirality. As a result, the F-terms break fractions of supersymmetry. They performed
explicit calculations for Wess-Zumino models with up to degree 5 superpotential and showed that the
F-term breaks 1/2 SUSY and the total lagrangian is invariant under the rest of SUSY.

From these explicit examples of Wess-Zumino models preserving the 1/2 SUSY, it is natural to ask
whether fractions of the supersymmetry survive for other superpotentials (more than degree 5) and what
observables are invariant under the 1/2 SUSY. For Euclidean case we find the 1/2 SUSY of them by using
the result of the non-SUSY ⋆ product theory. But it is not direct way and it does not work for Minkowski
case. Therefore it is important subject to understand 1/2 SUSY in terms of the SUSY ∗ product. In the
SUSY ∗ product theory, the (anti-)chirality is broken by the effect of the SUSY ∗ product deformation.
This breaking makes it difficult to see the 1/2 SUSY invariance. The aim of this letter is to solve this
problem and to provide a way of understanding 1/2 SUSY in the framework of SUSY ∗ theory.

We constrain our analysis to a rather simple case. We concentrate on models constructed from a
single chiral scalar superfield Φ, which carries no flavor nor color. We find a set of superfields constructed
from the chiral scalar superfield and its covariant derivatives. This set has two important properties: (a)
it is closed under the ∗ product, i.e. it is a ring defined by using the ∗ product; (b)

∫
dθ2 of its element

is invariant under the 1/2 SUSY. As an example, we show that Φn
∗ =

n
︷ ︸︸ ︷

Φ ∗ · · · ∗ Φ belongs to the ring. As
a consequence, F-terms constructed of Φn

∗ preserve 1/2 SUSY.
In both (i) and (ii) cases, deformation parameters look like breaking explicit Lorenz invariance. In [5],

however, it was shown that the deformation of the Wess-Zumino lagrangian is Lorentz invariant, that is,
the deformation parameters appear in the lagrangian through Lorentz invariant combinations. We also
check this statement in a bit different way from one in [5].

First of all, we present some formulas, which are useful for the D = 4, N = 1 superspace calculation
and for the D = 2, N = 2 one. Spacetime signature is chosen as Minkowski type in the following
expression, but most parts of this article are also valid for Euclid space. Only the [Th3] is restricted to
the case of Euclid space, to maintain the hermiticity of the lagrangian.

We start with the D = 4, N = 1 case. We use conventions of [34].
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The covariant derivatives Dα and D̄α̇ are defined by

Dα = ∂θα + iσµ
αα̇θ̄α̇∂µ ,

D̄α̇ = −∂θ̄α̇ − iθασµ
αα̇∂µ . (1)

They satisfy the following anti-commutation relations:

{Dα, D̄α̇} = −2iσµ
αα̇∂µ , others = 0 . (2)

The supersymmetry generators Qα and Q̄α̇ are constructed so that they anti-commute with the
covariant derivatives Dα and D̄α̇. Their explicit forms are given as

Qα = ∂θα − iσµ
αα̇θ̄α̇∂µ ,

Q̄α̇ = −∂θ̄α̇ + iθασµ
αα̇∂µ . (3)

Their anti-commutators produce bosonic translation operators ∂µ:

{Qα, Q̄α̇} = 2iσµ
αα̇∂µ , others = 0 . (4)

Using the covariant derivatives, we define (anti-)chiral superfields. The chiral superfields are super-
fields which are constrained by the following condition,

D̄α̇Φ = 0 . (5)

In a similar way, we also define the anti-chiral superfields as

DαΦ̄ = 0 . (6)

An important property of the (anti-)chiral superfield, which will be used in the following, is that its
highest component is invariant under a half of supersymmetry:

QD2Φ|θ̄=0 = 0 , Q̄D̄2Φ̄|θ=0 = 0 , (7)

and becomes some total derivative under the rest:

Q̄D2Φ|θ̄=0 = total derivative , QD̄2Φ̄|θ=0 = total derivative . (8)

Now we turn to the D = 2, N = 2 case. The superspace coordinates are (z, z̄, θ±, θ̄±). All of them
can be considered as independent variables. The covariant derivatives D± and D̄± are given as

D+ = ∂θ−
− iθ̄−∂z , D− = ∂θ+

− iθ̄+∂z̄ ,

D̄+ = ∂θ̄−
− iθ−∂z , D̄− = ∂θ̄+

− iθ+∂z̄ , (9)

whose anti-commutation relations are

{D+, D̄+} = −2i∂z , {D−, D̄−} = −2i∂z̄ , others = 0 . (10)

The supersymmetry generators Q± and Q̄±, and their anti-commutation relations are given as

Q+ = ∂θ−
+ iθ̄−∂z , Q− = ∂θ+

+ iθ̄+∂z̄ ,

Q̄+ = ∂θ̄−
+ iθ−∂z , Q̄− = ∂θ̄+

+ iθ+∂z̄ , (11)

and
{Q+, Q̄+} = +2i∂z , {Q−, Q̄−} = +2i∂z̄ , others = 0 , (12)

respectively.
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In a similar way of the D = 4, N = 1 case, the (anti-)chiral superfields are defined by

D̄±Φ = 0 , (13)

and
D±Φ̄ = 0 . (14)

They satisfy
QD2Φ|θ̄=0 = 0 , Q̄D̄2Φ̄|θ=0 = 0 , (15)

and
Q̄D2Φ|θ̄=0 = total derivative , QD̄2Φ̄|θ=0 = total derivative . (16)

Let us introduce non(anti-)commutative deformation into superspaces. Because our main purpose is
to investigate the ring structure coming from the ∗ product, it is appropriate to follow the procedure
given in [6].

Firstly, we introduce the notion of left/right covariant derivatives. The left covariant derivative is
identical to the ordinary covariant derivative

−→
DΦ = DΦ . (17)

On the other hand, the right covariant derivative is defined through the following relation

Φ
←−
D = (−1)pD(pΦ+1)−→DΦ , (18)

where pO denotes the parity of O : for odd quantity pOodd
= 1 and for even one pOeven

= 0. The Leibniz
rules hold for both :

−→
D(ΦΨ) =

−→
D(Φ)Ψ + (−1)pDpΦΦ

−→
D(Ψ) ,

(ΦΨ)
←−
D = Φ(Ψ)

←−
D + (−1)pDpΨ(Φ)

←−
DΨ . (19)

In terms of the left and right covariant derivatives, we can define the supersymmetric Poisson bracket
{ , }1

{Φ, Ψ}1 = Pµν∂µΦ∂νΨ + PαβΦ
←−
Dα

−→
DβΨ + ∂µΦPµα−→DαΨ + Φ

←−
DαPαµ∂µΨ , (20)

where Pµν are anti-symmetric, Pαβ symmetric, and Pµα = −Pαµ. If we replace D by D̄ in (20), we
obtain another supersymmetric Poisson bracket { , }2

{Φ, Ψ}2 = Pµν∂µΦ∂νΨ + P α̇β̇Φ
←−
D̄ α̇

−→
D̄ β̇Ψ + ∂µΦPµα̇

−→
D̄ α̇Ψ + Φ

←−
D̄ α̇P α̇µ∂µΨ . (21)

Also, we can construct non-supersymmetric Poisson bracket { , }3 and { , }4 , using Q instead of D:

{Φ, Ψ}3 = Pµν∂µΦ∂νΨ + PαβΦ
←−
Qα

−→
QβΨ + ∂µΦPµα−→QαΨ + Φ

←−
QαPαµ∂µΨ , (22)

{Φ, Ψ}4 = Pµν∂µΦ∂νΨ + P α̇β̇Φ
←−
Q̄ α̇

−→
Q̄ β̇Ψ + ∂µΦPµα̇

−→
Q̄ α̇Ψ + Φ

←−
Q̄ α̇P α̇µ∂µΨ . (23)

Now, we define the supersymmetric star product, using the supersymmetric Poisson bracket of type
{ , }1. The SUSY star product (∗) is defined by

Φ ∗Ψ = eP (Ψ, Φ) =

∞∑

n=0

1

n!
Pn(Φ, Ψ) , (24)

where

Pn(Φ, Ψ) =
∑

A1,...,An;B1,...Bn

(−1)
ρ

B1,...,Bn
A1,...,An Φ

←−
DA1

...
←−
DAn

PA1B1 ...PAnBn
−→
DBn

...
−→
DB1

Ψ , (25)
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and

ρB1,...,Bn

A1,...,An
=

n−1∑

i=1

(pAi
+ pBi

)

n∑

j=i+1

pAj
. (26)

Notice that non(anti-)commutative parameters PAB are covariantly constant, that is, DCPAB = 0. One
can show the associativity of the star product

Φ ∗ (Ψ ∗X) = (Φ ∗Ψ) ∗X . (27)

Replacing D by Q in Eq. (25) makes another star product. This kind of star product is called the
non-SUSY star product. We use the symbol ⋆ to denote the non-SUSY star product. It is equivalent to
the star product investigated in [5].

Let us consider the D = 4, N = 1 case. We do not deal with it for general non(anti-)commutative
parameter PAB. Instead, we constrain our analysis to a special case:

Pαβ 6= 0 , others = 0 . (28)

With this setting, we obtain

Φ ∗Ψ = Φ ·Ψ + PαβΦ
←−
Dα

−→
DβΨ +

1

4
detPΦ

←−
D2−→D2Ψ

= Φ ·Ψ + (−)(pΦ+1)PαβDαΦDβΨ−
1

4
detPD2ΦD2Ψ , (29)

where
←−
D2 =

←−
Dα

←−
Dβǫαβ and

−→
D2 = ǫβα−→Dα

−→
Dβ . Remark that the P expansion of the ∗ product terminates

at finite order due to the fact that DαDβDγ = 0.
In the D = 2, N = 2 case, we use the same setting as (28), so we obtain the same P expansion of the

∗ product (29). (Indices α, β, ... take + or −.)
Now preparation is finished, so let us start to investigate the ring structure and 1/2 SUSY of F-terms,

and to analyze Lorentz invariance of them. In the following of this article, we treat only the case where
1/2 SUSY is generated by Q. (We can discuss the other case, that is, where 1/2 SUSY corresponds
to Q̄ by a similar way.) We concentrate on simple models which are constructed from a single chiral
scalar superfield Φ with no flavor nor color. So the identity DαΦDβΦDγΦ = 0 holds, which makes our
analysis easy. Since the structure of the ∗ product is the same for both the D = 4, N = 1 case and the
D = 2, N = 2 case, which is given by (29), the analysis can be performed in a uniform way. Therefore,
statements given in the following are valid for both cases.

Let us suppose following three types of set X = {DαΦDαΦ}, Y = {Φ}, Z = {D2Φn|n = 1, 2, · · · },
and let x, y and zi be their elements, i.e. x ∈ X , y ∈ Y and zi ∈ Z, where i = 1, 2, · · · . We introduce
following three types of polynomial ring

R[X ] = {
∑

k

ak(DαΦDαΦ)k} = {a1 + a2D
αΦDαΦ } , (30)

R[Y ] = {
∑

k

akΦk} , (31)

R[Z] = {
∑

N

∑

{k1,...,kN}

ak1,...,kN

N∏

i

(zi)
ki |N ∈ Z+} , (32)

where ai, ak1,...,kN
∈ R. (One can replace real number field R by arbitrary field F. This change does

not affect validity of following arguments.) The multiplication of these polynomial rings is determined by
ordinary multiplication. Let Ri(X),Ri(Y ) and Ri(Z) be polynomials belonging to the polynomial rings
i.e. for an arbitrary index i, Ri(X) ∈ R[X ], Ri(Y ) ∈ R[Y ] and Ri(Z) ∈ R[Z]. Next step, we define some
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sets as follows,

DαR[X ] ≡ {DαRi(X) | ∀Ri(X) ∈ R[X ]} = {aiDαΦD2Φ |∀ai ∈ R} , (33)

D2R[X ] ≡ {D2(Ri(X)) | ∀Ri(X) ∈ R[X ]} = {aiD
2ΦD2Φ | ∀ai ∈ R}

⊂ R[Z] , (34)

DαR[Y ] ≡ {DαRi(Y ) | ∀Ri(Y ) ∈ R[Y ]} = {DαΦ
δRi(Y )

δΦ
| ∀Ri(Y ) ∈ R[Y ]}

⊂ {(DαΦ)Ri(Y ) | ∀Ri(Y ) ∈ R[Y ]} , (35)

D2R[Y ] ≡ {D2(Ri(Y )) | ∀Ri(Y ) ∈ R[Y ]}

⊂ {
∑

(aijRi(Y )Rj(Z) + bijRi(X)Rj(Y )) | aij , bij ∈ R} , (36)

DαR[Z] ≡ {DαRi(Z) | ∀Ri(Z) ∈ R[Z]} = {0} , (37)

D2R[Z] ≡ {D2Ri(Z) | ∀Ri(Z) ∈ R[Z]} = {0} . (38)

We define R[XY Z] by the set of all polynomials that are produced by the elements of X , Y and Z:

R[XY Z] ≡
{∑

ijk

Ri(X)Rj(Y )Rk(Z) | Ri(X) ∈ R[X ], Rj(Y ) ∈ R[Y ], Rk(Z) ∈ R[Z]
}

=
{

(DαΦDαΦ)
∑

N

∑

ak,k1,...,kN
Φk(D2Φ)k1 · · · (D2ΦN )kN

+
∑

N

∑

bk,k1,...,kN
Φk(D2Φ)k1 · · · (D2ΦN )kN

}

, (39)

where ak,k1,...,kN
and bk,k1,...,kN

are C-number coefficients.
Note that R[XY Z] is a polynomial ring produced by the elements of X , Y and Z whose product is

defined by ordinary multiplication.

Let us prove the following theorem that is a key to understand the 1/2 SUSY invariance of the
Wess-Zumino action.

Theorem 1 (∗ Ring)
Take R[XY Z] and ∗ product as above. Then R[XY Z] is a polynomial ring constructed by the elements

of X , Y and Z whose product is defined by ∗ product i.e. if R1 and R2 belong to R[XY Z] then

R1 ±R2 ∈ R[XY Z] and R1 ∗R2 ∈ R[XY Z].

Proof
It is enough for the proof that we show R[XY Z] is closed under the ∗ product. For an arbitrary element
of R[XY Z], Rm[XY Z] ≡

∑

ijk Ri(X)Rj(Y )Rk(Z) ∈ R[XY Z], ∃Rm′ [XY Z] ∈ R[XY Z] that satisfies

DαRm[XY Z] =
∑

ijk

{(DαRi(X))Rj(Y )Rk(Z) + Ri(X)(DαRj(Y ))Rk(Z)

+ Ri(X)Rj(Y )(DαRk(Z))}

= DαΦRm′ [XY Z] . (40)

We use (33) ∼ (38) here. Similarly, we find that D2Rm[XY Z] belongs to R[XY Z], i.e.

D2Rm[XY Z] ∈ R[XY Z]. (41)

Using these results, one can show that for ∀Rm[XY Z], Rn[XY Z] ∈ R[XY Z],

5



∃Rm′ [XY Z], Rn′ [XY Z], Rp[XY Z], Rq[XY Z] ∈ R[XY Z] that satisfy

Rm[XY Z] ∗Rn[XY Z] = Rm[XY Z]Rn[XY Z]

+PαβRm[XY Z]
←−
Dα

−→
DβRn[XY Z]

+
1

4
detPRm[XY Z]

←−
D2−→D2Rn[XY Z]

= Rm[XY Z]Rn[XY Z]

+PαβDαΦDβΦRm′ [XY Z]Rn′ [XY Z]

+Rp[XY Z]Rq[XY Z] . (42)

Because of symmetric property of Pαβ , the second term vanishes, i.e.

PαβDαΦDβΦRm′ [XY Z]Rn′ [XY Z] = 0, (43)

then we can conclude Rm[XY Z] ∗Rn[XY Z] ∈ R[XY Z].

�

Let us see the relation between R[XY Z] and 1/2 SUSY, here.

Theorem 2 (Ring and 1/2 SUSY)
Take R[XY Z] as above. If Ri[XY Z] ∈ R[XY Z], then

∫
d2θRi[XY Z] is invariant under 1/2 SUSY

transformation.

Proof
Arbitrary Ri[XY Z] ∈ R[XY Z] is expressed as

Ri[XY Z] =
∑

ank(DαΦDαΦ)(Φ)nRk[Z]

+
∑

bnl(Φ)nRl[Z], (44)

where Rk(Z) and Rl(Z) are elements of R[Z]. When D2 operates on the first term of Eq. (44),

D2
∑

ank(DαΦDαΦ)(Φ)nRk[Z]

= −
∑

ankD2ΦD2Φ(Φ)nRk[Z]−
∑

ankn(D2Φ)(DαΦDαΦ)Φn−1Rk[Z]

= −
∑

ank

1

n + 1
(D2Φ)(D2(Φ)n+1)Rk[Z]. (45)

When D2 operates on the second term of Eq. (44),

D2
∑

bnl(Φ)nRl[Z] =
∑

bnl(D
2(Φn))Rl[Z]. (46)

Eqs.(45) and (46) show that D2Ri[XY Z] ∈ R[Z]. Then some Rj [Z](∈ R[Z]) exists that satisfies

∫

d2θRi[XY Z] = D2Ri[XY Z]|θ̄=0 = Rj [Z]|θ̄=0. (47)

Recall that Rj [Z] is some polynomial of D2 exact terms and D2 exact terms are invariant under Q (see
Eq.(7) or Eq.(15)). Therefore, it is proved that

∫
d2θRi[XY Z] is invariant under 1/2 SUSY transforma-

tion.

�

Using above theorems, we can easily show that 1/2 SUSY invariance of F-terms.
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Theorem 3 (1/2 SUSY invariance of F-terms)
Take ∗ product as above. Let Φ be a chiral superfield. Then, for arbitrary n ∈ N,

∫
d2θ(Φ)n

∗ =
∫

d2θΦ ∗ · · · ∗ Φ is invariant under 1/2 SUSY transformation.

Proof
Because of the theorem of Ring structure [Th1], (Φ)n

∗ ∈ R[XY Z]. From [Th2], it is proved that
∫

d2θ(Φ)n
∗

is 1/2SUSY invariant.

�

The F-term 1/2 SUSY of the ∗ product is shown by the F-term 1/2 SUSY of the ⋆ product without
the ring R[XY Z], as follows. When we consider the Euclidean space, we can take θ̄ = 0 before

∫
dθ2.

Therefore replacing the D operators with the Q operators makes no difference in the computation of the
F-terms. In short, we can exchange ∗ by ⋆ in F-terms and the F-terms are identical in both cases. Since
the ⋆ product does not break chirality, this fact implies the 1/2 SUSY of the

∫
d2θ(Φ)n

∗ . 1

In order to see other usefulness of the ring R[XY Z], let us construct non-trivial observables which
can have non-zero v.e.v. in 1/2 SUSY invariant phases. Consider observables

∫

dθ2Dα ∗ Φ ∗Dα ∗ Φ ∗ (Φ)n
∗ =

∫

dθ2((Dα ∗ Φ) ∗ (Dα ∗ Φ)) ∗ (Φ)n
∗ . (48)

Since Dα ∗ Φ = DαΦ and DαΦ ∗DαΦ = DαΦDαΦ, the integrand of (48) is equal to (DαΦDαΦ) ∗ (Φ)n
∗ .

Because (DαΦDαΦ) and (Φ)n
∗ belong to R[XY Z], we conclude

∫
dθ2Dα ∗Φ ∗Dα ∗Φ ∗ (Φ)n

∗ is 1/2 SUSY
invariant by [Th1] and [Th2].

In the ⋆ theory, the 1/2 SUSY invariance of
∫

dθ2Dα ⋆ Φ ⋆ Dα ⋆ Φ ⋆ (Φ)n
⋆ , the counterpart of (48), is

not manifest, as they include non-chiral objects. But, by making use of 1/2 SUSY of (48), we conclude
that they are still 1/2 SUSY invariant. 2 Thus the ring R[XY Z] provides a new method to construct
1/2 SUSY invariant observables which explicitly break (anti-)chirality.

We have studied the relation between the 1/2 SUSY and the ∗ product above. Not only the SUSY
but also the Lorentz invariance of the theories becomes nontrivial under the non(anti-)commutative
deformation. The following theorem solves this problem.

Theorem 4 (Lorentz invariance)
Let f be some Lorentz invariant superfield. We denote fn

∗ as

n
︷ ︸︸ ︷

f ∗ · · · ∗ f . Then some Lorentz invariant

functional g(f, (Df)2, D2f ; detP ) exist , where (Df)2 = DαfDαf , and it satisfies that

fn
∗ = fn + g. (49)

Here the noncommutative parameters Pαβ dependence only appear as the detP dependence. This fact

shows that fn
∗ is Lorentz invariant.

Proof
We prove this theorem by using mathematical induction as follows.
(i) n = 2;

f ∗ f = f2 −
1

4
(detP )(D2f)2 (50)

(ii) Suppose

fn
∗ = fn + g . (51)

1This argument was taught us by the referee of Phys. Lett. B.
2As noted in [13], Qα ⋆ Φ is a chiral superfield in the ⋆ theory. Then by using the same argument as above 1/2 SUSY of

∫
dθ2Dα ⋆ Φ ⋆ Dα ⋆ Φ ⋆ (Φ)n

⋆
is shown. We thank the referee of Phys. Lett. B for pointing out this.
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Using this,

fn+1
∗ = f ∗ fn + f ∗ g . (52)

The first term is rewritten as

f ∗ fn = fn+1 −
1

4
(det P )(D2f)(D2fn). (53)

The second term is given as

f ∗ g = fg + (−)pf +1PαβDαfDβg −
1

4
(detP )(D2f)(D2g). (54)

We can show that the second term of Eq.(54) vanishes, as follows.

Dαg(f, (Df)2, D2f) = (Dαf)
∂g

∂f
+ (Dα(Df)2)

∂g

∂((Df)2)
+ (Dα(D2f))

∂g

∂(D2f)

= (Dαf)
∂g

∂f
−

∑

β

ǫαβ(DαDβf)Dαf
∂g

∂((Df)2)
. (55)

Here we do not sum over the index α. Using Eq.(55) and symmetric nature of Pαβ , the second term of
Eq.(54) vanishes ;

∑

αβ

PαβDαfDβg

=
∑

αβγ

{1

2
PαβDαfDβf

∂g

∂f
−

1

2
Pαβ(Dαf)ǫβγ(DβDγf)Dβf

∂g

∂((Df)2)

}

= 0. (56)

Therefore,

fn+1
∗ = fn+1 −

1

4
(detP )(D2f)(D2fn) + fg −

1

4
(detP )(D2f)(D2g) = fn+1 + g′, (57)

which is what we want. Here we denote g′ as − 1
4 (det P )(D2f)(D2fn) + fg − 1

4 (detP )(D2f)(D2g). By
the principle of mathematical induction, for all n ≥ 2 (and n = 1 that is trivial case), fn

∗ are Lorentz
invariant.

�

Note that only the symmetric property of the noncommutative parameter Pαβ is used in this proof.
So, we can show the Lorentz invariance for other star products that is defined by other Poisson brackets
like the non-SUSY Poisson bracket [5] .

It is worth while to comment here about the ring structure of Lorentz invariant functionals. Let
RL[f, (Df)2, D2f ; detP ] be a set of all polynomials of f , (Df)2 and D2f , with additional dependence of
detP . Since non(anti-)commutative parameter Pαβ appears in elements of RL[f, (Df)2, D2f ; detP ] only
through detP , the elements are Lorentz invariant. We can show that RL[f, (Df)2, D2f ; detP ] is a ring
whose product is defined by the ∗ product, by a similar way to the proof of [Th 1].

Wess-Zumino models contain not only F-terms but also D-terms. In general, D-terms are deformed
by the ∗ product, too. However, we can show the Lorentz invariance and the SUSY invariance of the
D-terms as follows. Let Kähler potential K(Φ, Φ̄)∗ be defined as formal power series of Φ and Φ̄, where
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the multiplication is defined by the SUSY ∗ product. Using the fact that Φ ∗ Φ̄ = Φ · Φ̄ and [Th4], the
Kähler potential is rewritten as

K(Φ, Φ̄)∗ =
∑

ij

cij Φi
∗ · Φ̄

j

=
∑

ij

cij {Φ
i + gi(Φ, (DΦ)2, D2Φm; detP )} · Φ̄j , (58)

where gi(Φ, (DΦ)2, D2Φm; detP ) are Lorentz invariant functionals. Eq. (58) shows the Lorentz invariance
of the D-term. In addition,

∫
d4θK(Φ, Φ̄)∗ is always invariant under the SUSY, then we conclude that

the total Wess-Zumino lagrangian is invariant under the 1/2 SUSY transformation and the Lorentz one.

Finally, we summarize main conclusions. We proved some theorems about 1/2 SUSY for N=1 D=4
and N=2 D=2 cases. We discovered the ring R[XY Z] whose product is defined by the SUSY ∗ product.
In other words, R[XY Z] is closed under the SUSY ∗ product. The SUSY ∗ product does not preserve
(anti-)chirality, nevertheless we proved that

∫
d2θ of R[XY Z] elements are 1/2 SUSY invariant. From

these facts, we easily saw that usual F-terms, which take forms of
∫

d2θΦn
∗ , is invariant under 1/2 SUSY

transformation in the framework of the SUSY ∗ deformed theory. Furthermore, R[XY Z] made the new
way to construct 1/2 SUSY invariant observables for both SUSY ∗ formulation and non-SUSY ⋆ formu-
lation. Using this method we can construct explicitly chirality broken observables as 1/2 SUSY invariant
observables, for example

∫
dθ2Dα ∗ φ ∗Dα ∗ φ ∗ (φ)n

∗ . Such observables are still 1/2 SUSY observables
after replacing ∗ by non-SUSY ⋆ product. In addition, we proved the Lorentz invariance of F-terms and
D-terms by explicit calculations. It is possible to show the Lorentz invariance by using ring structure as
similar to the proof of 1/2 SUSY.
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