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§1. Introduction

The phase: “There is no science without measurements” is an old saying, which
emphasizes the importance of the “measurement”. On the other hand, we do not have
the authorized “measurement theory” yet. This fact seems to be strange if the concept
of “measurement” is quite important in science. Thus, the propose of this lecture is to
propose “measurement theory”, which is expected to be the most fundamental theory in
science.

Firstly, we begin with the conventional system theory ( or shortly, “conventional ST”,

“CST”, ). It usually starts from the following equations:

" w o fz(t),ui(t),t), x(0) =z .-+ ( state equation ) ,
CST" = { ( ) = g(z(t), us(t), t) -+- ( measurement equation)

(1)
It should be noted that the term “measurement” appears in the beginning of the conven-
tional system theory.

Also, quantum mechanics has the following form:

“quantum mechanics” = “Schrodinger equation” + “Born’s quantum measurements”

(2)

*The annual conference of the Japan Society for Industrial and Applied Mathematics, ( 2002, Septem-
ber 19 ), Plenary Lecture,
English version ( page 1-18), Japanese translation ( page 19-35)
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Here, it should be also noted that the term “measurement” appears in the beginning
of quantum mechanics. That is, the conventional system theory and quantum theory
are built in the same form —- “the rule of the time evolutioni”and “measurement”. Of
course, we believe that the above two measurements are closely related to each other, that
is, these two have the same origin.

In [5~13], we proposed “general system theory ( in short, GST)” that unifies the
above two (1) and (2). Our proposal is as follows. Born’s quantum measurement theory
is formulated in terms of Hilbert spaces. Thus it is easy to generalize and describe Born’s
quantum measurement theory in terms of C*-algebra. Therefore, we can propose as

follows.

“general system theory ( or in short, GST )”

= “the rule of time evolution” + “measurements” (3)

This C*-algebraic formulation of quantum mechanics is expected to include the above
two (1) and (2), ( see Remark 4.2 later). Of course, the (3) is merely our staring point.
What we should do is to derive many interesting results from the (3).

Note that the conventional system theory (1) and quantum theory (2) are due to
Newtonian mechanics. The discovery of quantum mechanics (2) is, of course, applauded
sufficiently. On the other hand, the proposal of the conventional system theory (1) may
be underestimated. However, we think that it is difficult to discover the concept of
“measurement” in classical systems rather than in quantum mechanics. In fact, we have an
opinion that even Newton missed ( or underestimated ) the importance of “measurement”.
Therefore, we assert that the (1), as well as the (2), should be applauded.

Here, we want to state our opinion for the question “What is the general system
theory (3)?”. The general system theory (3) is constructed from mechanics ( Newtonian

mechanics and quantum mechanics ). Thus we consider that

“the general system theory (3)”

= “the mathematical representation of the mechanical world view” (4)

That is, we consider that the general system theory (3) is a kind of epistemology called

“the mechanical world view”, namely, an epistemology to understand and analyze every
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phenomenon ( that appears in our usual life ) — economics, psychology, engineering, OR
and so on ) — by an analogy of mechanics ( or precisely, in the mathematical structure
of mechanics ). Although there may be several opinions for our assertion, everyone may
agree that it is the most powerful method in all scientifical methods ( cf. §6 )O

Summarizing the above argument, we say

(i) The mechanical world view is the most powerful scientific epistemology.

(ii) The general system theory (3) is the mathematical representation of the mechanical

world view.

If this is true, we can, for the first time, understand the true meaning of the phase “There
18 no science without measurements”.

[Remark 1.1] As the mathematical tools to analyze “every phenomenon”, we may choose

“the theory of differential equations” + “probability theory” . (5)

Thus some may consider that the (5) should be the starting point of system theory.
However, the pioners, who constructed the conventional system theory (1), did not choose
the (5) but the (1). We believe that their selection is quite excellent. Why is the (5)

improper? Everyone should reconfirm the reason through this lecture.

§2. Several results derived from the GST (3)
Before we proceed to the main section 3, we mention several results derived from the
GST (3). For this, we must first emphasize the wideness of the GST (3). That is,

(#1) The three concepts: “measurement”, “inference” and “control” are equivalent. There-

fore, statistics and control theory are unified in terms of measurements.

For the further argument, see Remark 3.5 later.

Next we want to answer the question “Why is the GST (3) essential?”. Of course,
since (1)C(3) ( cf. Remark 4.2 later ), the GST (3) is more applicable than the convention
ST (1). In applications, this is one of advantages of the (3). However, we believe that the
true reason that the GST (3) is needed is as follows. For example, we now consider the

following problems:
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(i
(ii

). Justify the syllogism. ( i.e., Show that the syllogism is true.)
).
(iii). Justify Kalman filter.
).
).

Justify Fisher’s maximal likelihood function method.

(iv). Justify Zadeh’s fuzzy sets theory.

(v

Show that the method to use differential equations is true.

b

Note that these problems have the same form such that “Justify ... Therefore we
must first answer the question: What is “justification”?. For example, if some want to
assert “Zadeh’s fuzzy sets theory is true” (or “It is not true” ), what must they do? The

following opinion is completely wrong:
“To justify it” = “To describe it in terms of mathematics”

This is not true. That is because it is not difficult that any doubtful theory can be
presented in terms of mathematics. After all, some may reach a vague conclusion such as
“To justify it” is “To describe it in mathematics and moreover to show that it is useful”.
In fact, we have an opinion that the conventional statistics is generally considered to be
justified under such vague definition. ( For our justification of statistics, see Section 5
later.)  However we believe that “true”#“mathematical 4+ useful”. Our opinion is as

follows.
“To justify it” = “To regard it as one of aspect of the GST (3)” (6)

In general, we believe that “To justify it” is “To regard it as one of aspect of a certain
world view”. Therefore, it is quite important to investigate the question “Does another
world view exist?”. If we have another world view, we may have another definition
of “justification”. Though we do not know another world view yet, it must be always
encouraged to try to propose another world view (cf. §6). The above (6) is, from the
scientific point of view, our answer for the question “Why is the GST (3) is needed?”. In

other words we consider that the (4) is equivalent to

“GST (3)” = The Constitution of Science (i.e. engineering, economics, OR, etc. ) (7)
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if another world view is not proposed yet. Thus, we assert that “true”=“constitutional
under the GST (3)”. Therefore, every theory ( or, method ) should be tested whether it
is constitutional or unconstitutional.

Now we itemize our results derived from the GST (3) in what follows. The number
corresponds to the reference number. These should be read under the spirit of (6) ( or,
(7).

[Ref.2]. Heisenberg’s uncertainty is formulated in terms of approximately simultane-
ous measurements. It clarifies the relation between Heisenberg’s uncertainty and EPR-
paradox.

[Refs. 3,4]. The concept of quantum particle’s trajectories is formulated in terms of
repeated measurements. It promotes the understanding of the Willson Chamber. And
moreover, the numerical result of “two slit problem” is presented. Also, the concept of
“trajectory” defined by the time series of measured values is also essential to the classical
system ( cf. [9] ).

[Ref. 5]. The syllogism ( i.e., “A — B, B — " = “A — (") does not hold in quantum
systems. But it is always true in classical systems. These are proved in the GST (3).
Also, we show that the strange logic ( i.e., “A — B,B — C” = “C' — A”) is true in
some sense. This may be related to fuzzy logic. It is essential to prove “logic” in the GST
(3). That is because it guarantees that the “logic” is valid in our usual life ( i.e., in the
world that is expected to be dominated by the mechanical world view)..

[Ref. 6]. In this paper, the assertion (4) is proposed. Many ideas ( e.g. the entropy of
measurement ) are presented. If some consider that there is a gap between our formulation
of fuzzy theory and Zadeh’s fuzzy theory, they must conclude that Zadeh’s fuzzy theory
is out of the mechanical world view. Therefore, if they want to assert that Zadeh’s fuzzy
theory is true, they must propose another world view in order to justify Zadeh’s fuzzy
theory. We consider that this challenge is quite difficult ( cf. §6 ).

[Ref. 7]. The “fuzzy modus ponens” is justified in the GST (3). We emphasize that every
“logic” that is expected to be applied to our usual life must be proved in the GST (3).
[Ref. 8]. Factor analysis and principal component analysis in statistics are justified in the
GST (3). We consider that, in most cases, the region that a statistical method is applied

to is not clear in the conventional statistics. This is due the fact that the conventional
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statistics is not formulated under a certain world view. In this sense, our approach has
an advantage.

[Ref. 9]. Newtonian mechanics is reconstructed in the GST (3). Through the recon-
struction, the relation between “the time evolution of the state” and “the trajectory of
a particle” is clarified. And moreover, the measurement theoretical definition of Brown
motion is proposed. In order to do it, Kolmogorov’s extension theorem ( that guarantees
the existence of probability space ) is no sufficient. Thus, the W*-algebraic extension
theorem is proposed. This theorem is most fundamental in measurement theory since it
guarantees the existence of measurement.

[Ref. 10]. Statistics is formulated in the GST (3). However, the argument about Bayesian
statistic is somewhat incomplete. This is completed in [13].

[Ref. 11]. We are convinced that the difference between statistical mechanics and New-
tonian mechanics is due to the difference between rough measurements and precise mea-
surements. Therefore equilibrium statistical mechanics can not be justified in Newtonian
mechanics but in the classical GST ( cf. Remark 4.2 later). This spirit is surely true.
Therefore we now consider that the true foundation of statistical mechanics should not
be due to the principle of a prior probability ( cf. Remark 5.1 later). In this sense, our
argument in [11] must be reconsidered.

[Ref. 12]. Kalman filter is formulated in the GST (3). This is shown under the quite weak
conditions. Also, it should be noted that In the light of [13], we can see that Kalman
filter is not related to probability density functions but weights. Also, we show that Bayes’
Kalman filter is the dual concept of Fisher’s Kalman filter.

[Ref. 13]. This completes the improper part of [10]. It will be mentioned in §5 later.

§3. Measurememts
In this and the nect section, we shall propose the GST (3) in terms of mathematics.
The GST is formulated in the framework of C*-algebras. Let A be a C*-algebra ( e.g.,
[15] ), that is, a Banach algebra with the involution “«” and the norm || - || satisfying the
C*-condition: ||F*F|| = ||F||> (VF € A). For simplicity, in this paper we always assume
that A has the identity /. The linear functional p(F') on A is denoted by  (p,F) ,
where p € A* ( the dual Banach space ) and F' € A. An element F' (€ A) is said to be
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self-adjoint if it holds that F' = F*. Also, a self-adjoint element F' is called a positive
element if F' = F;Fy holds for some Fy (€ A). Define the mized state class 6™ (A*) by
{pe A : ||p||lar = 1 and p(F) > 0 for all F > 0 }. And define the pure state space
( or in short, state space ) &°(A*) by “the set of all extreme points of 6™(A*)”. Note

that &7(A*) and 6™(A*) are compact Hausdorff spaces in the sense of the weak*-topology
T(A* A).

[ Example 3.1] A C*-algebra A is said to be commutative if it holds that Fy Fy = FoFy
for all F}, F;, € A. Gelfand theorem says that any commutative C*-algebra A can be iden-
tified with some C'(2), the algebra composed of all complex valued continuous functions f
on a compact Hausdorff space €2. Here, the norm is defined by || f|| = sup,cq | f(w)|- Riesz
representation theorem ( e.g, [16] ) says that C'(Q2)* = M(), i.e., the Banach space com-
posed of all regular complex-valued measures on 2. We see and denote that &™(C(£2)*)
— " € M@)o = 0, 10" |y = 1} = M7L(Q), and &2(C(Q)") = {0 € M(Q)|
d, is a point measure at w € €2, ie., o (0w, fo = flw) (Vf € C(Q),Vwe Q) } =
ME, (). Under the identification: ©Q 5> w «— 4§, € ME(Q), the Q is also called a state
space. The state space 2 and the mixed state p™ (€ M7T,(§)) is respectively called a
parameter space and a weight in the conventional statistics.

[ Example 3.2] Let C" be the n-dimensional unitary space, i.e. the n-dimensional
Hilbert space. Put B(C™) = {T': C* — C"| T is a bounded linear operator }, i.e., the
set of all n x n matrices. Then, B(C") is a noncommutative C*-algebra. We see that
&P(B(C™)*) = {|z){z|( Dirac notation ) : x € C" ||z|| = 1}.

As a natural generalization of Davies’ idea ( [1] ) in quantum mechanics, a C*-
observable O = (X,2%,F) in a C*-algebra A is defined such that it satisfies that (i)
X is a finite set, and 2% (= {Z | £ C X}), ( in this paper, we focus on the case that
X is finite ) (ii) F is a map from 2% into A such that F(Z) > 0 (V2 € 2%), F(0) =0
and F(X) = I, (iii) if 1 # 9, it holds that F({z1,22}) = F({x1}) + F({z2}). If
0, = (X,2%,F) and Oy = (V,2Y,G) commute ( i.e., F({z})G({y}) = G{y})F({z})
(V(x,y) € X xY) ), the product observable O x Oy is defined by (X x Y, 28 F x Q)
where (F x G)({(z,9)}) = FUsHG({y}) (H(z,9) € X x V).

[Remark 3.3] Here we focus on the C*-algebraic formulation. The W*-algebraic formu-

lation is also convenient ( cf. particularly [9] ). This formulation is handy to deal with
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“limit” and “convergence”. For the general X ( i.e., infinite set ), see [6,9].

With any system S, a C*-algebra A can be associated in which measurement theory
of that system can be formulated. A state of the system S is represented by a pure
state pP (€ 6P(A*)), an observable is represented by a C*-observable O = (X, 2%, F) in
the C*-algebra A. Also, a measurement of the observable O for the system S with the
state pP is denoted by M (O, Si»). We can obtain a measured value x (€ X) by the
measurement M 4(O, Sj,»)). The measurement M 4(O x O, S|,») is sometimes called an
iterated ( or, simultaneous ) measurement of two observables O; and Os. Also, a quantity
is represented by the self-adjoint element F' (€ A ).

The axiom presented below is analogous to ( or, a kind of generalization of ) Born’s
probabilistic interpretation of quantum mechanics.

AXIOM 1. [ Measurements |. Consider a measurement M4 (O = (X, 2%, F), Sy»)

formulated in a C*-algebra A. Then, the probability that a measured value x (€ X) is

obtained by the measurement Ma(O, Sy)) is given by (p?, F'({z}))
We have the classification of the GST as follows

« _— “classical GST”
GST(3) _{ “quantum GST” (8)

where a C*-algebra A is either commutative or non-commutative.
[Remark 3.4] The above “probability” is individualistic. By the repeated @7, M 4(O,
Sir)), we get the sample space (X, F, p?(F(-)) ) ( Theorem 2.2 in [6] ).

emar . en we take a measurement A s »] ), WE usua now 1no 1nior-
[Remark 3.5] Wh k M4(O, Sin) Iy k inf

A

mation about the state p?. Therefore, the measurement M 4(O, Si,»)) is often denoted
by M4(O, S;.;). As mentioned in Section 2, statistics (S) and control theory (C) is

respectively regarded as one of aspect of measurements as follows.

(S) We get a measured value z(€ X) by a measurement M 4(O, S;.7). Then, infer the
state [ - ].

(C) We want to get a measured value z(€ X) by a measurement M 4(O, S.7). Then,
settle the state [ - ].

Of course, Fisher’s maximal likelihood method is one of the answers of the above problems
(S) and (C). However, it should be noted that Fisher’s maximal likelihood method is due
to Axiom 1. Cf. Section 5 later.
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84 The rule of time evolution

Let A be a C*-algebra. A continuous linear operator ¥ : A — A is called a Markov
operator, if it satisfies that (i) W(F') > 0 for any positive element F in A, (ii) F(14) = L4,
where 4 is the identity in 4. Here note that, for any observable (X, F, F') in A, the
(X, F,VF) is an observable in A, which is denoted by WO. Also, a Markov operator ¥
: A — Ais called a homomorphism, if it satisfies that (i) V(F)U(G) = V(FG) for any
F and G in A, (ii)) (¥(F))* = U(F*) for any F in A. Let ¥* : A* — A* be the dual
operator of a Markov operator ¥ : A — A. Then the following mathematical results
are well known. (a) U*(&™(A*)) C 6™(A"), (b) U*(&P(A*)) C &P(A*) f ¥ : A — Ais
homomorphic. Cf. [ 16 |.

Let R be the real line, which is assumed to represent the time axis. Assume that a
system S has the state p? (€ &P(A*) at time t = 0, that is, the initial state is equal to pP.
Put RZ = {(t;,t2) € R? : t; < t3}. The pair Sjpp) = [Sjpr)s {Prpy : A — A}(thtz)eRé] is
call a C*-dynamical system with an intial system S|, if it satisfies the following conditions

(i)~ (ii):
(i) p* € &°(AY),

(ii) for every (t1,t2) € R%, ¥y, 4, : A — A'is a Markov operator, and moreover, it holds
that \I]tl,tz\ptz,tg = \Ijtl,tg for all (tl, t2>, (tg,tg) € RQS

Now we can state the following axiom, which corresponds to “the rule of time evolu-
tion” in (3).
AXIOM 2. [ The time evolution of a system |. Let S be a system with the ( initial )
state pP € &P(A*). The time evolution of the system S is represented by a C*-dynamical
system Spe) = [Sprp, {Wire, 1 A — A}, 1p)erz]. Also, the Heisenberg picture connects
Axiom 1 with the C*-dynamical system S,». ( Cf. Remark 4.1 presented below ).

Though there is a reason to consider that Axiom 2 for non-deterministic relations
should be called “Method 2”7, in this paper we do not dare to do so. Also, the term
“deterministic” may not be proper in quantum mechanics, since “deterministic quantum
general system” usually has a “stochastic” aspect. However, in this paper we dare to call

so. We believe that this axiom dominates all systems, i.e., classical and quantum systems.
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[Remark 4.1] ( The Heisenberg picture ). We must add some remark on the relation
between Axiom 1 and Axiom 2. Assume 0 < ¢; <ty < ... <¢,. And consider an observ-
able Oy, = (X3, ,F,, Fy,) for each time 4, . The measurement of the observables {Oy, }}_;
for the dynamical system Sp) = [Spr, {0, 1 A — A}y, 1)erz ], which is denoted by
M({O¢, }3_1, S[pr]), is represented in what follows. Put O, = Oy,. Consider the observ-
able \Iftnfl,tnatn = (X4, Fi, Ve, 11, Fr,), which is regarded as an observable at time t,,_;.
By the Heisenberg picture, the ‘I/tnfl,tnﬁtn is identified with Oy,. Thus, we can define the
quasi-product observable O, , = (X, X X, , F. X F., F, | X Otn-t Uy o Fr)
of Oy,
not guaranteed in general. Similarly, we can define the observable 6%71 of Oy, , and
v, 6%71. And finally, we get the observable 6t1 of Oy and \Ift17t26t2. Putting

60 = Vo4, 0y, we have the measurement M A(GO, Sier)), which is the representation of

, and \I/tn717t7L6t7l. Here note that the existence and the uniqueness of 6,5%1 are

n—2,tn—1

M({Oy, }7_1, Spr)). However, note again that the existence and the uniqueness of O, are
not guaranteed in general.
Now we can summarize the arguments in Sections 3 and 4 as follows.

general system theory = the rule of time evolution + measurements
(Axiom 2 ) (Axiom 1)

(3)

Here Axioms 1 and 2 instruct us how to use the terms: “state”, “observable”, “mea-
surement”, “measured value”, “probability”, “time evolution”, etc. To describe every
phenomenon by these several words is the spirit of the mechanical world view.
[Remark 4.2] The following diagram will promote the better understanding of our ar-
gument.

Quantum Mechanics (2) — GST (3)

(A= B(H)) generalization (a) (general A)
l specialization(b)

classical GST(8)

(commutative A)
l specialization(c)

Newtonian Mechanics — conventional ST (1)
(Newtonian eq.) generalization (d) (state and measurement egs.)

As mentioned in Section 1, we believe that the generalization (d) is admirable. For the
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specialization (c), see [7]. Thus we see that (1) U (2) C (3). However, it should be noted
that the main purpose of our papers [5~13] is to assert that the classical GST (8) is,
beyond comparison. richer than the conventional ST (1). That is, the conventional ST
(1) is too poor to to assert the (4) (or, (7)), i.e., system theory is the constitution of
science. Therefore, we hope that the GST ( or, the classical GST ) is generally accepted
as the standard frame of system theory.

[Remark 4.3] Note that Axiom 2 guarantees that the method to use differential equations
is true. However Axiom 2 is not sufficient in order to characterize Kalman filter ( or
particularly, regression analysis ) in general. Thus Axiom 2 should be generalized as
follows: “linear order R — partial ordered set T with a tree-like structure” and “t; #
to(t1,to € T) = Ay # Ay in general”. Therefore, “the rule of time evolution” should be
replaced by “the relation among systems”. Cf. [12]

[Remark 4.4] Some may be interested in the relation between GST (3) and Kolmogorov’s
probability theory. Note that Kolmogorov’s probability theory is mathematics. Since the
GST (3) is described in terms of mathematics, we can use many mathematical theories
in the analysis of the GST (3). For example, we may use the theory of Hilbert spaces
or finite mathematics. In the same sense, Kolmogorov’s probability theory may be used.
Therefore it is nonsense to compare the GST (3) with Kolmogorov’s probability theory.
Of course, it is certain that Kolmogorov’s probability theory and the theory of differential
equations are quite useful in the analysis of the GST (3). Again recall the difference
between the (1) and the (5).

[Remark 4.5] We are not necessarily interested in the quantum part of the GST (3).
Our interest is rather the classical GST. In fact, our most results in [5~13] are mainly
related to the classical GST. However, it is sure that the knowledge of the quantum
GST promotes the better understanding of the classical GST. For example, “There is no
probability without measurements” is a common sense in quantum theory. This common
sense is also quite important in the consideration of the classical GST. It should be recalled
that the classical GST is due to quantum mechanics ( c¢f. Remark 4.2 ). Therefore, we
consider that it is not advisable to return to quantum mechanics.

§5 An application of the GST (3)
Bayes’ methods

on the relation between Fisher’s and

As mentioned in Section 2, we have an opinion that statistics ( even Fisher’s method
) is not justified yet. Therefore in this section we clarify the relation between between
Fisher’s and Bayes’ methods in statistics as one of applications of the classical GST ( cf.
[13]). We consider that the term “subjectivity” in Bayesian statistics is too extraordinary
in comparison with other science. Thus we are not concerned with the “subjectivity” in
our approach.

From here and onward, we focus on the classical GST ( i.e., A = C(Q) ), in which
Fisher’s method and Bayes’ method will be clarified. That is, we show that, in Fisher’s
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method | resp. in Bayes’ method |, the information ( obtained by a measurement ) is
described in terms of quantities ( i.e., real valued continuous functions on € ) [ resp. in
terms of weights (€ M7 (2)) |.

A continuous linear operator ® : C(2) — C(€) is said to be a Markov operator if it
satisfies that ®(f) > 0 (Vf > 0) and ®(I) = I. A subclass Sq of the set of all Markov
operators is called a shuffle, if it holds that

O(f)=f (V@€ Sq) < f(w)==kI (ie., constant ) 9

( The shuffle S has no effect ) ( no information about the card) ( )
The notes under the formula (1) should be read as the interpretation of the (1) in card
games. Thus, there is a reason to consider that the likelihood quantity kI represents the
situation that we have no information. ( A non-negative quantity is called a likelihood
quantity in Fisher’s method. )

Assume a shuffle S. Under the hypothesis that we know that the likelihood quantity
of the system Sy is equal to a positive constant function kI ( in other words, we have
no information about the state d,, concerning the shuffle Sq ), the measurement Me(q)
(0 = (X, 2%, F), Sjs,)) is written by Mg (O, S[.}(kf)i,”). ( This is the precise form in
Remark 3.5.) The conventional Fisher’s likelihood function method says that

(Fc) From the fact that the measured value z (€ X) is obtained by the Meq)(O,
Si(kI )f;ﬂ), we know that the likelihood quantity of the system S} is equal to

k[F({z})](w). Thus, there is a reason to regard the unknown state [-] as the state
wo(€ Q) such that k[F({z})](wo) = max,eq k[F({z})](w).

For completeness, the reason of the (F() is added as follows. Assume that [F({z})](w)
< [F({x})](w2). Then, Axiom 1 says that the fact that the measured value = (€ X) is
obtained by the M¢(q)(O, Sjs5,,1) happens more rarely than the fact that the measured
value z (€ X) is obtained by the Mg(q)(O, Sjs,,1) happens. Thus, there is a reason to
regard the unknown state [-| as the state wy.

It is usual to assume that we have a little bit of information before a measurement.
Thus we must proceed in what follows. Under the hypothesis that we know that the
likelihood quantity of the system Sy is equal to Gg, the Mc(q)(O, Sps,)) is written by
Me(0)(O, Si5(Go)i)-

Here we have the following problem:

(Pg) How to infer the new likelihood quantity of the system S from the fact that the
measured value z (€ X) is obtained by the Mg ) (O, S[.](Go)i]").

This is equivalent to the following problem:

(PG) How to infer the likelihood quantity of the system Sy from the fact that the
measured value (yo,z) (€ {yo,y1} x X) is obtained by the iterated measurement
M) (0o x O, S[.](kf)iﬂ), where Og = ({50, 11}, 21%0¥1} @) and G({y}) = Go,
G{my) =1 - Go.
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Thus, from (F¢) and “(P)<(P()”, the (P() is solved as follows:

[F' ] ( The answer of the (Pg) ): We know that the new likelihood quantity G| ., of the
system Sy is equal to Rmio{z}(Go). Here, the reduction map Rmjo.zy : C(2) —

C(9) is defined by Rmjoyey (G) = F({z})G (VG € C(Q)).

Now we understand Fisher’s method ( i.e., “no information kI” + [F] ). For com-
pleteness, note that the information in Fisher’s method is described in terms of likelihood
quantities Gj.

Here we have a problem: “What is Bayes’ method ¢?”. Though there may be sev-
eral opinions, in what follows we assert that Bayes’ statistics is the statistics in which
the information is described in terms of weights, and further, two methods are different
representations of the same thing.

A shuffle 8§ (or, S§(v) ) is called a mild shuffle ( or, Bayes shuffle ), if there exists
a unique weight v (€ M, (Q)) such that ®*(v) = v (V® € 8F), and further, if the v
satisfies that v(U) > 0 for any open set U (C Q). ( Here the ®* : M(Q2) — M(Q) is
the dual operator of the ®. )  The invariant weight v is not destroyed by the Bayes
shuffle S5, or, it is invariant before and after the Bayes shuffle S§. Thus, we consider
that the invariant weight v is also the representation of the situation that we have no
information. Therefore, if we start from the Bayes shufle S§(v), the concept of “no
information” has two representations, i.e., kI and v. If Q is finite and if the bijection
shuffle ( cf. Example 5.2 later ) is assumed, the invariant weight is always represented by
the normalized counting measure v, (D) = |D|/|Q| (VD € 24). Also, if Q is the compact
domain in the n-dimensional Euclidean space R™ and if the S (v) is the “diffusion shuffle”
(i.e., the semi-group ( e.g., [16] ) generated by the heat equation on € with reflecting
barrier 02 ), then the invariant measure v is represented by the normalized Lebesgue
measure.

Assume a Bayes shuffle S§(v). Under the hypothesis that we have no information (
concerning the S§(v) ) about the state &, ( in other words, we know that the weight of
the system Sy is equal to v ), the Me)(O = (X, 2%, F), S5,)) is written by Mcq)(O,
Spy(v)Sa ?). In general the symbol Me ) (O, Sp(pi ) ), (pi € M7 (€2)), is assumed to
be represents the measurement Mcq) (O = (X 2% F) Sis.1) under the assumption that
we know that the weight of the system Sp is pf'. Thus, as the dual form of the [F], we get
the following [B].

[B] Assume that we know that the weight of the system Sy is equal to pg’. After we
get the measured value z by the measurement Mc(q) (O, S} (,06”)55 ), we know that
the new weight of the system S} is equal to pllt,, (€ M7, (Q2)) such that pfiew (B)

%[F(g)}(wmo ) /B € By, Borel field ).
Q

Define the map RM[O;{x}} MP(Q) = M) such  that Fﬂka[o;{gc}}(Pm)
0.2y (P™) (Vo™ € MPH(Q) ), where Ryyg.rpy 0 M(Q) — M(Q) is the dual

o ”RK/I[O;{x}] (pm)HM(Q)
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operator of Rypjo,{z)). Then we see that pfleyw = Elik/[[o; 1(pg")- Thus we consider that the
[B] is the dual representation of the [F]. In this sense, the [B] is independent of the Bayes
shuffle. However, as shown below, the Bayes shuffle SF is essential to the interpretation
of [B].

Now we shall show that the concept of “no information” connects Fisher’s method and
Bayes’ method. Assume a Bayes shuffle SF(v), which is, of course, also a shuffle. Since
both kI and v represent the concept of “no information” ( or, they are not destroyed
by the Bayes shuffle 8§ (v) ), we can compare M¢(q) (O, S} (pom)ig) and Mg (O,

Sp(Go); “) as follows. Since v(U) > 0 for any open set U (C §2), we can define the
bijective correspondence: [likelihood quantity G| ".” [weight pi* | such that [T, (Go)|(D) =
poH(D) = ngs(w)y(dw) (VD € Bg), or T, (pi) = dpo = m i.e., Radon-Nikodym
derivative. Clearly, it holds that 7T, (kI) = v, or more generally, T, (Rmjo:2}(Go)) =
El\i{[o; wn(eg) if T,Go = pg'. Therefore, the correspondence ( or, translation ) 7, is
compatible with [F] and [B]. ( Cf. Example 5.2 later ). Thus we can conclude that
two methods are different representation of the same thing. That is, the Bayes shuffle (
or, the concept of “no information” ) enables Fisher’s method and Bayes’ method to be
translated from each other.

Of course, Bayes’ method can say something more than Fisher’s method since the
class of shuffles is restricted. For example, the entropy of the measurement M¢(q) (O,
Sy (e Toex olF{e] (@) loglP({z}](@)v(dw) — Taex P(x) log P(x), where
P(x) = fQ[F({ZL‘})]( Jv(dw), cf. [5] ) is defined in only Bayes’ method.

The interpretation of the invariant weight v is not anything more than the definition
says. It is usual that a certain natural measure p ( such as “counting measure”, “volume”,
etc. ) on ) is ready prior to statistics. The natural measure p may be also defined by
an invariant measure of a certain class of transformations on 2. Thus, we may often see
that v = . However, it does not necessarily mean that two measures v and p have the
same interpretation. For completeness, we add the following remark.

[ Remark 5.1] ( The probabilistic interpretation of the Bayes shuffle S5(v) ). If Plx;
M) (O, S[.](pgb)fg)], i.e., the probability that a measured value x (€ X) is obtained
by the measurement M) (O, S[.](p()")fg)), is given by s (pgt, F({x})) e WE can

easily see that for any Oy = (Y,2Y,G) and y(€ Y), Ply; Mc(q)(O1, S| (pﬁew)‘jg)] =

Pl(r) Moy (0x01.51 (0759 ) m & Dl
P[x;MC((Q))((O,S[.](06[:)35%)] R <pneW’G({y})>c<m. Therefore, if Plz; Mo (O,
S[A}(l/)fg)] = o (v, F({x})>cm) holds ( i.e., if “the principle of equal probability” can be
assumed ), the [B] has the probabilistic interpretation ( cf. Example 5.2 later ). However,
it is not a direct consequence of our theory (=“GST”).
The following example will promote the understanding of our proposal.
[Example 5.2] ( The urn problem ). There are two urns w, and wj,, whose prices is
respectively 14 dollars and 21 dollars. The urn w, [ resp. wy | contains 8 red and 2 blue
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balls [ resp. 4 red and 6 blue balls |. Assume that they can not be distinguished in
appearance ( i.e., they are shuffled ). Choose one urn from the two. Now you sample,
randomly, with replacement after each ball. In 2 samples, you get 1 red and 1 blue in
sequence, i.e., ( “red”, “blue” ). Which is the chosen urn, w, or w, ¢ Further, assume
that you continuously get “red”. How about the case ¢ Also, answer the question “How
much is the average price of the two urns ( at this moment )?”. Lastly, study the case
that the urn is chosen by a fair coin tossing.

In what follows this problem is studied in Fisher’s method [ resp. Bayes’ method ].
Put Q = {w,,wp}. O = ({r,b},20"" F) where [F({r})](w,) = 0.8, [F{b})](w,) = 0.2,
[F({rP](wp) = 0.4, [F({b})](wp) = 0.6. Assume the Bayes shuffle S§ such that S§ =
{®y| ¢ : Q@ — Qs a bijection }, where &y : C(Q2) — C(Q) is defined by [®4(f)](w)
= f(o(w)) (Vf € C(R), Vw € Q). ( Note that Bayes’ method can not be applicable,
if the shuffle So = {®y] ¢ : @ — Q is a map } is first assumed. ) The situation of
no information in Fisher’s method [ resp. Bayes’ method | is represented by kI (k > 0)
[ resp. v, (e, v, ({w.}) = v, ({w}) = 1/2 ) |. Thus, it suffices to consider the

B
measurement Me ) (O x O, S[.}(kf)f]“) [ resp. Mg)(O x O, S['}(V\m)ig) |. Since the
measured value (r,b) was obtained, the new likelihood quantity Gnew and the new weight
Pllew is respectively given as follows.

Grew (@, )(= KT - [F({r)](w,) - [FUD)] (@)= 0.16k,  Gren (wp) = 0.24F,

( by the direct calculation or translation: T, (Grew) = Pl ),

o e S POy, () 162 3
e o) DI PN @ () )~ 20~ 57 Pl =5

Thus there is a reason to infer that [-] = wy, ( cf. Fisher’s likelihood function method (F¢)
). For the further case, it suffices to consider the measurement M¢(q)(O, S[.](Gnew)ig)
[ resp.  Mc)(O, S[.}(pﬁew)fg) ]. Thus we similarly calculate that Gpewz(w;,) (

[Gnew|(wr) - [F({r})](wr) ) = 0.128k, Gpewz(wp) = 0.096k, [ resp. pllowz({wr}) =

4
7

Plow2({w}) = 2 1. ( Here again note that Geye T;" pr o) Putting p(w,) = 14

and p(wp,) = 21, we see that their ( weighted ) average price at this moment is equal
to Jop(w)ppewz(dw) = 17 ( dollars ). ( This is the result of Bayesian statistics. )
Here, it should be noted that, in the above arguments, any statement is not described
in terms of probabilities, though the probability in Axiom 1 is essential to the justi-
fication of (F¢). However, if the urn is chosen by a fair coin tossing, Bayes’ method
acquires the probabilistic interpretation. Therefore, we can, for example, calculate that
Plr; MC(Q)(O,S[.](p?feW)fg)] = @ (pﬁeW,F({fr}))C(m = 0.56. For completeness, note
that this probability is due to “Method 1 in Remark 5.17 and not Axiom 1. The two
probabilities in Axiom 1 and “Method 17 must not be confused.
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§6. Conclusions
In this lecture we introduce the general system theory ( or shortly, GST )

“GST” = “the relation between systems” + “measurement theory”
(Axiom 2, cf. Remark 4.3 ) (Axiom 1)

(3)

as the mathematical representation of the mechanical world view. Here Axioms 1 and
2 instruct us how to use the terms: “state”, “observable”, “measurement”, “measured
value”, “probability”, “time evolution”, etc. To describe every phenomenon by these
several words is the spirit of the mechanical world view. We believe that the GST is
powerful enought to say that

“To justify a theory” = “To regard a theory as one of aspects of the GST” (6)
Therefore, we may say that
“GST” = “The mathematical representation of the mechanical world view” (4)

= “such a thing as the constitution of science” (7)

Therefore, we believe that the saying “There is no science without measurements” is
realized in the GST (3).

Also, in Section 5 we justify statistics as follows.
= Fisher’s method
likelihood quantity ( Sq )  (“no information (= kI)” + [F])

GST -

] translation 7, (if Sg = SE)
(Axioms 1,2) ( statistics)

= Bayes” method
weight ( S5 ) (“no information (= v)” + [B])

Here the “translation 7,” between Fisher’s and Bayes’ methods is essential. Therefore,
we conclude that Fisher’s and Bayes’ methods are true, or they are constitutional under
the constitution: “classical GST”.

Lastly we shall mention our present interests as follows.

(A) Every method ( particularly, in OR, psychology, etc. ) should be checked under the
GST. If a useful and unconstitutional method will be discovered, it is very exciting.

That is because it may imply that we have a good chance to propose another world
view ( cf. the (B) below ).

This must be executed as fast as possible. And

(B) Propose another world view.
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As mentioned in Section 2, we believe that “To justify it” is “To regard it as one of aspect
of a certain world view”. If we have another world view, we may have another definition
of “justification”. Therefore, the above (B) is quite important. Though we do not know
another world view yet, it must be always encouraged to try to propose another world
view. Although there is an opinion that Frieden’s recent work [17] is hopeful as another
world view, now we can not decide whether it is hopeful or not. We consider that it is
desirable that many world views will be proposed. However we are convinced that the
GST plays a central role in the argument about "world view” since the GST is quite
orthodox ( or, it is due to mechanics ). We hope that the GST will be generally accepted
as the standard frame of system theory, or as the mathematical representation of the
mechanical world view..
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000 SO0000000000000000O00O SO000000000d pP(eeP(A*)) O
O000000000Oobservable 0000000000000 observable O = (X, F, F)
000000000 p? (e 6°(A) 0000000 SOO0O0O observable OO0 OO0
M4(O,S,,) 000000000000D00000000 (€ X)O0000000quasi-
product observable ( or, product observable ) 00 0000000000000 0O0O0OO

0000000000000 00000 C*algebra 00 OO0O0O0OCHE. [5,6].
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AXIOM 1. 6 [0000 ]. 00 M4(O = (X,F,F), S,») 0000000000000
¢ (eX)0 E(eF) 000000 pp(FE)DDOOODOO
C*-algebra ADOOOOOO0O0O00O0O0O0O0O0

"ooooogoogr

000000030 _{ 00 000000 (8)
Doooooo

[0 3.4] 000000 individualisticd 000000 pP(e P(A*) ) 000000000
0 NODOODDOO ®Y, M40, S,»)000000000000000000000
000 (X,F, pP(F(-)) 0000000000 ( Theorem 2.2 in [6] ).

[0 3.5, 00000 MO, Spy) 000000000000 000000000
0000000000000, 0000000000000000000000000
0000000000000000000000M4(0, Syey) 0 My(0,S.) 0000

00000000 (S)000O0o (C)Uooooooooooooooooooooo

(S) OO My(O, Sp.) 000000 x(eX)0000000000([-]000000

(C) 00 M4(0, S;.;) 000000 2(e X)00OOO000000000([-]000
000

0000 (S0 (C)0 100000 Fisher 000000000 DODODOODOODOOOO
Axiom 1 000000000000 OOOOOOOO(CE 50).

¢4 00000ODOD

ADO Cralgebra 000000000009 A—AD0O0 (), (i) 0000000
0000000000000 U(F) >0 F(>0)€ A, (i) F(ly)=1,, 000 1,0 A
O000. O=(X,F,F)O AOO observable 00000 (X, F,VF) O observable O O
00000 vyoUoooooooooooooov:A—-A000 (), ()o00ODDOOO
0000000000000 ¥(F)U(G) = U(FG) (VF,G € A), (i) (U(F))* = U(FY)
VFe A OODOV - A" A" 00000000V A—- A00000000000
gobobooogon
(a) U(&™(A")) C &7 (AY),

)OO V:A—ADDDDDDDDTH(6P(AY)) C &P(A") CE [15].

U000 ROODODOOOODOOD¢t+=0000000 SOODOoOoOoooOon pr
(€ 6°(A") 000000 R O {(ti,ty) € R2: 1, < t,} 0000000 Sy =[Sy,
{Wipy : A= A}y 1merz] 00D (i), (i) 000000000000 Sy 000 €00
oooooooooo
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(i) p* € &"(A"),
(i) 0000 (h,t,) € R2 000000, : A - AD0D00O0OOCOO, 00O
\Ijtth\I/tQ’tS — \I]tl,tg (V (tl,t2>, (tg,tg) E R%) |:| |:| D |:| |:| |:|

goodboobobbgb3goboboobooboobonobobooboobg
AXIOM 2. [00000000 (cf. [69])]. Sy 00000 P € 6P(A*)DO000000
00000000 S000000C-000000 S =[S, {0+ A = Ay myerz ]
OO00O00000O00DO0bO0o0bO0oDO0DO0b000bAxiom 1 0 C*-O00000O0O
S,y 000000000000000(CE O 4.1).

OOo0oooooooooooooooboooooobooooooooooo ex-boo
O0oO0o0ooO0o0o0o0oobooooobooooboOoobOoooDoboo cx-obobogo
gboogo
[0 41] Axiom 2 000000000000000000OO0OO0OO0O0OOOOOOOOOO
0<t, <t,<--<t, 00000 ¢, 0000 Dobservable Oy, = (X,,, %, F,) 00000
000000 Sy = [Sprp, { Pt 0 A — A}, 1p)erz] 00 OO0 observable {Oy, }_, O

00— Ma({O4}¢_1,Spr) — 000000, =0, 0000observable ¥, ,, O, =
(Xt Fony Uty 1) OO0 £,y O observable 1000000000 00000000
ooooo,oo0o00v, ,,0, 00, 0000000000000, , Dw%”g%
Dunasi—product observable 6%1 = (X, , XXy, B, X F, F}nfl X, B
DDDDDDDDDDGt%lDDDDDDDDDDDDDDDDDDDDDDDDDDD
0000000000000000000000000;,,0 ¥, _,¢,_,0,_, 00 quasi-
observableOtnIDDDDDDDDDDDDDDDDDDDDO,:ID\IltthOt2Duna31—
observable Otl 00000, = v,, 0, 000000 O MA(OO,S[pp]) oo0o0ooooo
M4({0,,}i_,,S;») 0000000000000000000000,00000000
DDDDDDDDDDDDDDDDD

00000000000 3)000oooooo00ooooooooooooo

ooooooboboo0o0o0o00=000000b0U0bO0+ DoboDOo
(Axiom 2 ) (Axiom 1)

(3)

O000Axioms 1,2 00 000observableDD 000D OO00ONOOODODOOO
gogoobobbbobb44200dddoooooooobobboboobobbbobooogd
obooboboobbooobmoobboobboobboobboobboobog
gbbbbuogobbbooooobbbboooobbbooooobbboboooa
gbobboooobbbuooobobbuoooobbbuoooobbodao

[0 42]000000000000000O0O
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oooo (2) . Dooooo (3)
(A= B(H)) 000 (a) (general A)
looo )

O0o00oooog (8)

(commutative A)

looo (o
Newtonian 0 [ — O0000oooooo (1)
(Newtonian eq.) 0ooag (d) (booooooooo)

010000000000000()000000000000000 ()0 (70000
000000() U2 Cc (30000000000 [2~13)00000000 00000
0 8000000000000 (1)00000000000+ch 000000000
0000000000000000 (1)00000700000000000000000
000000 (3)(or, 00 000000 (8))000000000000000000
0000000000000000

[0 4.3 000000000000000000000 Axiom20000000000
0000000 00000000000000000000000000000000
000000000 MO000Axiom2000000000000000000000
000000000000000000000000¢00000 C*algebra A, 000
000000000 (¢f. [12])000000000000000000000000000
000000000000000000000000000000000000000
0ooooo

[0 4.4) 000000 (3)(00000000MO00000000000 14000000
0000000000000000000000000000000000000000
0000000000 (3)0000000000000000000000000000
0000000000000000000000000000000000000000
0000000000000000000000000000000000000000
00000000000000,0000000000000000000000000
00 (3)0000000000000000000 (0000000000)00000
000010000000000000

[0 45000000 (3)0000000000000000000000000O00O0
D0000000000000000,$000000000000000000000
000000000000000000000000000000000O0OOOOOO
0000000000000000000000000000000000000000
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0000000000000000000000000000DO0O0OODODOOOOC(Q)
0000000 C*algebra ADODOOOOODOOOODOOOODOOOOOOODOOO
O00000000000000000000 3)0000ooooooooooooooo,
gboobuoogobbbuooobobbboooobobuoooobbbooooboo

¢ J00Db0b00O30 1000 0——-0b0O0b0obooboboobDoDo

gboboobobgobsbo1goboobgoboboboboboboobobon
ooooboboobogubobobooooooooobobooboboobobobOoo
ooooooooO0oO0—00000000—0ooooooOoOoOooOo 1Bjooooo
gogooboboboboboobob20bbboioimgdd=0000dddouooooooon
obooobboobbooobooobboobbooobboobbooobobo
A=CQ) 00000000000 Axiom 1000 Axiom2 00000000

CQ)0Do0o0ooooooooooo Sa000((9)0oooon S, 00000o
goo

O(f)=f (VP e Sq)< f(w) =kl (ie., constant ) 7)

(0000 Se000000) (0000O00000O0000)
goebbbuodbbodobbogbbooobuobetodbboobbooobooobn
000000000k (eC() 0000000000 DDOOOO0ODODOOOOOO
0000000D0000000000000 G (€ () — likelihood quantity — O O
oboobon

0000 SeO 10000000000 5.0 likelihood quantity 000000 OO

00 00000S,000000000000000 Mg (0= (X, 2X,F), Ss)) O
Me o) (O, S[.}(kf)ig) 000 (cf. O 35000000000 likelihood function 0 0 00O
goo

(Fo) 00 Mewy(0, S;.4(k)$*) 000000 (€ X) 0000000000 S0 like-
lihood quantity O k[F({z})|(w) DO0DO0O000O0O0O00O [-]0 k[F({x})](wo)
)

= max,eq k[F{z})](w) 000000 w(eQ) 0000000000000

0000 (Fe)DODO00000000[F{z}))(w) < [F{z})](w:) D000000Axiom
1 0000000 Mgg(O, Sp,,) 000000 z (€ X) 000000= [F({z})](w)
< [F({z})](wz) = O Me)(0, Sp,,)) 000000 2 (€ X) 000000000000
000,000 000000000000[-]=w,00000000,[-]=w 00
000000000000000(-]=w 00000000000000000000
0oooo
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00000000000000000000000000000000000000
DFO00000000000000000000000000000000000000
000000000000000000000000000

0000 S 0 likelihood quantity 0 Gy (0< G, € C(Q) 00000000000
0000000000000 Maw(0, Sp)) O Maw (0, S.)(Go)s?) 0000000
00000000000000
(Pg) 00 Mg (O, S;.1(Go)?) 000000 2 (e X) 0OOOODO000O00000

lq

0000 likelihood quantity OO0 O 7
gdoooooooooooo

(Pg) 0000 Meo)(0oxO0, Sy (kD)) (000 Op = ({yo, v}, 2041}, G) O G({yo}) =
Go, Gy ) =1-Go0000D0)000000 (yo,2) (€ {yo,pn} x X) 0000
00000000000000 likelihood quantity 0000 ?

000((Fc) 00000 “Pg) « (PL)’ 00 (P, 0F.000000)00 (Pg)000
0oooooo

[F]((Pe)OOO ): Pe O00O0OODO Olikelihood quantity GoF({«z}) D00 DOO0OO0O0O0O
RM[O;{Q}] : C(Q) — C(Q) O RM[O;{x}] (G) = F({x})G (VG € C(Q)) Jgogoogno
000 Rumoyey(Go) 000000000 (000000000 (1210000000
0oooo)

0000000000000000000 “000(=4I) +[F0000000O0O0OO0
000000000000 00000000000 likelihood quantity (€ C(Q) 00 O
0 000000000000

00000000000000000000000000000000000000
00000 weight (e M7(Q) 0000000000000000000000000
0000000000000000000000000000000 (00000000
00000000)0000000000000000000000000000000
Dooo0o0o00o00

0000SE (000SE(v))0000BSOOO0O0D0D Bayess 10000000

(BS) &*(v)=v (V& e S8F) 0000 weight v (e MT(Q) DDD00000O0OOON
00000U(CQO000yU)>0000000

(000 @ : M(@Q) -M(Q)O0e000000). OO0 weight v 0 Bayes 1000 SZ
00000000000000000000000 Bayes 0000820000000
00000000000 weight 00000 0000000000000000000O0
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000 Bayes 0000 SE(») 000000000000000000000— likelihood
quantity £/ (000000000) 0 weight » (000000)— 000000000

00 weight v 0 Bayes 0000 S 0000000000000000 Q0000
0000000000000 0000000 Bayes 0000 SE (¢f. 052000000
00,00 weight 0000000 v, (D) =[D|/|Q (YD €2?) 0000000Q0 n-
0000000000 R'00000000000000 ‘0000007 8&(»)000
0000000000000000000[16)00000000)000000 weight v
0 000000000000000000

000 Bayes 0000 S§(v) 0000000000 Mgo)(O, S;.(»)5) 00 SE(v)
0000000000000000 M)(0=(X,2%,F), S.,) 0000000000
00000 Meo(O, S;.1(09)5%), (pr € M7(Q), 0000 ppr 000000000
m%(mo_4X2,FL&M)DDDD

DO0O0[F]000000000000

[B] 0O Meg (0, S.1(p)%%) 000000 200000000000 ., 000

T Rl o

0 weight 0 pfk, (€ M7,(2) 0000000000 sty (B) = Pl
(VB € Bgq, Borel field ).

O0000000000000000 “000(=v )" +[BO0OOOOO

00 Ragouay : MT1(Q) — M7(Q) O Ryouun(P™) = ”R;;iﬂ?”S|L“D (Vpm €
m(Q))000000(000 Ry : M(Q) > M(Q) O Ryjouey 000000,
¢f. [F)). 00DO gty = Rugouey(py) 00O0DD0O0O0OO0O[B O [F]000D000O
D00000000000000000000(000000000000000000
0)00000
000000’ 0000000000000000000000000000000
0000000Bayes 0000 SE(») 000000000000000007 0000

DD—_wJDu—_ﬁDDDDDDDDDDDDDDDDN%@(quwmﬁ)mm

0 Mg (0, S(.1(Go)s?) 000000000000

(U) >0(VODOOU(CQ))D000000 :[likelihood quantity Gol ",

— m _f Go(w)v(dw) —1/ m\ _ dpg* __ Go

[ [TV(GO)](D)—pO (D)_ szO(W)V(dw) (VDEBQ)7DDD sz (p(])_ dz(/) f Go(w)v(dw)’
00000 Radon-Nikodym 00 O0000000D00O0O00O0O0O0OT,(kI)=vO0O0O
000000000007, (Ruoi(Go)) = Raorgey (p8) Oif T,Go = p ) 00D DO
00000000000 (=00)7,0[F0 B 00000000000O0000O0
O(Cf. 052). 00000BayesO0O00O0O (OODO “CO0”000 )0000O0ODOO
oboob oboobooboobo 7, 0000000

O000O0OBayesDOOOOOOOOBSOOOOOOOOOOOOOOOooooODDO

gobodbgoboboobobouboobooboboobobouboboooboon

[weight pf ]
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00000 Me) (0,5 (»)%) 00000000 Seex JolF({z})](w) log[F ({})](w)v(dw)
—ZmXP@ﬂgP(ﬂ]DDDP(y—Q[Qﬂﬂ()@@DDDDDDDDDDD(d
3]). 000000000000000000000000,0000000000000
0000000000000000000000000000000000000000
0000000000000000000000000000000000000000
0000000000000

00 weight » 00000000000000000000000000000000
000
[0 5.1 (weight 10000 )]. 00 Pla; Meo)(O, 8. (o) )] - 00 Me(O,
Sii(p)%#)) 000000« (€ X) 0000000—0 _{pf, F({z})),, 00O

0000000 0, = (v,2Y,G) 00 y(e Y) 00000 Ply; M) (01, Sp.1(p7,)5)]

B

:PW”MW“WWS(%)”: (pm..G({y}) . 0O0D0D0 00O0D0O0O0O0D0

ﬂm%@®ﬁﬂ%%ﬂ M o
Plz; Mo (0, S (»)38)] = . (v F({2})),,, 0000000 0000000000
D0D00O0[B000000000(c 052). 00000000000 “000000
(37 0000000000000000000000000000000000000
0000000000000000000000000000000000000000
0oo

00000000000000000000
[0 5.2 (0000 ). 0000000000000000 w0 wO0000(00000
00000000000000.000000000 14000 0 2100000000 w, |
resp. wy | 00 80000 O 20000 [resp. A0000 0 60000]000000
00000000 o, 0 w000000000000000000000000000
0000000000000000000000000000000000000000
000000200000 (407, “0’)000000000000000000000

[01]0000 w0 w,100000000000000007
00000000000 00000000000000000000000
[02]00000000°¢7

00

[03]000000000000000000

000

[0 4]|]0000000000000000000O00O0OOOOOO0O0O0O0O0
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[00]00000000000000 [resp. 00000D0] 0000000 = {w,,w}.
O = ({r,b}, 2", F)DOOOO000OOF{r})](w,) =08, [F{b}))(w:) = 0.2, [F({r})](ws)
— 04, [F({b})](wy) = 0.6. 000000 0Bayes 0000 SE 0O SE = {By] 6: Q — Q
0 000}0000000 &y : Q) — C(Q) O [@s(f)]w) = f(6w)) (Vf € C(Q),
VweQ)ODODD(OD0000D000000 Sq={d]¢:Q—QO000 }0000
000000000000 0000000O0000DO00) DOooLUODOOobOOOOO
000 [resp. 0O000O00O] OO likelihood quantity kI (k > 0) [ resp. weight v, (ie.,

m@%bz%ﬁ%D:UQHDDDDDDDDDDDDDMWMOxOﬁ“%Dﬁ)

[ resp. M) (O x O, S[.}(l/m)fg)]DDDDDDDDDDD (r,b) DODDOODODDO
OO0000 likelihood quantity Guew O O OO weight pt 000000000

Gew (@) (= KT - [F({rD)](w,) - [FUO)] (@)= 0.16k,  Grew(wp) = 0.24F,
(00DD000000:T,, (Guew) = P, 00),

o i S PN @F@DIew, @) 162 3
P oD F I v (o))~ 20~ 57 Pl 8D =5
000000 10000000[-]=w (¢f. 0000000 likelihood function O O (Fe)

)00D0D00000000000

02000000 Meo(O, S )(Gaew)i?) [ Tesp. Mey(0, S (p)5%) ] OO
D00000000000000, Guwe(w,) ( = [Cuew)(@r) - [F({r)](w,) ) = 0.128k,
Gmﬂwgzoﬂ%h[mw.ﬂaxﬂﬂ):éﬁﬁwﬁwﬁ%:%]DDDD(GMWE;pﬁw
ooooo.)

000 p(w,) = 1400 O p(wy) = 2100 0000000000000 0000000DO
Jap(@)p™ 2(dw) = 1700 (0 )0ODDDOO (0 300(00000000000000
DDDD000D000000000)0000000000000000000000
000000000000000000000000000000000000000

00000 4000000000000000000000000000000000
DO(¢t. 0 5.1). 0000000000000 170000000000000000000
0000 (0510000000 00P[Mew(0, S 1(0m) )] = 0 (0 FAH) )
—0560000000000000000000 (cf. O 5.1)0000000 Axiom 1
00000000000000

§6. 0O
00000000000000000

[MOoOO00O0bO0obO0o00000b00= 0000000 oDobO+ Dooooo
(Axiom 2, cf. O 40 3) (Axiom 1)

(3)
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O00000000D00Axioms 102000000 observableDO OO OO OOOOOO
Dbooooboooboobooboo442@bgoboooboobooboooboo
gboogobuodgboboobobuodobbogbooboboobboobbooboon
gbobbuoodgbbooobobbooobbboooobboooobboooobobod
gooobod

O000D00 justification D000 O 0000000030 00000000O0O0O0OOO

(6)
gbobbobooboobosbgoboboboboboboobooboobon

"obooobgoo3g” ="0oobooobgooog” (4)

="000000000ano” (7)

000000000@3) 0000000000000 0o0o0oo0ooDoUooooooOO
gbobbuoogobbobuooon
goobobdgoob3gboobobgooubobobobobooobubobodonbg

= ogoooooood

likelihood quantity ( Sq ) (“00 0 (=KkI) + [F])

oo00ooonogan =
(Axioms 1,2) (0oo)

loon(if Sq = SE)

SN ooooon
weight ( S5 ) (‘00 0 (=v)” + [B])

oboooooboboboobb bbobbooboobo T, obooboobowDbo

gbobobuoooobbbuoooobbbuoooooboood
goboboooobbbuoooobobboooobboobbboo

e 200000D0O0O0DOOOUDOOODOOD3IDOOOLODOODODODOUODDOOO
gooboboooobbbobboooooboooobbooobbboooobboo
oROOODDOUOOODOOOODOOODOOOODODOO cheeckOOOOODDOO

obobobooboobooboobooboobo

e JO0ODDDOOS —DOUOUOOO0O0OLODDDLDO—D000ODODODbOOO0O0O0d
oooov?

OO000D00Db. 20000000000000D0 DOoDODOOODODOOODODOD
OOjustification 0000000000000 OODOOOODOOOOODOOOODOOO
gbbodgbuodboodbuoobboouoobuoodbb—0b0booobbuabag
gboogobogobuobbuobb—oobbuoobbooboooboooon
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oobobobobobmooobobbobobobooobomooobobobo
gbbobogobobbuoobbbuooobbbooobbbuooobboombooan
gboggbogobooobooobobodgbubuobboguobboboon
gboboboooobobooooooon

O000000000000000 Frieden OO0 [17)/00000000C0CODODOOOO

000000000000 3) 0000000000000 oobooOoooooooo
gboodgbboobboobboobudoboobbodboobboobuooboon
gbobobooogooon
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