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1 Introduction.

Let {Fn}n≥0 be the sequence of Fibonacci numbers defined by

F0 = 0, F1 = 1, Fn+2 = Fn+1 + Fn (n ≥ 0) (1)

and {Ln}n≥0 the sequence of Lucas numbers defined by

L0 = 2, L1 = 1, Ln+2 = Ln+1 + Ln (n ≥ 0). (2)

There are many investigations on the arithmetic properties of reciprocal sums of

products of Fibonacci or Lucas numbers. André-Jeannin [1] proved that the sums

∞∑
n=1

1

FnFn+1

and
∞∑

n=1

1

LnLn+1

are expressed as explicit formulas, more precisely as linear combinations over Q(
√

5)

of the values of the Lambert series
∑∞

n=1 zn/(1 − zn) at numbers of Q(
√

5). It is

well-known that

S1 =
∞∑

n=1

(−1)n

FnFn+1

=
1−√5

2
.

(For the proof see (9) in the next section.) Brousseau [2] proved that

S2 =
∞∑

n=1

(−1)n

FnFn+2

= 2−
√

5.
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It is easily seen that

S3 =
∞∑

n=1

1

FnFn+2

= 1.

In this paper we consider a new type of reciprocal sums such as

∞∑
n=1

(−1)n[logd n]

FnFn+1

,

∞∑
n=1

(−1)n[logd n]

FnFn+2

,

∞∑
n=1

[logd n]

FnFn+2

, (3)

where d is an integer greater than 1 and [x] denotes the largest integer not exceeding

the real number x. In the following sections it will be apparent for the readers that

the sums (3) are transcendental numbers in contrast with the algebraic numbers

S1, S2, and S3 mentioned above, due to the factor [logd n] in the numerators. In

the next section we express such sums, using Newton’s method, as the values of

Lambert series of the form

f(z) =
∞∑

k=1

zdk

1− zdk . (4)

In the last section we prove the algebraic independence of reciprocal sums (3) of

a more general binary linear recurrence {Rn}n≥0 in place of {Fn}n≥0 for distinct

values of d by using Mahler’s method, in which the functional equation f(z) =

f(zd) + zd/(1− zd) plays an essential role.

Remark 1. The algebraic independence of the values of Lambert series similar

to (4) implies the algebraic independence of reciprocal sums of Fibonacci numbers

with their subscripts appearing in a geometric progression. Let {bk}k≥0 be a periodic

sequence of algebraic numbers not identically zero and c a fixed positive integer.

Nishioka, Tanaka, and Toshimitsu [10] proved that if {bk}k≥0 is not a constant

sequence, the numbers

∞∑

k=0

bk

(Fcdk+l)m
(d ∈ N \ {1}, l ≥ 0, m ∈ N) (5)

are algebraically independent, and if {bk}k≥0 is a constant sequence, the numbers

(5) except the algebraic number
∑∞

k=0 bk/Fc2k are algebraically independent; and

also the numbers

∞∑

k=0

bk

(Lcdk+l)m
(d ∈ N \ {1}, l ≥ 0, m ∈ N)

are algebraically independent for any {bk}k≥0.
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Recently, Duverney, Kanoko, and Tanaka [3] proved that the numbers

∑

k≥0

′ ak

Fcdk + h
and

∑

k≥0

′ ak

Lcdk + h
,

where the sum
∑′

k≥0 is taken over those k with Fcdk+h 6= 0, Lcdk+h 6= 0 respectively,

a is a nonzero algebraic number, and c, d, and h are integers with c ≥ 1 and d ≥ 2,

are transcendental except three algebraic numbers
∑∞

k=0 1/Fc2k ,
∑∞

k=0 4k/(Lc2k +2),

and
∑∞

k=0(−2)k/(Lc2k − 1).

2 Newton’s method and algebraic independence.

We state a particular case, Theorem 1 below, related to Newton’s method for ap-

proximating the roots of polynomials before stating the general theorem including

Theorem 1 (see Theorem 3 in Section 3), since a lemma used in the proof of Theo-

rem 1 induces the key formula (11) of the proof of Theorem 3. Let {Un}n≥0 be the

binary linear recurrence defined by

U0 = 0, U1 = 1, Un+2 = A1Un+1 + A2Un (n ≥ 0),

where A1, A2 are integers with A1 > 0, A2 6= 0, and ∆ = A2
1 + 4A2 > 0. Then

{Un}n≥0 is expressed as follows:

Un =
αn − βn

√
∆

(n ≥ 0),

where α = (A1 +
√

∆)/2 and β = (A1−
√

∆)/2 are the roots of Φ(X) = X2−A1X−
A2, and it is easily seen that |α| > |β| > 0.

Theorem 1. The numbers

∞∑
n=2

(−A2)
n[log2 n]

Un+lUn+l+1

(l ≥ 0)

are algebraically independent.

Remark 2. We note that

∞∑
n=2

(−A2)
n

Un+lUn+l+1

∈ Q(
√

∆) (l ≥ 0)

(see (9) in the proof of Lemma 4).
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Example 1. Let {Fn}n≥0 be the sequence of the Fibonacci numbers defined by

(1). Then the numbers
∞∑

n=2

(−1)n[log2 n]

Fn+lFn+l+1

(l ≥ 0)

are algebraically independent.

Example 2. The numbers

∞∑
n=2

2n[log2 n]

(2n+l − 1)(2n+l+1 − 1)
(l ≥ 0)

are algebraically independent. This is the case of A1 = 3 and A2 = −2 in Theorem 1.

In what follows, let

θl =
∞∑

n=2

(−A2)
n[log2 n]

Un+lUn+l+1

(l ≥ 0)

and let

fl(z) =
∞∑

k=1

z2k

1− (α−1β)lz2k (l ≥ 0).

Theorem 1 is proved by using the following lemma.

Lemma 1. θl =
√

∆α−2lfl(α
−1β) (l ≥ 0).

In order to prove Lemma 1 we prepare three lemmas below. We introduce here

the Newton’s method for approximating the root α of Φ(X). Let {xk}k≥0 be a

sequence defined by

xk+1 = xk − Φ(xk)

Φ′(xk)
(k ≥ 0)

or

xk+1 =
x2

k + A2

2xk − A1

(k ≥ 0). (6)

The sequence {xk}k≥0 converges to α for suitable choice of x0 .

Lemma 2. If x0 = A1, then
∑∞

k=1(xk − α) =
√

∆f0(α
−1β).

Proof. If xk = α for some k, then xk−1 = α by (6). Since x0 6= α, we see that

xk 6= α for any k ≥ 0. Substituting xk =
√

∆y−1
k + α in (6), we get

yk+1 + 1 = (yk + 1)2 (k ≥ 0).
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Therefore yk + 1 = (y0 + 1)2k
(k ≥ 0) and so

xk − α =

√
∆

(
x0 − β

x0 − α

)2k

− 1

(k ≥ 0). (7)

Since x0 = A1 = α + β, we have

xk − α =

√
∆

(αβ−1)2k − 1
(k ≥ 0),

which implies the lemma.

Lemma 3. If x0 = A1, then xk =
U2k+1

U2k

for all k ≥ 0.

Proof. The lemma is proved by induction on k. The case of k = 0 is trivial.

Assume that xk = U2k+1/U2k for some k. Then

xk+1 =
x2

k + A2

2xk − A1

=
U2

2k+1
+ A2U

2
2k

2U2k+1U2k − A1U2
2k

=
(α2k+1 − β2k+1)2 − αβ(α2k − β2k

)2

2(α2k+1 − β2k+1)(α2k − β2k)− (α + β)(α2k − β2k)2

=
(α− β)(α2k+1+1 − β2k+1+1)

(α− β)(α2k+1 − β2k+1)

=
U2k+1+1

U2k+1

,

which implies the lemma.

Lemma 4.
Um+1

Um

− α =
∞∑

n=m

(−A2)
n

UnUn+1

(m ≥ 2).

Proof. Since
Un+1

Un

− Un+2

Un+1

=
(−A2)

n

UnUn+1

(n ≥ 1),

we have
m−1∑
n=1

(−A2)
n

UnUn+1

=
U2

U1

− Um+1

Um

. (8)

As m →∞, this gives
∞∑

n=1

(−A2)
n

UnUn+1

=
U2

U1

− α. (9)
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Subtracting (8) from (9), we get the lemma.

Proof of Lemma 1. The lemma is proved by induction on l. Let {xk}k≥0 be

defined by (6) with x0 = A1. Then we have by Lemmas 3 and 4

∞∑

k=1

(xk − α) =
∞∑

k=1

(
U2k+1

U2k

− α

)
=

∞∑

k=1

∞∑

n=2k

(−A2)
n

UnUn+1

=
∞∑

n=2

[log2 n]∑

k=1

(−A2)
n

UnUn+1

= θ0.

Therefore θ0 =
√

∆f0(α
−1β) by Lemma 2.

Next assume that θl =
√

∆α−2lfl(α
−1β) for some l. We have

θl + A2θl+1 =
(−A2)

2

Ul+2Ul+3

+
∞∑

n=3

(−A2)
n([log2 n]− [log2(n− 1)])

Un+lUn+l+1

.

Since

[log2 n]− [log2(n− 1)] =

{
1 (n = 2k, k ∈ N)
0 (otherwise),

we get

θl + A2θl+1 =
∞∑

k=1

(−A2)
2k

U2k+lU2k+l+1

.

Using αβ = −A2, we see that

∞∑

k=1

(−A2)
2k

U2k+lU2k+l+1

=
∞∑

k=1

∆(−A2)
2k

(α2k+l − β2k+l)(α2k+l+1 − β2k+l+1)

=
√

∆
∞∑

k=1

(
α−lβ2k

α2k+l − β2k+l
− α−lβ2k+1

α2k+l+1 − β2k+l+1

)

=
√

∆α−2lfl(α
−1β) + A2

√
∆α−2(l+1)fl+1(α

−1β).

Therefore θl+1 =
√

∆α−2(l+1)fl+1(α
−1β), and the lemma is proved.

Proof of Theorem 1. It suffices to prove the algebraic independency of

θl (0 ≤ l ≤ L) for any nonnegative integer L. By Lemma 1 it is enough to prove the

algebraic independency of fl(α
−1β) (0 ≤ l ≤ L). We see that fl(z) satisfies

fl(z) = fl(z
2) +

z2

1− (α−1β)lz2
.

By Nishioka’s lemmas [9, Lemma 2 and Lemma 6] the functions fl(z) (0 ≤ l ≤ L)

are linearly independent over C modulo the rational function field C(z), namely∑L
l=0 clfl(z) ∈ C(z) (cl ∈ C) holds only if cl = 0 for all l (0 ≤ l ≤ L). By Loxton
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and van der Poorten’s theorem [5, Theorem 2] or by Kubota’s result [4, Corollary 9]

the functions fl(z) (0 ≤ l ≤ L) are algebraically independent over C(z). Then by

Mahler’s theorem [6] (see also [7, Theorem 2]), fl(α
−1β) (0 ≤ l ≤ L) are algebraically

independent, and the proof of the theorem is completed.

By (7) in the proof of Lemma 2 we see that, if 0 < |(x0 − α)/(x0 − β)| < 1 or

equivalently

x0 >
A1

2
, x0 6= α, (10)

then ∞∑

k=1

(xk − α) =
√

∆f0

(
x0 − α

x0 − β

)
,

whose transcendency is seen by the same way as in the above proof of Theorem 1

with L = 0. Therefore we have the following:

Theorem 2. Let A1, A2 be real algebraic numbers with A2
1 + 4A2 > 0. Let

{xk}k≥0 be defined by (6) with x0 an algebraic number satisfying (10). Then the sum

of errors
∑∞

k=1(xk − α) is transcendental.

3 General case.

Letting z = α−1β in Lemma 1, we have

∞∑
n=2

[log2 n]

(
zn+l

1− zn+l
− zn+l+1

1− zn+l+1

)
=

∞∑

k=1

z2k+l

1− z2k+l
(l ≥ 0),

which is valid inside the unit circle |z| = 1. Let d be an integer greater than 1 and

γ a complex number with |γ| ≤ 1. We have a more general equation

∞∑

n=d

[logd n]

(
zn+l

1 + γzn+l
− zn+l+1

1 + γzn+l+1

)
=

∞∑

k=1

zdk+l

1 + γzdk+l
(|z| < 1, l ≥ 0), (11)

since

[logd n]− [logd(n− 1)] =

{
1 (n = dk, k ∈ N)
0 (otherwise)

(12)

and so

m∑

n=d

[logd n]

(
zn+l

1 + γzn+l
− zn+l+1

1 + γzn+l+1

)
=

[logd m]∑

k=1

zdk+l

1 + γzdk+l
− [logd m]zm+l+1

1 + γzm+l+1
.

Using (11), we prove the following theorem, which is more general than Theorem 1.
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Theorem 3. Let {Rn}n≥0 be the binary linear recurrence defined by

Rn+2 = A1Rn+1 + A2Rn (n ≥ 0),

where A1, A2 are nonzero integers with ∆ = A2
1 + 4A2 > 0 and R0, R1 are integers

with R0R2 6= R2
1 and A1R0(A1R0 − 2R1) ≤ 0. Then the numbers

∞∑

n=d

(−A2)
n[logd n]

Rn+lRn+l+1

(d ∈ N \ {1}, l ≥ 0)

are algebraically independent.

Remark 3. The condition A1R0(A1R0−2R1) ≤ 0 assures Rn+lRn+l+1 6= 0. We

can prove the theorem also in the case A1R0(A1R0 − 2R1) > 0 if we exclude the

subscripts n with Rn+lRn+l+1 = 0 from the sum; however we have omitted such a

case for the sake of simplicity.

Corollary 1. Let {Rn}n≥0 be as in Theorem 3. Then the numbers

∞∑

n=d

(−A2)
n[logd n]

Rn+lRn+l+2

(d ∈ N \ {1}, l ≥ 0)

are algebraically independent and the numbers

∞∑

n=d

An
2 [logd n]

Rn+lRn+l+2

(d ∈ N \ {1}, l ≥ 0)

are also algebraically independent.

Proof. Let

θd,l =
∞∑

n=d

(−A2)
n[logd n]

Rn+lRn+l+1

(d ∈ N \ {1}, l ≥ 0).

Using Rn+2 − A2Rn = A1Rn+1 (n ≥ 0), we have

∞∑

n=d

(−A2)
n[logd n]

Rn+lRn+l+2

= A−1
1

∞∑

n=d

(
(−A2)

n[logd n]

Rn+lRn+l+1

+
(−A2)

n+1[logd n]

Rn+l+1Rn+l+2

)

= A−1
1 (θd,l − A2θd,l+1)

and ∞∑

n=d

An
2 [logd n]

Rn+lRn+l+2

= A−1
1

∞∑

n=d

(
An

2 [logd n]

Rn+lRn+l+1

− An+1
2 [logd n]

Rn+l+1Rn+l+2

)
. (13)
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If d is even, [logd(2m)] = [logd(2m+1)] for any m ∈ N by (12) and so the right-hand

side of (13) is equal to

A−1
1

∞∑

m=d/2

(
A2m

2 [logd(2m)]

R2m+lR2m+l+1

− A2m+1
2 [logd(2m + 1)]

R2m+l+1R2m+l+2

)

+A−1
1

∞∑

m=d/2

(
A2m+1

2 [logd(2m)]

R2m+l+1R2m+l+2

− A2m+2
2 [logd(2m + 1)]

R2m+l+2R2m+l+3

)

= A−1
1 (θd,l + A2θd,l+1).

If d is odd, [logd(2m− 1)] = [logd(2m)] for any m ∈ N by (12) and so the right-hand

side of (13) is equal to

A−1
1

∞∑

m=(d+1)/2

(
A2m−1

2 [logd(2m− 1)]

R2m+l−1R2m+l

− A2m
2 [logd(2m)]

R2m+lR2m+l+1

)

+A−1
1

∞∑

m=(d+1)/2

(
A2m

2 [logd(2m− 1)]

R2m+lR2m+l+1

− A2m+1
2 [logd(2m)]

R2m+l+1R2m+l+2

)

= −A−1
1 (θd,l + A2θd,l+1).

Therefore we have
∞∑

n=d

An
2 [logd n]

Rn+lRn+l+2

= (−1)dA−1
1 (θd,l + A2θd,l+1).

By Theorem 3 the numbers A−1
1 (θd,l−A2θd,l+1) (d ∈ N\{1}, l ≥ 0) are algebraically

independent and the numbers (−1)dA−1
1 (θd,l +A2θd,l+1) (d ∈ N\{1}, l ≥ 0) are also

algebraically independent, which implies the corollary.

Example 3. Let {Fn}n≥0 be the sequence of the Fibonacci numbers defined by

(1). Then the numbers

∞∑

n=d

(−1)n[logd n]

Fn+lFn+l+1

(d ∈ N \ {1}, l ≥ 0)

are algebraically independent; moreover, so are the numbers

∞∑

n=d

(−1)n[logd n]

Fn+lFn+l+2

(d ∈ N \ {1}, l ≥ 0);

furthermore, so are the numbers

∞∑

n=d

[logd n]

Fn+lFn+l+2

(d ∈ N \ {1}, l ≥ 0).
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Example 4. Let {Ln}n≥0 be the sequence of the Lucas numbers defined by (2).

Then the numbers

∞∑

n=d

(−1)n[logd n]

Ln+lLn+l+1

(d ∈ N \ {1}, l ≥ 0)

are algebraically independent; moreover, so are the numbers

∞∑

n=d

(−1)n[logd n]

Ln+lLn+l+2

(d ∈ N \ {1}, l ≥ 0);

furthermore, so are the numbers

∞∑

n=d

[logd n]

Ln+lLn+l+2

(d ∈ N \ {1}, l ≥ 0).

Proof of Theorem 3. We can express {Rn}n≥0 as follows:

Rn = aαn + bβn (n ≥ 0),

where α, β (|α| ≥ |β|) are the roots of Φ(X) = X2−A1X−A2 and a, b ∈ Q(
√

∆). It

is easily seen that |α| > |β| > 0. Since R0R2−R2
1 = ab∆ and A1R0(A1R0− 2R1) =

(α2 − β2)(b2 − a2), we see that |a| ≥ |b| > 0. Letting

gdl(z) =
∞∑

k=1

zdk

1 + a−1b(α−1β)lzdk (d ∈ N \ {1}, l ≥ 0)

and substituting γ = a−1b and z = α−1β in (11), we have

∞∑

n=d

(−A2)
n[logd n]

Rn+lRn+l+1

= a−2α−2l(α− β)−1gdl(α
−1β) (d ∈ N \ {1}, l ≥ 0). (14)

Noting that gdl(z) satisfies

gdl(z) = gdl(z
d) +

zd

1 + a−1b(α−1β)lzd
, (15)

we apply Nishioka’s theorem [8, Theorem 1]. Define

D = { d ∈ N | d 6= an (a, n ∈ N, n ≥ 2) }.

Then we have

N \ {1} =
⋃

d∈D

{d, d2, . . .}.

10
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We note that if d, d′ ∈ D are distinct, then log d/ log d′ 6∈ Q. It is enough by (14) to

prove the algebraic independency of the values gdj l(α
−1β) (d ∈ D, 1 ≤ j ≤ n, 0 ≤

l ≤ L) for any positive integer n and for any nonnegative integer L. Assume on the

contrary that the values gdj l(α
−1β) (d ∈ D, 1 ≤ j ≤ n, 0 ≤ l ≤ L) are algebraically

dependent for some positive integer n and nonnegative integer L. Letting N = n!

and iterating (15), we have the functional equation

gdj l(z) = gdj l(z
dN

) +

Nj−1∑

k=1

zdjk

1 + a−1b(α−1β)lzdjk (1 ≤ j ≤ n, 0 ≤ l ≤ L).

By Nishioka’s theorem [8, Theorem 1] the functions gdj l(z) (1 ≤ j ≤ n, 0 ≤ l ≤ L)

are algebraically dependent over C(z) for some d ∈ D. Then by Loxton and van

der Poorten’s theorem [5, Theorem 2] or by Kubota’s result [4, Corollary 9] the

functions gdj l(z) (1 ≤ j ≤ n, 0 ≤ l ≤ L) are linearly dependent over C modulo

C(z). Thus there are complex numbers cjl (1 ≤ j ≤ n, 0 ≤ l ≤ L), not all zero,

such that
n∑

j=1

L∑

l=0

cjlgdj l(z) ∈ C(z).

Letting ζ be a primitive N -th root of unity and letting

hli(z) =
∞∑

k=1

ζ ikzdk

1 + a−1b(α−1β)lzdk (0 ≤ l ≤ L, 0 ≤ i ≤ N − 1),

we see that

n∑
j=1

cjlgdj l(z) =
n∑

j=1

∞∑

k=1

cjlz
djk

1 + a−1b(α−1β)lzdjk =
N−1∑
i=0

c∗lihli(z) (0 ≤ l ≤ L),

where c∗li (0 ≤ l ≤ L, 0 ≤ i ≤ N − 1) are complex numbers not all zero (cf. Proof

of Theorem 1.1 in [10]). Therefore

L∑

l=0

N−1∑
i=0

c∗lihli(z) ∈ C(z).

Since hli(z) satisfies

ζ ihli(z
d) = hli(z)− ζ izd

1 + a−1b(α−1β)lzd

and 1, ζ, . . . , ζN−1 are distinct, again by the Loxton and van der Poorten’s theorem

or by the Kubota’s result, the functions hli(z) (0 ≤ l ≤ L) are linearly dependent
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over C modulo C(z) for some i, which contradicts Nishioka’s lemmas [9, Lemmas 2,

3, and 6]. This completes the proof of the theorem.
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