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Abstract

We express normalized double sine functions of integer periods (N1, N2) via the
standard double sine function of period (1,1). As an application we give an Euler
product expression using the di-logarithm for the double zeta function ¢ (s,Fp)vl) ®
((s,Fyn,) for a prime number p and integers Ny, N,.

1 Definitions and Results

Normalized multiple sine functions are generalizations of the usual sine function. We studied
their basic properties in previous papers [KuKo] [KoKul] [KoKu2] with some applications.

For wy, ...,w, > 0 and z > 0, the multiple Hurwitz zeta function is defined by Barnes [B]
as

C:,-(S, z, (LL)l, "')w‘r)) = Z (nlwl + -+ nwe + x)—s

ny,...,nr=0

in Re(s) > r. This has the analytic continuation to all s € C as a meromorphic function,
and it is holomorphic at s = 0. Then the normalized multiple gamma function is defined as

)

This is a constant multiple of the multiple gamma function I'?(z, (w1, ...,w,)) of Barnes [B]:

T (z, (W wr)) = LB(z, (W1, .oy wr))/ Pr(W1, ooy i)

L. (z, (wi,...,wr)) = exp (%Q(s, z, (Wi, .y wr))

Now, the normalized multiple sine function is

Sr(z, (Wi, -y wyr)) = Tr(z, (w1, vy wr)) (W + - 4wy — 2, (W, ..‘,w,))('l)r.
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For example
Si(z,w) = Ii(z,w) ' w-rw)™"!
= 2sin(nz/w),

since we have I'; (z,w) = (27)"V20(z/w)ws ™7 from (i (s, 7, w) = w™°¢(s, T/w).
To simplify the notation we put S,(z) = S.(z,(1,..., 1)), I'x(z) = I'r(z,(1,...,1)) and
¢ (s, z) = ¢ (s, 2z, (1,...,1)). Hence

S,(z) = Tp(z) T (r — )"

@) = o (660 ).

Here we investigate normalized double sine functions, especially in the rational periods
case: Sy(z, (w1, wy)) With wy/w; € Q. The following theorem expresses them in terms of

and

Sa(z):
Theorem 1.1 Let N;, N, be positive integers with the greatest common divisor Ny. Then
we have
(N2/Ng)—1 (N1/No)-1
T+ N1k1 + N2k2>
Sa(z, (N1, N3)) = S| ————— . 1.1
2(2, (M, o)) k!_:‘[o k];:[o ? ( N1N;/No (1)

As application of Theorem 1.1, we compute the absolute tensor product of the Hasse zeta
functions of finite fields with p™ and p™? elements:

Theorem 1.2 Let N,, N, be positive integers with the greatest common divisor No. The
absolute tensor product of the Hasse zeta functions for finite fields F v, and F,n, is given
as follows:

C(S, Fle ) ® C(S, FpNﬁ)

= exp _ NZ &N pronNala/No + zsNo log P, i p—aanzvg/N,,
271 N1 N, ~ n2 —

-—an1 e p—an
+ Z Z fa(n) + Qp(s)
=1
where
2minN1 /N2 __ 1)-1 N; 2ninN2/N; _ 1)1 N,
fi(n) = {(e Nz—Ng D (’_"i}(n) ) fa(n) = {(e N1—No D (1—\&}1,{'71)
2No (No ln) 2No (No In)

and Qp(s) is a quadratic polynomial in s.
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2 Proof of Theorem 1.1

It suffices to show when Ny = 1, since the homogeneity [KuKo, Theorem 2.1(e)] of the
multiple sine functions gives

(@ (NI,N»)—Sz(x (x ﬁi))

In case Ny = 1, the right hand side of (1.1) is calculated as follows:

Hl NII—IIS I+N1k1 +N2k2
2 NiN,

k1=0 k2=0
- I\iz.-IlNlHIF (a:‘l'lel -&—Nzkz)_lF (2 T + Niky +N2k2)
= | ————— 2\ - v

k1=0 kz= NN, Mz

N2—1N;—

7] 1k +Nokg

- 1I H exp (55 (—g2 (s, zﬂxNhﬁ;IXzﬁz) +6 (3,2_. ST )))

k1=0 k2=0 s=0

F) N2—1N;—-1 -
= exp (5—8- . Z Z (—Cz ( T+NA21¢-2N z+Nyky+Noky ) + (2 (3,2 - +NN;lc1 ]Ij;Ngkz))
$=0 £, =0 kz=0

The double sum is computed as follows:

—1 N; —
Z 2( 3 (m1+m2+x—“iv}v%‘ﬁ—2&h) ’

k1=0 k2=0 my,m2>0

-8
+ > <m1+mz+2————1—1——1—1’+N1\;°11¢2N’°) )

m1,m22>0

—8

N2—1N;-1
= (N1N2)3 Z Z (- Z ((m1N2 + kl)Nl + (m2N1 + kg)Nz + SL')

k1=0 k2=0 m1,m2>0

+ Y ((m,N2 4 Ny — ky — 1)N;y + (maNy + Ny — ky — 1)Ny + Ny + Ny — z)_)

m1,m22>0

= (N (= s, 7, (Mo, Na)) + Gals, Ny + Mo = 7, (N1, VR))).
We previously obtained in the proof of [KuKo, Theorem 2.1(b)] that the function

—Co(s, T, (N1, N2)) + Ga(s, Ny + Na — z, (N1, N2))

3
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has zeros at even nonnegative integers s. In particular it vanishes at s = 0, thus (2.1) equals

exp (% » ( — Ca(s, z, (N1, N2)) + Go(s, Ny + Ny — z, (N, Nz))))

Fz(ﬂ), (Nl, Nz))_lr‘2(N1 + N2 -, (N],Nz))
SQ(.’IJ, (Nl,Ng)).

Il

This completes the proof of Theorem 1.1.1

3 Application

In this section we compute the absolute tensor product of the Hasse zeta functions of finite
fields szv1 and Fpnz. We first recall the definition of the absolute tensor product of mero-
morphic functions. Let Z; (j = 1,2) be meromorphic functions of order u;. We put the
Hadamard product as

, m;(p)
Z;i(s) = s*ieQi(s) H P, (f) , (3.1)
peC p

where P,(u) := (1 — u)exp(u + “72 + -+ + %), m; denotes the multiplicity function with
k; := m;(0), and Q; is a polynomial with deg Q; O ;. Here the product over p € C means

m;(p)
lim J] P, (i) " The absolute tensor product is defined by
R0 jpl<R d
kuka Q) , s m(p1,p2)
(50 2)(5) = 856 [T P (55=) (32)
p1,p2€C

where Q(s) is a polynomial with deg @ O p; + po and

1 if Im(p;),Im(ps) >0,

m(p1, p2) = ma(p1)ma(p2) x  —1 if Im(p1),Im(p2) <0,
0 otherwise.

Here we do not give the precise definition of the polynomial Q(s), since it is not necessary
for our purpose.

In this section we will compute this absolute tensor product for the Hasse zeta functions
for finite fields:

Zy(s) = ((s,Fpm) = (1—-p M),
ZQ(S) = C(S, FpN2) = (1 _p—st)_],
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with p a prime number and N;, N, positive integers.
The following theorem extends our previous results on {(s,F,) ® {(s,F,) for a prime p
in [KoKu2].

Proposition 3.1 The absolute tensor product of the Hasse zeta functions for finite fields

F,v and Fyn, is given as follows:

isN1 N 1
Clo,F) ® (o ) = e05, (BIIEIOEL (v, vy )
(N2/No)—1 (N1/No)—1 .
— R0 islogp k1 |k
€ H H Sz(No( o +N2+Nl ,
k1=0 k2=0
where Ny = (N1, N2) and Q(s) is a polynomial of degree at most two, which depends on p.

Proof. The second equality is seen from Theorem 1.1. In what follows we prove the first one.
The Hadamard product (3.1) for the Hasse zeta function is given for j = 1,2 by

~ OOI s -t
((s,Fp;) = 571 T A o,

n=—00 Njlogp

with Q,, i(s) alinear polynomial depending on N;. Thus by the definition (3.2) of the absolute
tensor product,

Mk.n
~ ! S
C(S, Fle) ® C(sa FpNQ) = SeQNI'Nz(S) H P2 ( 27 27 n) ’

k,nez Nilogp + Nzlogp
where Qn, n,(s) is a polynomial of degree at most two and

1 ifk,n>0

e 27 2mi = - '
Mkp =M (Nx l;gpk’ N2 l°’”’n) B 01 :)ftﬁé:lw'zg
1 .

Hence

oo’ s
HP2< 2w k+ 2w 'fl)

3 = Njlogp Nz logp
QN N, (s k,n=0 1log
C(sanNl) ® C(S)FPNZ) =e*M 2( )S oo N
S
H P2 (— 2mi k+ 271 n
k=1 Nylogp Nz logp
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We appeal to the 7 = 2 case of the formula [KuKo, Proposition 2.4]:

oo , P 2
k];lo ? (-wlk +w2n)
S2(z) (wlaWZ)) = eQﬁ(Z)Z : =)

z
P —=
k,];!l ? (wlkz + wgn)

where Q,(z) a polynomial with deg@, O 2. The proof is complete.s

Taking the following exponential expression of the normalized double sine functions into
account, we see that the absolute tensor product in Theorem 1.2 has an “Euler product”
expression for Re(s) > 0.

Proposition 3.2 The following ezpression holds for Imz > 0.
1 _. ; )
51(2) = exp (~ 5 Lis€") + (1 - 2)log(1 — %) +.Q(2) ),

where Q(2) = Z2? — miz + 2.
Proof. We recall the formulas of the double sine functions:
Sa(2) = Sa(2) 7181 (2), ([KuKo, Example 3.6]) (3.3)

where S,(z) (r = 1, 2) are the primitive multiple sine functions [KuKo]. We have by definition
; : i 27z
S1(z) = 2sinmz = exp | —miz + 5 + log(1 — &™)
and the expression [KuKo, Theorem 2.8 (2.12)]:

1, .
82(2) = exp (’2_71_21412(62""’) + ZlOg(l _ eZ‘mz) _

INSC)
77 zT)

for Im(z) > 0. Thus (3.3) equals

1 ; ; ) . omi
exp (—-%Lig(ez’”’) + (1 = 2) log(1 — €*™#) + gz'z — miz + %) 1

Lemma 3.3 Assume r € C satisfies that vV = 1. Then we have

19, (r—1)"' (r#1)
—an ={¥ (r=1).
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Proof. The r = 1 case is well-known. Differentiating the formula 33! r* = (1—rV)/(1-r)
in case T # 1 leads to the result.

Proof of Theorem 1.2: By the above propositions all we should compute is the following
product:

(N2/Npg)—-1 (Nl/No) 1
1 k k
II II s (No (w ogp+—1+—2>>

ki=0  kp=0 N
- (Nz/f)—l(m/ﬁ)—l (_%Ll (e_Noslogp+2wi(ﬁ,{l,§l+ﬁ,3fl)) (3.4)
ki=0  kp=0
N (1 3 z'sN;:rogp 3 ler’:l 3 N;Jllcz) log (1 _ e-,Nolongrzm(ﬁgguﬁﬁ?)) (3.5)
(e 1,18

Put N; = NyN; and N, = NoNj. First the double sum in (3.4) is computed as follows:

Nj—1Nj{-1

_ Z Z —-———-ng( —Noslogp+21ti(%+1—’;§1-)>

=0 kz=0
n

2mi( )+ 53

N=1N{-1 oo (p"N"e Nz M

- 2#22 ZZ n?

k1=0 ka=0 n=1
Ny—1 NI—1
p~oNon ["Z1 omithy N 2mitkp
= 22 ol DOCHER N DOL
e n
k1=0 k2=
1 p—sNon
e
NiNj|n
p—sNoNlNzn
2m’ N'N{,E
n=1
1 Ng e p—-"lNlNz/No

—2—7—r€ - N1N2 el n?
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Next we compute the double sum of (3.5) over ki, k,:

Nj—1N}-1 e
Z Z ( _ ZSN() ].ng _ k_]l _ k_gl) log (1 _ e-aNologp+21u(—ﬁ12,+)—v7{))
=0 k2=0 2 1
Ni-1 N{-1
isNylogp pNon T oamit o~ 2wl
-(1-Aheen) S T Y R Y
k1=0 k2=0
B Nj—1N}-1
p~*hon 2mi( -+ 1 )n
+Z > Z e
k1=0 ko=
(zsNo logp ) Z p—’NO"N’ N;
d p-—sNon kl 2m—1,- 21l'i£157'E N k2 2m—1,— Nl 21ri%7'3
+2 N° Z e Y e 3 o
n=1 k1=0 k2=0 k2=0 k1=0
(zsNo logp ) Z p_’NO“NINZ
p-anoN' kl 2mk , p—anoNz k2 27‘,1"2"\;)"2’ ,
+Z an N’ N +Z me 1 N2
k1=0 ko2=0
(1SNO logp ) Z p—aNoanN2
p 3"'N0N1 klnN p—anNoN2 N1 "2""’
D oLmull S RS NS v el ST
n=

—snN1N2/No —snNy

(zsNologp )Zp - ZP fi(n) +Z

fz(n)

by Lemma 3.3. 8
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