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SEMI-LEVY PROCESSES, SEMI-SELFSIMILAR
ADDITIVE PROCESSES, AND SEMI-STATIONARY
ORNSTEIN-UHLENBECK TYPE PROCESSES

MAKOTO MAEJIMA AND KEN-ITI SATO

ABSTRACT. For any d x d matrix @) of which all eigenvalues have positive real parts,
the correspondence of Q-semi-selfsimilar additive processes on R?, periodic R?-
valued independently scattered random measures over R (semi-Lévy processes), and
semi-stationary Ornstein—Uhlenbeck type processes on R? with drift coefficient —Qx
is established via stochastic integrals and Lamperti transformations. This gives
representations of Q-semi-selfdecomposable distributions on R?. Results related to
Q-selfdecomposable distributions are derived as consequences. Applications and
examples in semi-stable Lévy processes are given.

1. INTRODUCTION

The works of Wolfe [26], Jurek and Vervaat [6], Sato and Yamazato [20], [21],
Sato [16], and Jeanblanc, Pitman, and Yor [4] combined show that the following three
classes have one-one correspondence with each other — the class of selfsimilar additive
processes, the class of stationary Ornstein—Uhlenbeck type processes, and the class of
Lévy processes with finite log-moment. The last one can be considered as the class
of homogeneous independently scattered random measures with finite log-moment.
The correspondence is given by Lamperti transformations and stochastic integrals.
At the same time each of these classes yields a representation of a selfdecomposable
distribution. The aim of this paper is to give an extension of this correspondence
to certain wider classes and to discuss Ornstein—Uhlenbeck type processes in a wide
sense.

Before going to statement of main results, let us give some definitions.

Let M, be the class of d x d real matrices and M} the class of Q € M, all of
whose eigenvalues have positive (> 0) real parts. Let I be the identity matrix and
a? =3 (n)t(loga)"Q™ € My for a > 0 and QQ € M. Sometimes we also use the
class M4 of [ x d real matrices. Denote the transpose of F' € M4 by F'. Let L(X)
be the distribution of a random element X. When £(X) = L(Y) for two random
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elements X and Y, we write X = Y. For two stochastic processes {X;} and {V}},
{X,} £ {Y;} means that they have an identical distribution as infinite-dimensional
random elements, that is, have an identical system of finite-dimensional distributions,
while X, 4 Y; means that X; and Y; are identically distributed for a fixed ¢. The
characteristic function of a distribution p on R? is denoted by 7i(z), z € R?. For an
interval .J, B; is the class of Borel sets in J and BY is the class of Borel sets whose
closures in the relative topology on .J are compact.

A process {X;: t > 0} on R? continuous in probability with independent incre-
ments, with cadlag paths a.s., and Xy = 0 a.s. is called an additive process (see [17]).
It is called a Lévy process if, in addition, X;, — X, 4 X; — X, for all nonnegative t,
s, u. We call an additive process satisfying the relation that X, — X, 4 X — X,
with a fixed p > 0 a semi-Lévy process with period p. An additive process is said
to have finite log-moment if Elog" |X;| < oo for all . Here log*a = 0V loga for
0 < a < 0. An additive process is said to be natural if the location parameter ~; in
the generating triplets (A, 14, v;) is locally of bounded variation in ¢ (see [18]). An
additive process is natural if and only if it is a semimartingale. All Lévy processes
are natural.

Let @ € M}. A process {X;:t > 0} on R? is called Q-selfsimilar if {X,;} 4
{a®X,} for alla > 0. Note that the value of X; (an element of R?) is always considered
as a column vector. If the assumption that {X,} < {a®X,} is made only for a fixed
a > 1, the process is called Q)-semi-selfsimilar with epoch a. Especially cI-selfsimilar
and cI-semi-selfsimilar processes with ¢ > 0 are called c-selfsimilar (see [15], [17]) and
c-semi-selfsimilar (see [10], [17]), respectively. In this case, H is usually used instead
of c.

Let @ € M}. A distribution 2 on R? satisfying

(1.1) A(2) = A9 2)pu(2)

with some (automatically infinitely divisible) distribution p, for every b € (0,1) is
called Q-selfdecomposable. Thus, for any ¢ > 0, the Q)-selfdecomposability and the cQ)-
selfdecomposability are equivalent. Following [11], we introduce, with b € (0, 1) fixed,
the class Lo (b, Q) of distributions 1 on R? satisfying (1.1) with some infinitely divisible
distributions p,. Distributions in Lg(b, Q) are called (b, Q)-decomposable. Distribu-
tions (b, @)-decomposable with some b are called @-semi-selfdecomposable. Usually
I-selfdecomposable distributions are called selfdecomposable and I-semi-selfdecompos-

able distributions are called semi-selfdecomposable (see [9], [17]).
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We will extend the correspondence mentioned at the beginning to the “semi” case
and simultaneously to the ()-case from the usual non-“semi” I-case. We use the notion
of R?-valued independently scattered random measure (i.s.r.m.) over an interval J,
{M(B): B € BY}, introduced in the case d = 1 by Urbanik and Woyczynski [25] and
Rajput and Rosinski [14]. Precise definition of this notion will be given in Section 3.
For a class of My 4-valued functions F'(s) including all locally bounded measurable
functions, we can define [, F(s)M(ds) for B € Bj. A natural additive process
{X;:t > 0} on R? induces a unique R¢-valued i.s.r.m. over [0,00), {M(B): B €
By o}, satisfying M((s,t]) = X; — X, a.s. for 0 < s < t < oo. Any R-valued
i.s.r.m. over [0,00) is obtained in this way. In this case [, F(s)M(ds) is written as
[ F(s)dX,. When J is an interval infinite to the left, we define ffoo F(u)M(du) to
be the limit in probability of f(s,t] F(u)M(du) as s | —oo whenever this limit exists.

Given an R?-valued nonrandom cadlag function Y; of s € R and a matrix QQ € My,

consider the equation
52
(1.2) Zgy— Ly =Y, =Y, — Q/ Zydu for s; < s9
S1

for an unknown nonrandom cadlag function Z; of s € R. When the condition Z,, = £
is imposed, (1.2) has a unique solution. When {A(B): B € B3} is an R?-valued

i.s.r.m. over R, we call the equation
(1.3) 2y, — 7y = M(51,5]) — Q/ Zdu
S1

Langevin equation based on A and (). By a solution {Z;: s € R} of (1.3) we mean
a cadlag process which satisfies (1.3) a.s. for every sy, so with s; < s5. Any solution
of (1.3) is called an Ornstein—Uhlenbeck type (OU type) process generated by A and
Q. If we introduce a cadlag process {Y;: s € R} such that Y;, — Y, = A((s1, s2]),
then (1.3) is a random version of (1.2), and thus (1.3) is solved pathwise. A process
{Z,} satistying {Z,.,} 4 {Z,} for all u is called stationary. A process {Z,} satisfying
{Zsip} 4 {Z} for a fixed p > 0 is called semi-stationary (or periodically stationary)
with period p. We say that {A(B): B € B3} has finite log-moment if F'log™ |A(B)| <
oo for all B € BY.

The following three theorems are our main results.

Theorem 1.1. Let Q € M, a > 1, and p = loga. Let {X;: t > 0} be an arbitrary

Q-semi-selfsimilar natural additive process on R? with epoch a. Define

(1.4) Z,=e¢9X,s forseR
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and

(1.5) A(B) = / t9dX, for B € B},
exp B

where exp B = {t = e*: s € B}. Then {A(B): B € B3} is an R¢-valued i. s. . m.
periodic with period p and having finite log-moment. The process {X;: t > 0} is
expressed by A as

logt
(1.6) X, = / e*®A(ds)  for allt >0, a.s.

The process {Zs: s € R} is the unique semi-stationary OU type process with period p
generated by A and Q. It is expressible as

S
(1.7) Zs = e_sQ/ e“CA(du) for all s €R, a.s.

o0

Theorem 1.2. Let Q € M}, p > 0, and a = e. Let {A(B): B € B} be an
arbitrary RY-valued i. 5. r. m. periodic with period p and having finite log-moment. A
semi-stationary OU type process with period p, {Zs: s € R}, generated by A and Q
exists and 1s unique. Define

(1 8) Xt = tQZk)gt fOT’t >0
. XU - 0

Then {X;: t > 0} is a natural Q-semi-selfsimilar additive process on R? with epoch
a and {Zs} and {A(B)} are recovered from {X;} in the form of (1.4) and (1.5).

Theorem 1.3. Let Q € M} and a > 1. A distribution p on R? is expressible as
p=L(X1) = L(Zy) by the processes {X;: t > 0} and {Z;: s € R} in Theorem 1.1 or
1.2 if and only if it is (a ', Q)-decomposable.

The associated filtrations of the processes and the random measure in Theorem

1.1 or 1.2 satisfy the following:
o(X;:te0,e]) = 0(Zu: u € (—00,s]) =o(A(B): Be B ) -
Relations (1.4) and (1.8) between {X;: t > 0} and {Z;: s € R} are generalization

of the Lamperti transformation between selfsimilar processes and stationary processes
introduced by Lamperti [7]. In the case of symmetric stable processes on R, this
transformation was already recognized by Doob [3] p.368. Between semi-selfsimilar
and semi-stationary processes it was given in [10].

By Theorems 1.1-1.3, not only selfdecomposable but also semi-selfdecomposable

and (b, Q)-decomposable distributions have now been connected with the three classes
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— the class of {X;}, the class of {Z}, and the class of {A(B)}. For the forms of
the Lévy measures of these distributions, see [11] and [17]. Semi-selfdecomposable
distributions are expected to have wider flexibility in modeling such as in [1] than
stable, semi-stable, and selfdecomposable distributions.

Applications of Theorems 1.1-1.3 to further analysis of selfsimilar additive pro-

cesses will be given in a forthcoming paper [19].

Organization of this paper is as follows. Section 2 gives basic facts on semi-Lévy
processes. We need some results on random measures and stochastic integrals, which
are introduced in Section 3. We study in Section 4 solutions of the Langevin equations
on R? based on R?-valued i.s.r.m. and matrices (). The notion of mildness at —oo
of solutions of the Langevin equations is introduced and the existence condition for
solutions mild at —oo is given. Stationary and semi-stationary solutions are mild at
—o0. The existence condition is more analyzed in the case of periodic i.s.r.m. Using
these results, we give in Section 5 proofs of Theorems 1.1-1.3. Formulation of results
in the non-“semi” ()-case is given in Section 6 as consequences of Theorems 1.1-1.3.
Finally Section 7 contains some results related to (b, (), a)-semi-stable distributions
and (b, (), a)-semi-stable Lévy processes and some examples appearing in the study

of diffusion processes in random environments.

Our notation and definitions follow [17]. But, in addition to the notation in-
troduced above, we use the following: ID = ID(RY) is the class of all infinitely
divisible distributions on R? ; By(R?) is the class of all Borel sets B on R? satisfying
infyep |x| > 0; d, is the distribution concentrated at a point a ; p-lim stands for limit
in probability; the norm of @ € My is [|Q|| = supj, i [Qz[; trA is the trace of a
symmetric nonnegative-definite matrix A. A set or a function is called measurable if
it is Borel measurable. For a distribution g, p" is the n-fold convolution of p. If the
characteristic function 7i(z) of a distribution y on R? vanishes nowhere, then there is
a unique continuous function f(z) on R¢ such that f(0) = 0 and Ji(z) = e/(*). This
f(z) is called the distinguished logarithm of 7i(z) and written as f(z) = logfi(z) ([17]
p.33).

Let ¢(x) be a real-valued bounded measurable function satisfying

(1.9) ox) = {1 +o(lz])  as x| =0,
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The generating triplet (A, v, 7). of an infinitely divisible distribution x on R? is defined
by the formula

log fi(z) = —%(z, A+ /R gl () +i(z7)

where g.(z,2) = €*® — 1 —i(z,2)c(x); A is the Gaussian covariance matrix and v
is the Lévy measure of 1 ; v is the location parameter, which depends on the choice

of ¢(z). Standard choice of ¢(x) is 1fz<13(x) or (14 |z|?)~". In this paper we use
(1.10) c(z) = (1+ |27,

unless otherwise indicated. Thus we write (A, v, ) for (A, v, 7). with ¢(z) of (1.10).

2. SEMI-LEVY PROCESSES

We will consider periodic independently scattered random measures. Semi-Lévy
processes are their counterparts in stochastic processes. We gather basic properties

and examples of semi-Lévy processes.

Proposition 2.1. Let {X;: t > 0} be an additive process on R¢ and let L(X;) = .

If it is a semi-Lévy process with period p, then

(2.1) [np+t = [y, * [it
for anyn € Z, and t > 0. If (2.1) holds for alln € Z, and t € [0,p), then {X,} is

a semi-Lévy process with period p.

Proof. Let psy = L(X;—X,) for 0 < s < ¢. Then poy = pip and pug % iy, = fis, for
s <t < u, If {X;} is semi-Lévy with period p, then pis s = flsipiip, H2p = Hp * fpop =
ug, and by induction pi,, = py; for any n € Z, which implies f,p4¢ = finp * pinpnpre =
[y * fot = [y * [t

Conversely, assume that (2.1) holds for all n € Z, and ¢ € [0, p). Then (2.1) holds
for any n € Z, and t > 0. Indeed, if kp <t < (k+ 1)p, then finppy = pi ™ 5 1y gy =
[y % 1 % gy = pp % 1. Hence for 0 < s <t flpgs * fprspre = Mpre = fp * fir =
Lp * fls * [lst = Hpis * flsg. Since flyys(2) # 0, we get pipispre = fse. Hence {X,} is
semi-Lévy with period p. 0

Proposition 2.2. If {X;: t > 0} is a semi-Lévy process with period p, then pu; =
L(X;) satisfies the following: po = 0o, s € ID(RY), py is continuous as a function
of t, and, for any choice of 0 < s < t, there is sy € ID(RY) such that py, = pus * is .
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In the converse direction, if a class of probability measures {p;: t € [0,p]} on R?
satisfying these conditions for t € [0, p] is given, then there exists, uniquely in law, a
semi-Lévy process {X;: t = 0} with period p such that p, = L(Xy) for t € [0, p].

Proof. In order to see the first half, it is enough to choose p;; = L(X; — X;). Let
us prove the second half. If £ > p, then choose an integer k such that kp < t < (k+1)p
and define p; = u’[f * fly—gp. Then py, € ID and, for any 0 < s < ¢, there is py, € ID
such that p, = ps * ps . We can prove that pis * p1,, = s, for 0 < s <t < u, using
fis(2) # 0. Further, py = do, fts4 — 0o as s T ¢, and ps, — 0 as t L s. Thus, by [17]
Theorem 9.7, there is an additive process in law {X;: ¢t > 0} such that £(X;) = u,
and L£(X; — X,;) = pts4. Then, by [17] Theorem 11.5, there is an additive process
modification. It is a semi-Lévy process by Proposition 2.1. The uniqueness in law is

obvious. O

Proposition 2.3. Let {X;: t > 0} be a semi-Lévy process with period p. Then,
Elog" | X;| < oo for all t > 0 if and only if Elog™ |X,| < oo.

Proof. The Lévy measure v, of X, is increasing in ¢ and v,, = nv,. By Theorem
25.3 of [17], Elog™ |X,| is finite if and only if [log™ |z|v(dz) < oco. Hence the

assertion follows. O

Remark. There is a semi-Lévy process {X;} with period p such that Elog™ | X|
is finite for ¢ < p but infinite for ¢ = p. For example, let d =1, p =1, and

vi(dz) = Lioya-1)(z) 2 (log(2 + ) ?dz for 0 <t <1

and construct {X;}, using Proposition 2.2.

Example 2.4. Let {X;: t > 0} be a semi-Lévy process on R? with period p. Denote
(22) /jt = £(Xp - Xp—t) for 0 g t g p.

Then there exists, uniquely in law, a semi-Lévy process {)Zt: t > 0} with period p

such that E()?t) = 11y for 0 <t < p. Indeed, we can apply Proposition 2.2.
We give a new characterization of strictly stable Lévy processes.

Proposition 2.5. If {X;: ¢t > 0} is a selfsimilar, semi-Lévy process, then it is a

strictly stable Lévy process. (The converse is trivial.)

Proof. Suppose that {X;: t > 0} is a c-selfsimilar, semi-Lévy process with period
p > 0, where ¢ > 0. Let p; = £(X;). Then [in,(2) = fip(2)" for n € Z,. On the
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other hand, by e-selfsimilarity, fi,,(2) = @,(n°2). Hence [i,(2)" = [i,(n2). This
means that f, is strictly stable with index o = 1/¢. Again by c-selfsimilarity, we
have i1 (2) = L p)p(2) = Hp((1/p)°2), and thus p, is also strictly stable with index
o = 1/c. Therefore 7i;(2)® = Ji;(a'/®z) for any a > 0. Once again by c-selfsimilarity,
la(z) = fi1(a‘z). These imply

(2.3) Ha(z) = 11(2)* forall a > 0.

Let pupn = L(Xipn — Xy). Since Jiy(z) # 0, we have

Aresn(2) = fien(2)fie(2) ™ = i (2) ™ (2) ™" = Ru(2)" = fin(2)

by using (2.3). Thus {X;} has stationary increments, and hence {X,} is a Lévy
process such that £(X}) is strictly stable. O

3. INDEPENDENTLY SCATTERED RANDOM MEASURES
AND STOCHASTIC INTEGRALS

We define R¢-valued independently scattered random measures.

Definition 3.1. Let J be an interval in R. A family {M(B): B € B}} of R?-
valued random variables is called R?-valued independently scattered random measure
(i.s.r.m.) over J, if the following three conditions are satisfied:
(1) for any sequence By, By, ... of disjoint sets in B} with B = |J°7, B, € BY,
M(B) =73, M(B,) a.s., where the series is convergent a.s.,
(2) for any finite sequence By, ..., B, of disjoint sets in BY, M(B),..., M(B,)
are independent,
(3) M({a}) =0 a.s. for every one-point set {a} C J.
If, in addition,
(4) M(B) 4 M(B + a) for every B € BY and a € R satisfying B + a € BY,
then {M(B): B € B%} is called homogeneousi.s.t.m. Let p > 0. If {M(B): B € B%}
satisfies (1), (2), (3), and
(5) M(B) £ M(B + p) for every B € BY satisfying B + p € BY,
then it is called a periodic i.s.r.m. with period p or, for short, p-periodic i.s.r. m.
The definitions of additive, Lévy, and semi-Lévy processes and those in law are

extended to the case where the parameter set is J = [0,%y) or [0,%p]. Under these

names we always retain the condition that Xy = 0 a.s.
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The notions and the results in the rest of this section are extensions of a part
of Sections 24 of [18], where only the case J = [0, 00) is studied. We omit most of
proofs of our assertions, but they can be given either in a way similar to [18] or by

reduction to the case J = [0, 00).

Definition 3.2. Let J = [0, %), [0, ], or [0,00) and let {X;: ¢ € J} be a J-parameter
additive process in law on R?. As pu; = £(X;) € ID, the triplet of u; is denoted by
(As, v, 7). We say that {X;: t € J} is natural if 7, is locally of bounded variation on
J, that is, of bounded variation on each [t, 5] satisfying [t1, 2] C J.

Remark. The definition above does not depend on the choice of ¢(x) satisfying
(1.9). Any J-parameter Lévy process in law on R? is natural, since v, = (¢/t1)7,,
where ¢; is positive and fixed in J. When {X;: ¢ € J} is a J-parameter semi-Lévy
process on R? with period p, it is natural if and only if 7, is of bounded variation on
[0,p]. Thus, using Proposition 2.2 or its analogue for J = [0,¢y) or [0,%], it is easy
to see that there exist non-natural J-parameter semi-Lévy processes on R?. We are

assuming p < to if J =[0,,) or [0, to).

The connection between i.s.r.m. and additive processes in law is described in

the following two propositions.

Proposition 3.3. Let J = [0,t), [0,t], or [0,00). If {M(B): B € B} is an R¢-
valued i. s. . m. over J, then {X;: t € J} defined by

(3.1) X, = M(0,t]) a.s forteld

is a J-parameter natural additive process in law on RT. Conversely, if {X;:t € J}
is a J-parameter natural additive process in law on RY, then there is a unique (in the
a. s. sense) Re-valued i.s. 7. m. {M(B): B € B} over J such that (3.1) holds. In this
correspondence, {X,;} is a Lévy process in law if and only if {M(B)} is homogeneous;
{X:} is a natural semi-Lévy process in law with period p if and only if {M(B)} is
p-periodic.

Proposition 3.4. Let J be an interval in R.
(i) Suppose that {M(B): B € B%} is an R¢-valued i. s. . m. over J. Define, for
each s € J andt > 0 with s+t € J,

(3.2) X = M((s,s+1]) a.s.,

where we understand that (s,s] = 0. Then,
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(1) for each s € J, {Xt(s): te(J—s)N[0,00)} is a ((J—s)N[0,00))-parameter

natural additive process in law on RY,

(2) Xt(lsl) + Xt(;lthl) = Xt(lsjr)tz a.s. if s1,81 +t1,81 +t; +1ty € J.

(ii) Suppose that {{Xt(s): te(J—s)N0,00)}: s € J} is a family of processes
satisfying (1) and (2) above. Then there is a unique (in the a.s. sense) R-valued
i.s.m.m. over J, {M(B): B € B%}, such that (3.2) holds for all s € J and t > 0 with
s+teJ.

Proof. The assertion (i) is easy to see; (ii) is proved by reduction to Proposition
3.3. [

Example 3.5. Let {X;: ¢ > 0} and {Y;: ¢ > 0} be independent additive processes
in law on R?. Then there exists a unique R¢-valued i.s.r.m. {M(B): B € B%} over
R such that

X — X, for0<s<t
(3.3) M((s,t]) = ¢ Xy + Y, for s <0<t

Y, +Y , fors<t<0,

because we can apply Proposition 3.4. If {X;} is a Lévy process in law and {Y}} 4
{X;}, then {M(B)} is homogeneous. If {X;} is a semi-Lévy process in law with
period p and {Y;} 4 {X,}, where {X,} is constructed from {X,} as in Example 2.4,
then {M(B)} is p-periodic.

In the rest of this section, .J is an arbitrary interval in R.

Proposition 3.6. Let {M(B): B € B%} be an R?-valued i.s.r.m. over J. Then,
L(M(B)) € ID(RY) for each B. Let (Ap,vp,vB) be the triplet of up = L(M(B)).
Then, Ag, g, and vg(C) for each C € By(R?) are countably additive in B € BY.

We use the notation up, Ap, vg, and vy as in the proposition above. The

variation measure of yp is denoted by |v|p.

Definition 3.7. Let {M(B): B € B%} be an Ri-valued i.s.r.m. over .J. A pair
({ps: s € J}, o) is called a differential representation of {M(B)} if the following

conditions are satisfied:

(1) o is a locally finite measure on .J, that is, a measure on .J such that o(B) < co
for all B € BY,

(2) o is continuous (that is, atomless),

10
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3) ps € ID(R?) for s € J,

4) log ps(2) is measurable in s € J for each z € R,
) [ |1og ps(2)|o(ds) < oo for all B € B} and z € R,
)

we have

(
(
(5
(6

(3.4) Eei{e:M(B) exp/ log ps(2)a(ds) for all B € BY and z € R%.
B
The measure o on J such that

(3.5) o(B) = tr(Ap) +/ (1A |z)*)vg(dz) + |y|p  for B € BY
Rd

is called the canonical measure of {M(B)}. A pair ({ps},0) is called a canonical

differential representation of {M(B)} if it is a differential representation and o is

the canonical measure of {M(B)}. When J = [0, ), [0, %], or [0,00) and {M(B)}

corresponds to the J-parameter additive process in law {X;: ¢t € J} by (3.1), then

these notions of {M(B)} are sometimes considered as those of {X;}.

Proposition 3.8. Let {M(B): B € B3} be an R?-valued i. s. . m. over J.
(i) Let ({ps},0) be a differential representation of { M(B)} and let (A?,v?,~?) be
the triplet of ps. Then A2, v°, and v?(C) for any C € By(R?) are measurable in s,

and

/B <tr(A§) + /Rd(l A |z?) P (dr) + |7§|) o(ds) < o0,
ABZ/BAﬁa(ds), VB(C):/Bl/Sp(C’)U(dS), VB:/B%?U(dS)

for B € BY and C € By(R?), and

log ia(2) = [ log.(:) o(ds)
B
(ii) A canonical differential representation ({ps}, o) of {M(B)} exists and satis-
fies
esssup <tr(A§) +/ (LA J2*)vP(dz) + |7° ) < 00,
Rd

seJ
where the essential supremum is with respect to o. If ({p'},0) and ({p?},0) are

canonical differential representations of {M(B)}, then pl = p? for o-a.e. s € J.

Thus, when J = [0,%), [0,%], or [0,00) and {X,} is a J-parameter additive
process in law on R?, then a differential representation of {X,;} exists if and only if
{X}} is natural. For example, the canonical measure of a J-parameter Lévy process

in law on R? is a constant multiple of the Lebesgue measure restricted to .J.

11
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Let {M(B): B € B%} be an Ré-valued i.s.r.m. over .J. We define stochastic

integrals of nonrandom functions by {M(B)}.

Definition 3.9. If F(s) is a function on J such that
(3.6) F(s) =) 1p,(s)R; .
7j=1

where B ..., B, are disjoint Borel sets in J and Ry, ..., R, are in M,,4, then we say
that F(s) is an M, 4-valued simple function and define, for B € BY,

(3.7) /BF(S)M(ds) S R M(BNB).

7j=1
An M, 4-valued function F'(s) on .J is said to be M -integrable if it is measurable and

if there is a sequence of simple functions Fi(s), F5(s)... on J such that

(1) F,.(s) = F(s) for o-a.e. s € J, where o is the canonical measure of {M(B)},
(2) for every B € BY, the sequence [, F,,(s)M(ds) is convergent in probability as
n — 00.
The limit in probability in (2) is denoted by [, F(s)M (ds) and called the (stochastic)
integral of F' over B by M. When J = [0,t), [0,%o], or [0,00), then, using the .J-
parameter natural additive process in law {X,: ¢t € J} satisfying (3.1), we sometimes
write [, F(s)dX, for [, F(s)M(ds).

Obviously the definition (3.7) of the integral of a simple function does not depend
(in the a.s. sense) on the choice of the representation (3.6) of F'. But the following fact,

which guarantees that the integral is well-defined in M-integrable case, is nontrivial.

Proposition 3.10. If F(s) is a measurable My q-valued function on J and if F!(s)

and F%(s), n = 1,2,..., are sequences of simple functions satisfying (1) and (2) of

Definition 3.9 with F,(s) replaced by F!(s) and F?2(s), then, for every B € 1Y,
p-lim [ E}(s)M(ds) = p-lim [ FZ(s)M(ds) a.s.

n—oo J B n—oo JB
Proposition 3.11. Let F(s) be an My q-valued measurable function bounded on each
B € BY. Then F(s) is M-integrable. Moreover, if F,(s) is a sequence of simple
functions on J such that F,(s) — F(s) o-a. e., where o is the canonical measure, and
if sup, sup,cp ||[Fn(s)]| < oo for every B € BY, then
plim [ B (s)M (ds) = / F(s)M(ds) for B € B,

n—oo J B B

12
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Proposition 3.12. If F(s) and Fy(s) are M-integrable M,y q-valued functions on J,
then, for any ay and ay in R, a1 Fy(s) + asFy(s) is M-integrable and

[ @Fi(s) + aaFa()M(ds) = s [

B

Fi(s)M(ds) +a2/ Fy(s)M(ds) a.s.

B

for any B € BY.

Proposition 3.13. Let F(s) be an M-integrable M,y q-valued function on J. Let

= [, F( ) and A\g = L(A(B)) for B € BY. Then {A\(B): B € B3} is
an ]Rl—valued i.s.r.m. over J. If ({ps}, o) is a differential representation of {M(B)},
then, for B € BY and z € R,

/B | log u(F(s)'2)|o(ds) < oo and logNp(z) = / log 74 (F(s)'2)o(ds).

Here log ps(F(s)'z) means (1og ps(w))w=r(s) -

Even if F(s) is M-integrable, we cannot always define [, F(s)M(ds) for B €
B\ BY.

Definition 3.14. Let F(s) be an M-integrable M, 4-valued function on J. If J is
infinite to the right and if, for ¢ € .J, f(t » F(s)M(ds) is convergent in probability as
u — 0o, then we say that [ F(s)M(ds) is definable and define
/ F(s)M(ds) = p-lim F(s)M(ds) .
t u—00 J (t,u]

If J is infinite to the left, then the notion of definability and the definition are given
similarly to ffooF (s)M(ds). When J = [0,00), then, using the natural additive

process in law {X,: ¢ > 0} satisfying (3.1), write [~ F(s)dX, for [ F(s)M(ds).
Remark. If J is infinite to the right (resp. to the left) and [ F(s)M(ds) (resp.
ffoo F(s)M(ds)) is definable, then it is a J-parameter stochastic process continuous

in probability with independent increments. Hence it has a cadlag modification by the
argument in Theorem 11.5 of [17]. Henceforth [ F(s)M(ds) (resp. [*__ F(s)M(ds))

denotes this modification. We also use, for a fixed ¢, € J, the notation

t Juoy F)M(ds) — fort € J N (to, <)
/ Fs)M(ds) =4 0 for t =t
to - f(t,to] F(s)M(ds) for t € JN (—o0,ty)

and mean a cadlag version over .J.

13
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4. ORNSTEIN-UHLENBECK TYPE PROCESSES GENERATED
BY INDEPENDENTLY SCATTERED RANDOM MEASURES

In the first half of the following theorem, we notice that the nonrandom equation
(1.2) is always solvable. This is an R?-version of a result of Cheridito, Kawaguchi,
and Maejima [2], who consider a more general class of functions when d = 1. The
second half specializes it to the case of independently scattered random measures,
that is, the case of Langevin equation. There are many related papers such as Doob
[3], Mikosch and Norvaisa [13], and Surgailis et al. [22].

Theorem 4.1. Let () € My and sy € R. Given a nonrandom cadlag function Yy of
s € R and a point £ € R?, there exists unique cadlag function Z, of s € R satisfying
equation (1.2) and condition Zs, = €. Let {A(B): B € BY} be an R?-valued i. s. 1. m.
over R and let = be an R?-valued random variable. Then, there exists a unique (in the
a.s. sense) cadlag process {Zs: s € R} such that Langevin equation (1.3) is satisfied
a. 8. for every sy and sy with s; < sy and Zs, = = a. s. This {Zs: s € R} is represented
as

(4.1) Z, = el 90z 4 esQ/ e"“A(du) for s ER, a.s.

S0

Thus we get the Ornstein-Uhlenbeck type process generated by A and @) satisfying
Zy = Z.

0

Proof of Theorem 4.1. Define
(4.2) Z, =09 1y, — elom9Qy, / Qe 9V, du for s € R.
S0

Then Z; is a cadlag function with Z,, = . By a straightforward calculation we can
prove that Z, satisfies (1.2). In order to see the uniqueness, suppose that 7 and
7% are cadlag solutions of (1.2) with Zgg) = ¢ for j = 1,2. Then

S

(4.3) 7L — 73 = _Q / (ZV) — Z2D) .
S0

Let V, = 7Y — 7? Then we get

(=Q) '/ (s —u)"'Vydu forn=1,2,....

SRCE

50
Since ((n — 1)) (s — w)" *(—Q)™ — 0 uniformly in u € [0,s] as n — oo, we get
V, = 0. That is, Z{" = 7{?).

14
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Let {A(B)} be an Ré-valued i.s.r.m. over R. Define Y, to be A((0,¢]) for ¢ > 0,
zero for t = 0, and —A((¢,0]) for t < 0. Then, {Y;”: t € R} has a cadlag modification
{Y;: t € R} as in Theorem 11.5 of [17]. We have

(4.4) Y; —Ys = A((s,t]) a.s. for every s,t with s < t.

With this {Y;: t € R} we can uniquely solve (1.2) pathwise under the condition
Zs, = E. The resulting {Z: s € R} satisfies (1.3) a.s. for every sy, sp with s < so.
The uniqueness is proved in the same way as in the nonrandom case, since (4.3)
holds for all s, a.s. The expression (4.1) is obtained from (4.2). Here we use the
integration-by-parts formula that

S92 52
/ e"Rdy, = 652QY52 — eleYs1 — / Qe"Y,du as. for 0 < s; < $9
S1

S1

and its analogue for s; < sy < 0. This is a special case of Corollary 4.9 of [18]. O

Definition 4.2. An OU type process {Z;: s € R} generated by A and @ is said to

be mild at —oo if p-lim,_, e*?Z, = 0.

Theorem 4.3. Let {A(B): B € B%} be an R?-valued i. s. r. m. over R and Q € M.
Then the following are equivalent:
(1) ffoo e*?A(ds) is definable,
(2) p-lim,_,_ ., e*?Z, emists for every OU type process {Zy: s € R} generated by A
and @,
(3) an OU type process {Zs: s € R} mild at —oco generated by A and Q ezists.

In this case, an OU type process mild at —oo generated by A and @) is unique a. s.
and expressed as

(4.5) Zs = esQ/ e"YA(du) for s €R, a.s.

o0

Proof. It {Z} is an OU type process generated by A and @, then, by Theorem
A1,

(4.6) Z, =090z 4 e_sQ/ e"YA(du) for so,s €R, a.s.
50

That is,

(4.7) 97, — e, :/ "CA(du), a.s.

S0
Letting s = 0 and sy — —oo, we get the equivalence of (1) and (2). If (3) holds,
then, letting sp — —oo in (4.7), we see that (1) and (4.5) are true. This shows the

15
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uniqueness of a solution mild at —oo. If (1) holds, then by Theorem 4.1, the solution

{Z;} of Langevin equation with Z, = = = ffoo e’?A(ds) a.s. satisfies

S

0 s
Zs :eSQ/ e“QA(du)—i—esQ/ e"?A(du) :esQ/ e"YA(du) a.s.,

—00 0 —00

which shows that p-lim ez, =0. O

s——00

Remark. Let ({ps}, o) be a differential representation of {A(B): B € B}. In
the case of (1)—(3) of Theorem 4.3, limy,_, o f;o pu(e"? 2)o(du) exists and equals the
distinguished logarithm of the characteristic function of [°_ e““A(du). This follows
from Proposition 3.13 and [17] Lemma 7.7.

We apply Theorem 4.3 to periodic i.s.r.m.

Theorem 4.4. Let {A(B): B € B%} be an R -valued p-periodic i. s. 7. m. over R. Let
Qe M;.

(i) Suppose that {A(B)} has finite log-moment. Then Langevin equation (1.3)
based on A and Q has a unique semi-stationary solution {Zs} with period p. This
solution has expression (4.5) and L(Zs) € Lo(e™?, Q) for all s.

(ii) Suppose that

(4.8) Ellog™ [A((0, p])|] = o0

Then, Langevin equation (1.3) based on A and Q) has no semi-stationary solution with

period p. Moreover, it has no solution mild at —oc.

Corollary 4.5. Let {A(B): B € B%} be an R?-valued homogeneous i. s. 7. m. over R.
Let Q € M.

(i) Suppose that {A(B)} has finite log-moment. Then Langevin equation (1.3)
based on A and Q) has a unique stationary solution {Zs}. This solution has expression
(4.5) and L(Zy) is Q-selfdecomposable.

(ii) Suppose that {A(B)} does not have finite log-moment. Then, Langevin equa-

tion (1.3) based on A and @ does not have a stationary solution.

Actually the result in Corollary 4.5 was given in [20]. Our Theorem 4.4 is an
extension of it.

In order to prove Theorem 4.4, we prepare two lemmas.

Lemma 4.6. Let {\(B): B € B} be an R?-valued i. s. 7. m. over R and let Q € M.
Let {Z;: s € R} be an OU type process generated by A and Q. If {Z} is stationary

or, more generally, semi-stationary, then {Zs} is mild at —oco.
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Proof. Suppose that {Z;} is semi-stationary with period p. Let n, = L(Z).
It follows from (1.3) or (4.1) that {Z,} is continuous in probability. Hence 7, is
continuous in s. Thus we see that {ns: s € [0,p]} is a compact set in the topology
of the weak convergence. This set equals {ns: s € R} by semi-stationarity. Hence
{ns: s € R} is tight. We have an estimate [[e°?|| < cpe®® for s < 0 with ¢y, ¢ > 0
(see [18]). Using this we see that, for any € > 0,

P] |65QZS| > e| < Plege®| Zg| > e] < supn,({|z] > scgleclls‘}) —0
as s — —oo. That is, e*?Z, — 0 in probability. O

Lemma 4.7. Let {A(B): B € B%} be an R?-valued p-periodic i. s. . m. over R. Fiz
to € R and define

(4.9) A(B) = Aty — B) for B € By .

Then {A(B): B € BL} is a p-periodic i. 5. . m. and A((0, p)) 4 A((0,p]). Let F(s) be
an Myyq-valued function on R. Then F(s) is A-integrable if and only if F(ty — s) is

A-integrable. In this case,
(4.10) / F(s)A(ds) = / Flty — s)Ads) a.s. for B BY .
B to—B

Proof. Tt is easy to see that K(B) is a p-periodic i.s.r.m. over R. To see that
A((0, p)) 4 A((0, p]), note that A((0,p]) = A([to — p,t0)) = A((to — p,to]) a.s. and
that, choosing n € Z such that to — p < np < to, A((np, to]) 4 A((0,ty — np]) and
A((to — p, np]) 4 A((to — np, p]). If F(s) is a simple function (3.6), then F(ty —u) =
Sl (to —uw)Ry =370 Ly B (u )R and hence [, F(s)A(ds) = > RiAB N
Bj) = Z?:l R]A((to - B) N (to - ] = j;ﬁo—B to - U) ( ) which is (410) The
rest of proof is straightforward. ([l

Proof of Theorem 4.4. (i) We assume that {A(B)} has finite log-moment. Given
to € R, define {A(B)} by (4.9). Then, by Lemma 4.7, {A(B)} is a p-periodic i.s.r. m.
with finite log-moment. By Theorem 5.2 of [18], [;* e~*?A(ds) is definable. Hence,
by (4.10), [*_e~(0=9)QA(ds) is definable and so is [°_ e*?A(ds). Thus, by Theorem
4.3, there is a unique OU type process {Zs} mild at —oo generated by A and Q. It
is expressed by (4.5). Since

to o) .
etOQ/ e*?A(ds) :/ e *?A(ds) a.s.,
0

—00

L(Z,) € Lo(e7?, Q) for any tq by virtue of Theorem 5.2 of [18].

17
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We have

s+p s

Zgip = e_(s+p)Q/ e“CA(du) = e_sQ/ e"C N (dv),
where we define Af(B) = A(B + p). Since {A*(B)} £ {A(B)}, we get Zi.,
e 5@ ffoo e'?A(dv) = Z,. Similarly, for any s; < sy < -++ < sy, (Zs;4p)j=1,..m

.....

.....

stationarity implies mildness at —oo. Hence, by Theorem 4.3, a semi-stationary
solution is unique.

(ii) We assume (4.8). Then, using Theorem 5.4 of [18] and Lemma 4.7, we see
that f_too e’?A\(ds) is not definable. Hence, by Theorem 4.3, there is no solution
mild at —oo of Langevin equation. Lemma 4.6 tells us that, a fortiori, there is no

semi-stationary solution. [

Remark. Let {A(B)} be an R?-valued i.s.r.m. over R and Q € M. If there is a
semi-stationary solution {Z;} with period p of Langevin equation (1.3), then {A(B)}
is p-periodic. Indeed, it follows from (1.3) and {Z,,,} 4 {Z;} that

Zoyip — Zsrip+ Q / Zuipdu L Zy) — Zy, +Q / Zodu
S1 S1

that is, A((s1 + p, s2 + p]) < A((s1, s2]). Similarly, if there is a stationary solution,
then {A(B)} is homogeneous.

Remark. In [19] solutions mild at —oo of Langevin equations based on a class of
non-periodic i.s. . m. will be given. Namely, it will be shown that, if {A(B)} is an R?-
valued i.s.r.m. over R such that the process {X;: ¢ > 0} defined by X; = A((—t¢,0]) is
a Q-semi-selfsimilar additive process in law for some @ € M, then, for any R € M},
Langevin equation based on A and R has a unique solution mild at —oo. In this case
Flog™* |A((—t,0])| may possibly be infinite.

Theorem 4.4 shows that, when we restrict our attention to p-periodic i.s.r.m.,
the integrals ffoo e’9A(ds) (if definable) with @ € M, have distributions in a re-
stricted class. But, in the case of general i.s.r.m., the integrals can have arbitrary

distributions. In fact, we can show the following.

Proposition 4.8. Let F(s) be an Mgy-valued continuous function on (—oo,0] such
that, for every s, F(s) is an invertible matriz. Then, for any u € ID(R?), there is
an R?-valued i.s.r.m. {\(B): B € B]_ y} over (—00,0] such that J°. F(s)A(ds)
15 definable and has distribution pu.
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Proof. Let {Y!: s > 0} be a Lévy process with £(Y}) = pi. Define
A(B) = / (F(logu))™'dY} for Be B, .
exp B

Then {A(B)} is an R¢-valued i.s.t.m. over (—oo,0]. We have, by Proposition 3.13,

Fei=AB) _ exp/

log 7i((F (logu)") '2)du = exp/ e’ log i((F(v)) 12)dv .
exp B B

Thus we can choose a differential representation ({ps}, o) of {A(B)} such that p;(z) =
I((F(s))™'2)¢ and o = Lebesgue. Hence, by Proposition 3.13,

Fexp [2<z / st(s)A(ds)>] — exp / " log 7 (F(s)'2)ds = exp [ / h esdslogﬁ(z)} |

S1 S1 S1

which tends to 1 as s1, s — —oo. It follows that ffoo F(s)A(ds) is definable and that

pew [i (= [ Fonn)| =ew| [ castosit)] =ite),

that is, £ (fi)oo F(s)A(ds)) = u. O

5. PROOFS OF MAIN RESULTS
Let us prove the three theorems formulated in Section 1.

Proof of Theorem 1.1. Let {M(B): B € 8?0700)} be the R?-valued i.s.r.m. over
[0, 00) induced by {X;: ¢ > 0} (Proposition 3.3). Let My(B) = M(B) for B € B?O,oo)'
Then {My(B): B € B?O,oo)} is an i.s.r.m. over (0,00), which is the restriction of
{M(B): B € Bj .} to Bjj,- The function ¢~ is My-integrable by Proposition
3.11. If B € By, then exp B € By, ) and hence we can define [, “M(dt). We
denote this integral by fexpB t=?dX,. The right-hand side of (1.5) means this integral.
By Proposition 3.13, {A(B)} thus defined by (1.5) is an R?-valued i.s.r.m. over R.
Using Proposition 3.11 again, we can prove that, if ¢ > 0, then, for all B € B% with
exp B C [g,00), [, 5t “Mo(dt) = [, 5 F(t)dX, a.s., where F(t) is a continuous
function on [0, 00) satisfying F/(t) = =2 on [£/2,00). Let X} = X,,. Using Theorem
4.10 of [18] and recalling { X/} 4 {a®X,}, we get

A(B+p):/

aexp B
Hence {A(B)} is p-periodic. Define A*(B) = A(log B) for B € B, ). Then {A*(B)}

is an i.s.r.m. over (0,00) and A*(B) = [,t?dX, under similar interpretation of the

t9dX, = / (at) Qax} L / t9dX, = A(B) .
exp B

exp B
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integral. Use of analogues of Theorems 4.6 and 4.10 of [18] gives, for 0 < t; < i,
/logtz " A(du) = /t2 u? N (du) = /t2 ufudX, = X;, — X,.
log t1 t1 31
Ast, 10, X3, — 0 a.s. Hence fioitz e“YA(du) is definable. It follows from Theorem
4.4 (ii) that {A(B)} has finite log-moment. We get also the expression (1.6).
By (1.4) and (1.6), we get (1.7). Hence, by Theorem 4.4, {Z} is the semi-
stationary OU type process with period p generated by A and Q). O

Proof of Theorem 1.2. Existence and uniqueness of {Z;: s € R}, the semi-
stationary OU type process with period p generated by A and (), are shown in The-
orem 4.4. It is expressed by (4.5). Hence X; has the expression (1.6) for ¢ > 0. As
tl0, X, = fioit e’?\(ds) — 0 in probability. It follows from (1.6) that {X;} has
independent increments. Since {X;} is continuous in probability for ¢ > 0, it is an
additive process in law and thus has a cadlag modification ([17] Theorem 11.5). On
the other hand, {X;} is itself cadlag for ¢ > 0 a.s. since {Z} is cadlag. It follows
that {X,} is cadlag for t > 0 a.s. Let A*(B) = A(B + p). We have

p+logt logt d logt
X, = / e*QA(ds) = / eCHPIQNY (ds) £ @ / e*?A(ds) = a®X,,

and similarly for joint distributions. Thus {X,} 4 {a®X,}. Hence {X,} is a Q-
semi-selfsimilar additive process with epoch a. Define Xf = X1 — X and Xfu =
X’ Since X} = Ulog(Ht) e*QA(ds), {X}: t > 0} is a natural additive process, by

et—1-"

Propositions 3.3 and 3.13. Then Xfﬂ =X, - X, = fot e’?A(ds). If s > 0, then

es e’—1 s
/ 19, = / (141) Qdx? = / (¢) QX = A((0, 5]),
1 0 0

where the second equality is by Theorem 4.10 of [18] and the third is by Theorem 4.6
of [18]. If s < 0, then

e’ 1
/ 1QdX, = — / 14X, = —A((s,0])
1 e’

similarly. Hence we obtain (1.5). That is, {A(B)} is recovered from {X;} as in
Theorem 1.1. The expression (1.4) of {Z;} by {X;} follows from (1.8). O

The following lemma is an extension of Theorem 10 of [10].

Lemma 5.1. Let Q € M and b € (0,1). A distribution p is in Lo(b, Q) if and only
if there ezists a natural Q-semi-selfsimilar additive process {X;: t > 0} with epoch
b1 such that L(X,) = p.
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Proof. We write a = b~!.
The ‘if " part. We have { X} 4 {a®X;}. Hence b9 X, 4 X,. It follows that

EeioX1) — geilaXs) peilsX1—Xs) — Eei(bQ'z,X1> FeilsX1—Xs)

Since L£(X; — X,) is infinitely divisible, this means £(X;) € Lo(b, Q). (Here we do
not use naturalness. Similarly we can prove L£(X;) € Ly(b, Q) for all ¢.)

The ‘only if’ part. If we construct from p € Ly(b,Q)) a system of distributions
{p: 1 <t < a)on RY such that (1) p1 = p, (2) Ha(2) = fi(a?2), (3) there is a
distribution fu,, for 1 < s < ¢t < a such that py = pug % ps ¢, and (4) 7i,(2) is continuous
in ¢t € [1,a], then there is, uniquely in law, a @-semi-selfsimilar additive process
{X;: t > 0} with epoch a such that £(X;) = u; for ¢t € [1,a]. This is verified in the
same way as the proof of Theorem 7 of [10]. A construction of such a system {y;} is
as follows. Recall that p € ID (see [11]). Define p; for 1 <t < a by

(5.1) fi(z) = (=) V(e )"0
with a continuous increasing function h(t) satisfying h(1) = 0 and h(a) = 1. Then

{m} satisfies conditions (1)—(4) above. Indeed, (1), (2), and (4) are obvious. To see
(3), let 1 < s <t < a. Notice that
file) = ) MO 2 O O
Bia(2) = ()OO MO (a2,
Since 1 € Lo(a™",Q), there is p € ID such that fi(z) = fi(a=9 2)p(2), that is,
[(a®? 2) = fi(2)p(a? 2). Hence [i;(2) = Jis(2)p(a® 2)"®-") which shows that condi-
tion (3) is satisfied. It follows from (5.1) that the location parameter in the triplet
(Ay, v, ve) of py satisfies v, = (1 — h(t))y1 + h(t)7a, which is of bounded variation in
t € [1,a]. Hence the process { X;} constructed is natural by Theorem 2.13 of [18]. O
Proof of Theorem 1.3. The ‘only if’ part. Let p = L(Xy) = L(Z,), where {X;}
and {Z,} are the processes in Theorem 1.1 or 1.2. Then u € Ly(a ', Q) by Lemma
5.1.
The “if’ part. Given u € Ly(a™',Q), use the process {X;} in Lemma 5.1 as the

process in Theorem 1.1. O

Remark. The ‘only if’ part of Theorem 1.3 can be strengthened as follows: the
distributions £(X;) for all ¢ > 0 and L(Z,) for all s € R are (™', Q)-decomposable.

Remark. In the proof of the ‘only if” part of Lemma 5.1, the construction of {X;}

has freedom of choice of the function h(¢) on [1,a]. Freedom of choice of systems
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{p: 1 <t < a} is even larger, since there exist systems not of the form (5.1). See
examples in [10] in the case Q = ¢I with ¢ > 0. This corresponds to the variety of
processes {X;} and {Z;} that express the same p in Theorem 1.3. See also a remark
below Proposition 7.4. This is in contrast to the situation in the non-‘“semi” case,

which we will formulate in Section 6.

Corollary 5.2. Let Q@ € M} and a > 1. A distribution p on R? is (a7, Q)-

decomposable if and only if p is expressible as

(5.2) p="L </000 eth1~ft>

by a natural semi-Lévy process {)N/t t > 0} with period loga with finite log-moment.
In particular, a distribution p on R is semi-selfdecomposable if and only if u is
expressible as . = L (fooo e‘”dﬁ) by a natural semi-Lévy process {?t t > 0} with

finite log-moment.

Proof. Use Theorem 1.3 and Lemma 4.7. U

6. SELFSIMILAR ADDITIVE PROCESSES, STATIONARY OU TYPE PROCESSES,
AND HOMOGENEOUS INDEPENDENTLY SCATTERED RANDOM MEASURES

Relations of the three objects in the title of this section are formulated below.
These are consequences of Theorems 1.1-1.3 except the uniqueness assertions in The-
orem 6.3 and Corollary 6.4. When the basic matrix ) equals the identity matrix 7,

these are new formulations of essentially known results.

Theorem 6.1. Let Q € M. Let {X;:t > 0} be an arbitrary Q-selfsimilar addi-
tive process on R, Define {Z;: s € R} and {A(B): B € By} by (1.4) and (1.5),
respectively. Then {A(B)} is an R¢-valued homogeneous i.s.r. m. over R with finite
log-moment. The process {X;: t > 0} is expressed by A in the form of (1.6). The
process {Zs: s € R} is the unique stationary OU type process generated by A and @ ;
it is expressible in the form of (1.7).

Theorem 6.2. Let QQ € M and let {\(B): B € B%} be an arbitrary R?-valued ho-
mogeneous i. s. r. m. over R with finite log-moment. Let {Z: s € R} be the stationary
OU type process generated by A and Q. Define {X;: ¢t > 0} by (1.8). Then {X;} is
a Q-selfsimilar additive process on R?; {Z,} and {A(B)} are recovered from {X;} in
the form of (1.4) and (1.5).
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Theorem 6.3. Fiz Q € M. A distribution u on R? given by p = L(X;) = L(Z)
in Theorem 6.1 or 6.2 is Q-selfdecomposable. Conversely, for any Q-selfdecomposable
distribution p on R, there is, uniquely in law, an R*-valued homogeneous i.s.r.m.
over R with finite log-moment in Theorem 6.2 such that p = L(X;) = L(Zp).

Concerning the relation of {Z;} and p, Theorem 6.3 was proved by [20] and [21].
Concerning the relation of {X;} and p, it was proved by [16].

Corollary 6.4. Fiz Q € M. A distribution u on R? is Q-selfdecomposable if and
only if

(6.1) p==L (/OOO ethYt>

with {Y;: t > 0} being a Lévy process on R with finite log-moment. In this case,
{Y;: t > 0} is determined by p uniquely in law.

This result was directly proved by Wolfe [27] and Jurek [5].

For completeness, we give a proof of the uniqueness assertion in Theorem 6.3.
Let {A(B): B € B%} be an R?-valued homogeneous i.s.r.m. over R and let us define
{Zs: s € R} and {X;:t > 0} as in Theorem 6.2. Let u = L(X;) = L(Z)). Since
{X:} is a @Q-selfsimilar additive process, its distribution as a stochastic process is
determined by p. Hence, by (1.5), the distribution of {A(B)} is determined by p.

7. RESULTS AND EXAMPLES RELATED TO SEMI-STABILITY

In this section, let Q@ € M7 and b € (0,1). For a > 0, a distribution p on R is
called semi-stable with index o and span b~! if 4 € I'D and

(7.1) i(2)" = 1(b2)e’"  for z € R?

for some v € RY. In order that such a nontrivial (that is, not concentrated at a point)
distribution p exists, we must have a < 2. We extend this notion. Considering the
definition of the class OSS(b, Q) of operator semi-stable distributions in [12], we call a
distribution p on R? (b, Q)-semi-stable if u € I D and, for some a € (0,1) and v € R,

(7.2) i(2)* = a0? 2)ef"  for z € R,
Expressing a explicitly, we say that p is (b, Q,a)-semi-stable if p € ID and (7.2)
holds with some ~. In this terminology, semi-stability with index o and span b~!

is (b, I, b%)-semi-stability. If v can be chosen to be 0 in (7.2), we say that p is
strictly (b, Q,a)-semi-stable. An additive or Lévy process {X;: ¢ > 0} is said to
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be (b, ), a)-semi-stable (resp. strictly (b, @, a)-semi-stable) if £(X;) is (b, Q, a)-semi-
stable (resp. strictly (b, @, a)-semi-stable) for all ¢. In this section we give some
remarks on representations of (b, @, a)-semi-stable distributions in application of our
main theorems. We also give examples of ()-semi-selfsimilar processes connected with
processes in the study of diffusion processes in random environments.

We give two basic lemmas.

Lemma 7.1. If i is (b, Q, a)-semi-stable on RY, then it is (b, Q)-decomposable, that
2:87 IS LO(b7 Q)

Proof. Tt follows from (7.2) that

(z) = AP 2)* 7 07 = R )b 2)e T e )

Since 7i(b?'2)*” ~1e o™ 12 is infinitely divisible, we have (1.1) with p, € ID. O
Lemma 7.2. If i is (b, Q,a)-semi-stable on RY, then there is ¢ € (0,00) such that
Jga 2]°p(da) < 0.

Proof. See Luczak [8]. The special case of ) = I is treated in [17]. O

It follows from this lemma that any (b, @), a)-semi-stable distribution has finite

log-moment.

Proposition 7.3. Let {U;: t > 0} be a Lévy process on R with finite log-moment.
Then L (f;° e '9dU,) is (b, Q, a)-semi-stable if and only if {U} is a (b, Q,a)-semi-
stable Lévy process. The statement with the word ‘strictly’ added in both conditions

18 also true.

Proof. Let = L(Uy) and p = L ([, e™"9dU,). Since {U,} is a Lévy process, it
is (b, @, a)-semi-stable if p is (b, ), a)-semi-stable. We have, by Theorem 5.2 of [18],

/ sup | logfi(e7'92)|dt < oo for a € (0, o0)
0

|z|<a
and log p(z) = [, log fi(e '?'2)dt.
If pis (b, Q, a)-semi-stable, then, with some -,
log p(b% 2) :/ log 7i(e*9'b? 2)dt :/ (alogfi(e™*9 z) —i(y, e !9 2))dt
0 0
= alogp(z) —i{Q" ", 2),
that is, p is (b, @, a)-semi-stable.
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Conversely, assume that p is (b, @, a)-semi-stable. Then, with some -,

/ log fi(e~*9'b9 2)dt = a/ log fi(e* 2)dt — i{v, z) .
0 0

Since z is arbitrary, we have

/ log ﬁ(leef(tJru)Q’z)dt _ a/ log ﬁ(e—(tJru)Q'Z)dt . i<’}/, equ/Z>
0 0

for u € R. That is,

/ log fi(bY' e ™9 2)dt = a/ log i 2)dt — iy, e z) .

u u

Differentiating in u and letting u = 0, we obtain

log 7i(b? 2) = alog fi(z) — i(Q7,2) ,
which shows that u is (b, (), a)-semi-stable. The assertion for strict (b, Q,a)-semi-
stability is proved with v = 0. U

Let us say that p is Q-semi-stable if p is (b, @, a)-semi-stable with some b and a.
It is known that the class of Q-semi-stable distributions on R? neither includes, nor
is included by, the class of ()-semi-selfdecomposable. In the case ) = I, this fact is
seen from the description of their triplets in [17]. Concerning the intersection of the

two classes we have the following assertion.

Proposition 7.4. A distribution p on R is Q-selfdecomposable and (b, Q, a)-semi-
stable if and only if

(7.3) =L ( /0 h e‘thUt>

with some (b, Q, a)-semi-stable Lévy process {U;} on RY. The statement with the word

‘strictly’ added in both conditions is also true.

Proof. The ‘if” part. By Lemma 7.2, the integral in (7.3) is definable. It follows
from (7.3) that u is Q-selfdecomposable by Corollary 6.4 and that p is (b, Q, a)-semi-
stable by Proposition 7.3.

The ‘only if” part. By @-selfdecomposability, p is represented in the form of (7.3)
with a unique (in law) Lévy process {U,} with finite log-moment by Corollary 6.4.
Then, using Proposition 7.3, we see that {U;} is (b, Q, a)-semi-stable. The case of
strict (b, @, a)-semi-stability is similar. a

Remark. Let p be Q-selfdecomposable and (b, Q,a)-semi-stable on R?. Then
p is (¢, Q)-decomposable for any ¢ € (0,1). Thus p has a unique representation
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(7.3) with a Lévy process {U;} on one hand and representations (5.2) with natural
semi-Lévy processes {V;} on the other. Of course (7.3) is a special case of (5.2).
That is, {U;} in (7.3) is one of many choices of {Y;} in (5.2). There is a unique
(in law) @Q-selfsimilar additive process {X;} with £(X;) = p and the process {U;}
is connected with this {X;} (Theorems 6.1-6.3 and Lemma 4.7). We can construct
Q-semi-selfsimilar natural additive processes {X}} with epoch ¢! with £(X¥) = p
(see Lemma 5.1) and the processes {Y;} are connected with these {X}} (Corollary
5.2). Thus {X,} is a special case of the processes { X?}. But, in general, no choice of
the function A(t) on [1,¢ ] in the proof of Lemma 5.1 gives the Q-selfsimilar process
{X:}. In fact, with ¢ = b, it follows from (7.2) that the distribution u; in (5.1) satisfies

-~ -~ - ~1.—Q’ -~ - a! ila! —Qy,z
Tis(2) = 1i(2) OG- @ )M = fi(z)lO+aT R gilaT h(HHy2)

for 1 < ¢t < b!, since A(b9z) = fi(z)* "eie b7 v=)  If this system {u,} satisfies
1 = L(X,) for a Q-selfsimilar additive process {X;}, then fi,;(2) = 1i;(r? z) for t > 0
and 7 > 0 and hence fi;(z) = [i(t?'2). Thus, in this case, the Lévy measure v of p
satisfies, for 1 <t < b1,

vt “B) =1(B) = (1+ (a* = 1)h(t)) v(B), B € B(RY),

where v, is the Lévy measure of y;. In general, no choice of the function h(t) validates
this relation. For example, consider a (b, I, b*)-semi-stable distribution p with Lévy
measure v = Y - "G, with 0 < @ < 2 and 1 < |¢| < b~" in Remark 14.4 of
[17]. Then

oo

vt 'B) = Y " 6p-nc(B)

n=—0oo

while

(1+ (0" = Dh(t) v(B) = (14 (b = 1h(t)) Y 0" *6p-nc(B).

n=-—oo

In the rest of this section we consider some examples appearing in the study of
diffusion processes in random environments. It consists of two parts.

1. Let {X;: t >} be a c-semi-selfsimilar process on R with epoch a, that is,
(7.4) {Xu} = {a°X,},

where ¢ > 0 and a > 1. Assume that {X;} has cadlag paths and that

(7.5) lim sup (Xt - 112' Xs) =00 a.s.

t—o0
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Define, for ¢t > 0,

M; =inf{u > 0: X, — inf X; > ¢},

s<u
Vi =—inf{X,: s < M},
N, =inf{u € [0,M;]: X, AN X, = -V;},

where we understand X,_ = Xg. Let us show that {(M;, Vi, Ny)': t > 0} is a Q-semi-
selfsimilar process on R® with some Q. Denote by diag(ay, ..., aq) a d x d diagonal

matrix with (j, j)-entry equal to a;.
Proposition 7.5. Let Q = diag(c™t,1,¢™!). Under the assumptions above,
(7.6) {(Myer, Vier, Naeg)' s £ = 03 £ {a®@(M,, Vi, N,)': ¢ > 0},

that is, the process {(My, Vi, N;)'} is Q-semi-selfsimilar with epoch a‘.
Proof. Rewriting (7.4) to {a=“X;} 4 {Xa-11}, we get M, L aM,, since
M,e; = inf {u >0:a ¢ <Xu — ilgf Xs> > t} 4 inf{u > 0: Xy-1, — ilgf Xo-15 >t}

=inf{u > 0: X1, — inf X;>t}=ainf{u>0: X, — iI<1sz >t} =abl; .

s<a~lu
Similarly we have V¢, 4 a‘Vy; and Nyeq 4 aN; in the following way:

Vier = —inf{X,: s < Mye,} = —a®inf{a™X,: s < Mye, }
4 —a{ X151 s < aMy} = —aV,,

Nyer = inf{u € [0, Myet]: Xu A Xo = —Vier}
= inf{u € [0, Myeg]: (a X)) A (a X)) = —a Ve }
L inf{u € [0,aMy]: Xp1y A Xo-14e = —Vi} = alN, .

In checking the identities in law above, the only transformation involved is that
of {a X} 4 {X.-1;:}. Hence the same proof applies to the joint distributions
of the three processes {M;}, {X;}, and {N;}. Thus we get {(Mgaes, Vaer, Nact)'} 4
{(aM;,aV;,aN;)'}. Since a°? = diag(a, a¢, a), this means (7.6). O

2. Suppose that {X;: ¢t > 0} is a strictly (b, I, b*)-semi-stable Lévy process on
R with 0 < b < 1 and 0 < o < 2. That is, {X;} is a Lévy process satisfying
{Xpar } 4 {bX;}. Hence, {X,} is a c-semi-selfsimilar Lévy process on R with epoch a,
where ¢ = a~! and a = b~®. Approaching a generalization of Tanaka’s paper [24] on
diffusion processes in selfsimilar environments, Takahashi [23] obtains the following

results for this process.
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Proposition 7.6. Assume that {X,;} satisfies (7.5). Then {N;} is an additive process

(hence, it is an a-semi-selfsimilar additive process with epoch b=').

Proposition 7.7. Assume, in addition to (7.5), that {X;} does not have positive
jumps. Then {M;} and {V;} are also additive processes (hence, {M;} and {V;} are,

respectively, a-semi-selfsimilar and 1-semi-selfsimilar additive processes with epoch

b1,

A process {X;} on R satisfies the assumptions in Proposition 7.7 if and only if
{X,} is either a nonzero constant multiple of Brownian motion or a nonzero strictly
(b, I,b)-semi-stable Lévy process with 0 < b < 1 and 1 < o < 2 having Lévy measure
concentrated on the negative axis.

K. Kawazu finds that, in the case of Brownian motion on R, the process {(V;, V;) }
is an additive process on R? but the process {(M;, V;, N;)} is not an additive process
on R (see Example 3.3 of [16]). We do not know to what extent this fact can be

generalized.
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