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Abstract. We obtain an arithmetic expression of
the Selberg zeta function for cocompact subgroup
defined via an indefinite division quaternion algebra
over Q. The proof makes use of the theorems due to
Eichler [E]. As the application for that expression
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Tichmarsh type.
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1. INTRODUCTION

Let T be a discrete subgroup of SL3(R) containing
~1; with finite covolume v(I'\$), $ denoting the
upper half plane. The Selberg zeta function attached
to " is defined by

Zrs) = [[ [I @-NP)™™), (Re(s)>1)
{P}r m=0

where {P}r runs through all primitive hyperbolic

conjugacy classes of I' with tr(P) > 2, and N(P) :=

|p|? with p the eigenvalue of P € I such that |p| > 1.

When ' = SL(2, Z), Sarnak([S] obtains an arithmetic

form of Zr(s):

o0
(1.1) ZI‘(S) - H H (1 _ EBZ(H—"))’,(D),
D>0 n=0
where D runs through the discriminants of real qua-
dratic fields with £p the fundamental unit, and h(D)
is the class number (see also [H2, p.518]). Such an
arithmetic expression is proved for some congruence
subgroups as well [S], but is not known for arithmetic
cocompact groups.
The chief concern of this paper is to obtain such
an arithmetic expression of the Selberg zeta function

for cocompact I' defined via an indefinite division
quaternion algebra over Q.

b
Let B = (%) be an indefinite division quater-

nion algebra over Q with a and b positive integers
which are relatively prime and squarefree. We write
a typical element of B in the form

q=q +qa+agl+gpap,

where o> = a, > = b, af = —fa, and ¢; € Q
(1 =0,1,2,3). We denote by ¢ — § the canonical
involution of B and put n(q) = ¢q, tr(g) = ¢+ 4.
We choose and fix a maximal order O of B. Let B?
(resp. O ) be the group consisting of all elements ¢
of B (resp, O ) with n(g) = 1. Since the R algebra
B ®q R is isomorphic to M»(R), B! is injectively em-
bedded into SL;(R) via this isomorphism. The unit
group O' can be identified with a cocompact dis-
crete subgroup I'o of SL,(R) which is the image of
the following injection:

(1.2)
01 > SLz(R)
o+ava  @Vb+g/avb
¢ = (qz\/?—q;\/ﬁ\/ﬁ ’ %0 —qj\/a )

We write Zo1(8) := Zr,(s) with this identification.
Since B is indefinite over Q, there is a unique maxi-
mal order O of B up to B*-conjugation. Therefore,
Zp1(s) depends only on B and not on the choice
of 0. We simply write Zg(s) for the Selberg zeta
function Ze1(s).

For any basis {u;} of O over Z, set

d(B) = | det(tr(usu;))|?.

This number is independent of the choice of O and
{u;}, and denotes the product of prime integers p
which ramify at B/Q.

Put

D:={D € Zso| D =0,1 (mod 4), not a square}.

Let 0 be an order of K = Q(v/D) and k(o) = k(D)
be the number of classes of proper o-ideals in the
narrow sense. We moreover set

(=)

pld(B)

MEK) =

where (%) denotes the Artin symbol for K = Q(v/D).

Let ep = ﬁi—g—\/——q with (a, §) being the minimal

solution of the Pell equation: z? — Dy? = 4. The
main theorem of this paper is as follows:
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Theorem 1.1. Let B be a division indefinite quater-
nion algebra over Q. Then

oo
ZB(S) — H H (1 _ 552(s+n))h(D))‘(D)’

D>0 n=0
and
Zr " et E—st
Z—g(s) = Z Z h(DYA(D) 1085213 : 1__—D€:§;,
D>0 m=1 D

where A(D) = A(Q(VD)) and the symbol * indicates
that D runs through all elements in D satisfying the
following conditions.

(Pr-i) (%) # 1 for any prime integers p | d(B).

(Pr-ii) (f(D),d(B)) = 1, where the positive integer
F(D) is given by D = f(D)*Dg, Dk being
the discriminant of K.
Remark 1.2. Though for the proof of Theorem 1.1
we have used the theory of optimal embeddings due
to Eichler, the theorem would also be deduced from
the result of [BJ] and [S1]([S2]).

Theorem 1.1 has an application for improving the
prime geodesic theorem:
T

(1.3) g’

mr(z) ~ li(z) ~
where wr(z) is the number of primitive hyperbolic
conjugacy classes P of I' whose norm N(P) satisfies
that N(P) < z, and the relation “~” means that the
quotient of both sides goes to 1 as z — co0. The for-
mula (1.3) is an average estimate in the sense that it
just counts the number of elements in the whole in-
terval (1,z]. When we are interested in more refined
version, we need to estimate for smaller interval such
as (z,z + y] (0 < y < z) for sufficiently large . If
we were able to prove

mr(o +y) = () ~ iz +y) - 1) ~ o
then it would mean the uniformity of the distribu-
tion. We call such an estimate the Brun-Titchmarsh
type prime geodesic theorem. When I' = SL(2,Z),
Iwaniec [I, Lemma 4] proved that

(e +y) —mr(e) Ly

for 72 (logz)? < y < z. He uses the arithmetic form
(1.1) of Zr(s), and the method is applicable to our
case using Theorem 1.1. We prove:

Theorem 1.3. Let B be a division indefinite quater-
nion algebra over Q. Put np(z) = no1{z). Then for
z3(logz)? <y < z, we have

(1.4) me(z +y) —mp(z) € y.

The implied constant depends only on B.

Remark 1.4. (a) Theorem 1.3 gives the best pos-
sible range of y in view of the multiplicities of
the length spectrum in the following sense: It is
known that N(P) is a function of |tr(P)| and
grows like |tr(P)|2. Whenz € Z2 = {n® | n €
7}, there ezist at least /T different P’s which
satisfy |tr(P)|? = z. It means mr(z) jumps by as
much as \/Z at that moment. Therefore (1.4) is
not true for y < \/z. Hence the exponent 1/2 in
the lower bound of y in Theorem 1.3 is the best
possible.

(b) Theorem 1.3 gives the best possible exponents of
z and y according to the conjectural form (77).

(¢) The current best error term of (1.3) for arith-
metic cocompact groups is obtained by Koyama[K]:

(1.5) ma(z) = li(z) + O(z T +¢).
By using this error term one easily computes that
Theorem 1.3 is valid for Tt < y < z. Hence
Theorem 1.3 is nontrivial for 2 (logz)? < y <
T
zio,
(d) This estimate (1.5) together with Theorem 1.1
itmplies the following estimates for class num-

bers:
> WDND) = (@) +0(zi*)
O<ep<=z

S WD)AD)logep = z2_2+0(z%+5)’

0<ep <z

which should be compared with [S, Theorem 4.11]
and [H2, p.519, Proposition 2.9].

Acknowledgement: The second and the third au-
thors express their gratitude to Professor Zeev Rud-
nick for his valuable suggestions such as Remarks
1.4(a) and 3.6.

2. ExpLiCcIT FORM

For obtaining the explicit form of Zp(s), we in-
troduce the following two theorems due to Eichler.
Theorem 2.1 (Eichler [E]). Let K be a guadratic
field over Q and ox the maximal order of K. Fach
order o of K has an ezpression: 6 = Z + fox for
some positive integer f = f(s). The discriminant of
o is given by D(0) := f>Dg, Dy being the discrimi-
nant of K. Then, (i) There exists a Q-isomorphism
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@ of K into B, if and only if —Ig) # 1 for all prime

integers p | d(B). (ii) Let K satisfy the condition
of (i) and o an order of K. Then there ezists a
Q-isomorphism ¢ of K into B such that ¢(0) =
©(K)N O, if and only if (f(0),d(B)) = 1.

Let K and o be the same as in the theorem. De-
note by I(K,o) the set of all Q-isomorphisms ¢ of
K into B such that ¢(0) = ¢(K) N O. We say that,
for ¢, @' € I(K,0), ¢’ is O'-equivalent to ¢, if there
exists some € € O! such that ¢'(2) = ep(z)e~? for
any z € K. Denote by I(K,0)/O! the set of all the
O-equivalence classes in I(K, o).

We denote the cardinarity of a finite set S by §(S).
Theorem 2.2 (Eichler [E]). We have

u(I(K, o)/ol) = h(6)A(K).

For a proof we refer to Shimizu [Sh] (see also [A]).

Now we need the relation between the quadratic
field over @ and the quaternion algebra.
Set

L:={z €Z+20|tr(z) = 0}.

Any non zero element z € L is called primitive, if it
cannot be expressed as z = my withm € Z, m # =1,
y € L. Denote by Ly, the subset of L consisting of
primitive elements of L. For each positive discrimi-
nant D let

€7 (D) = {€ € Lpr | n(€) = -D}.

In view of Theorem 2.1 we see the following relation;
Lemma 2.3. We have CP"(D) # ¢, if and only if
D satisfies the conditions (Pr-i) and (Pr-ii).

Proof. For each z € CP"(D) we form an isomor-
phism ¢, : K — B by ¢, (VD) = z.

Let o be an order of K with discriminant D. We
put z = p+ 2§ for p € Z and £ € O. Because
tr(z) = 0, we have

n(z) +p” = 4n(£).

From n(z) = ~D and n(¢) € Z, we have p* =

D (mod 4).
When D =1 (mod 4), we have 1 + p € 2Z and

14z =1+p+2€€2Z+20C20.
In the case of D = 0 (mod 4), we have p € 2Z and
z=p+26€ 2L +20 C 20.

By the isomorphism ¢, we have

2+2%2 ¥ D=1 (mod 4),
— 2
(pz(ﬂ)— xT
Z+3Z D=0 (mod4).

Then we have @, (0) C O. From the primitivity of z,
there doesn’t exist any n > 2 satisfying ¢, (o) C nO.
Applying Theorem 2.1 leads that (Pr-i) and (Pr-ii).
Conversely, we assume (Pr-i) and (Pr-ii). Let o be
the order of K = Q(v/D) with discriminant D. From
Theorem 2.1, there exists Q-isomorphism ¢ : K - B
with p(0) = (K)N©O. We form z := p(v/D). Since
VvVDeZ+ 20, we have z € Z + 20. Since ok is the
maximal order of K, o = Z + f(0)ok is as follows;

(2.1)

Z+ f_(gl‘;;QZ, Dg =1 (mod4),
0=
Z+ —‘/?z, Dg =0 (mod 4).

Then since there doesn’t exist n > 2 such that @ €
Z + 2o, z is primitive. It follows that z € CP"(D). 1
Set
CcP .= U* CP(D),
D>0

where D runs over all positive discriminants satisfy-
ing the conditions (Pr-i) and (Pr-ii).

Denote by Prm*(O!) the set of primitive ele-
ments v of O! with tr(y) > 2. For e € Prm*(0%),
we put Q(¢) := Q + Qe. Since B is a division
quaternion algebra, Q(g) is a quadratic extension
over QQ and is isomorphic to K = Q(vd? — 4) over
Q with d = tr(e). We denote this isomorphism by
¢ : K — Q(e) given by ¢o({d + Vd% - 4)/2) = &.
We put o := Q(e) N O which is an order of Q(¢),
then o := ¢~!(0) is an order of K. One can write
o = Z+ f(o)ox with f(0) € Zg, ok being the max-
imal order of K. If we set D = f(0)2Dg, then D is
the discriminant of 6. Since p(0) = 0 = Q(e) N O,
Theorem 2.1 implies (f(0),d(B)) = 1. We see that
CP"(D) # ¢ for D determined by the order of Q(¢).
Lemma 2.4. It holds that

‘p‘—l(s) = €D,

D
where D is the discriminant of o, andep = #
with (o, B) (a,B € Zso) being the minimal solution
of the Pell equation z° — Dy? = 4.

Proof. We have

iy = AHVET
st
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We put o := d and §%D := d? — 4, where D =
f(0)?Dgk. Then (a,3) is the minimal. We will prove
it. By the reduction to absurdity, we assume (ayo, Bo)
is the minimal solution, which is not (a,3). Then
there exists n € Z(# 1) such that

a+pVD - (ao+50\/5>n
2 2 :

By Q-isomorphism ¢, we have

B (a+ﬁ\/5)_ ((ao+ﬂo\/l_7)")
E=vl T2 TP\ =2

(ao +ﬁo\/5)n
— -

This contradicts € is primitive. ¥

Now we have K = Q(vVd& —4) = Q(vD). By
using the correspondence in Lemma 2.4, we have the
following lemma.
Lemma 2.5. Let the notation be the same as in
Lemma 2.4. The map Prm*(O!) € e — £ € CPT,

a L
, s a bijection.

26 —
where £ is given by £ = <

B

Proof. Let ¢ € Prm*(0O!) be given. We put a,
B and D be the same as in the proof of Lemma

2.4. Set & = 2 - a’ then we have tr(§) = 0. From
nie) =n (a gﬂi) = 1, & satisfies

a® 4 6n(g) = 4.
Since (a, 8) is the solution of the Pell equation z? —
Dy? = 4, we have n(¢) = —D. By using

as Lemma 2.4, we have
¢ (¢) =VD.

The definition of D gives vD = f(0)v/Dg. Because
of vVDx € ok and 0 = Z+ f(0)ok, we have vD € o.

From (2.1) we get VD € Z + 20. Since ¢ is a
primitive element, (¢, 3) is the minimal solution. It
shows that there doesn’t exist n > 2 such that -‘? €
Z + 20. From ¢(0) = 0 = Q(e) N O and (VD) = ¢,
we have £ € Z + 2(Q(e) N O) C Z + 20 and also we
have that £ is a primitive element in L. Therefore
£ € CP(D).

Conversely, we choose’and fix an element £ in CP"
and put D := —n(€). Let (a,8) € Z x Z be the

minimal solution of the Pell equation z2 — Dy? = 4,

and set € := ot ﬁé‘- Then we have
2 2
n(e) = o +§ n(€) -1

and by £ € Z + 20, we also have o + B¢ € 20.
Thus we have ¢ € O, If ¢ is written in the form
e = e with an integer m > 0 and &; € O, then
€, commutes with any element of Q(¢) and hence
€1 lies in the order o = Q(e) N O. Therefore, €, is a
unit of the order o with norm one. Since we see from
the definition of € that € is a fundamental unit of o
with norm one, we have m = 1. This means € is a
primitive hyperbolic element in O, which completes
the proof.

We denote by CP™/O" (resp. CP"(D)/O") the set
of O*- conjugacy classes of CP" (resp. CP"(D)).
Lemma 2.6. The correspondence in Lemma 2.4 in-
duces a bijection of Prm*(0%)/O' onto CP"/OL.

Proof. Let ¢,e/ € Prm*(O!). When ¢ is O!-
conjugate to ', there exists ¥ € O! such that ¢’ =
~vey~1. Since Q(e') N O = ¥(Q(e) N O)y~! and both
of €, € are primitive, the corresponding minimal so-
lutions of the Pell equations are the same. Therefore
we may write

a+ B¢
2
with a, B € Zsg. Thus & =véy 1. 1

Let D € Z+ be a discriminant satisfying the con-
ditions (Pr-i) and (Pr-ii). From Lemma 2.3, we see
easily that there exists a bijection from C?"(D) to
I(K,o), where K = Q(vD) and o is the order of
K with discriminant D. This induces the following
lemma.

Lemma 2.7. It holds a bijection from CP"(D)/O?
to I(K,0)/O".

Proof. For z,2' € CP"(D), take ¢, and ¢ €
I(K,o) such that ¢.(vD) = z and g (VD) = z'.
Then for z = p+ gV D € K, where K = Q(v/D) and
p,q € Q, we have

(22)  @e(2)=p+gz and @u(2) =p+gz’.

When z’ is O'-equivalent to z, there exists v € O
such that ' = yzy~!. Then we have

Yo ()7 =P+ g2)r Tt = p+ gz’ = o (2).
Conversely, assume ¢, is O'-equivalent to0 y,». Then
there exists v € O! such that vp,(2)7™! = @ (2).
Taking (2.2) into account, since v, (2)y™! = p +

gyzyt, weget yzy i =g &

and & = 2TPE
2
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In view of the theorem of Eichler (Theorem 2.2),
by applying Lemma 2.7 we have
Proposition 2.8. Let D € Zso be a discriminant
satisfying the conditions (Pr-i), (Pr-ii). Then

n(cvf(p)/ol) = h(D)A(D).

The eigenvalues X of the element of I'o C SLy(R)
associated to € € O! by injection (1.2) are given by
d+vd? -4

2 b
where d = tr(e). Now we write Np(e) for the norm
of the element associated to €. From the correspon-
dence in Lemma 2.5, we have

Np(e) = (p7! (e))z.

The Selberg zeta function attached to O' is denoted
by

A=

Zp(s) = II [[a-nNs@E™™).

e€Prm+(0')/O! m=0
From Lemmas 2.4, 2.6 and Proposition 2.8, we have
Theorem 1.1.
3. BRUN-TICHMARSH TYPE PRIME GEODESIC
THEOREM
We introduce the following two theorems.
Theorem 3.1 (Landau [L], p.196). Let D be a pos-

itive discriminant. Then we have

VD X xoln)
h(D)—_logeDg n ’

where xp(n) = (;le) is a Kronecker’s symbol.

Theorem 3.2. For 0 <Y < t, put S(Y,t) to be the
character sum

S, t)= Y xo(n).
Y<n<t
Then it gives that

}S(Y, t)] < |D|}log| D).

For a proof we refer to Davenport {D, p.135].

These estimates lead to the following proposition.
Proposition 3.3. Let D € Z-o be a positive dis-
criminant. Then

h(D).< D%

as D — oo.

5

o0
Proof. We estimate 3 %ﬂ by breaking up the

n=1
sum inton <Y andn > Y, Y to be determined.
For the first sum, we use a trivial bound;

xp(n) 1
|25 < X 5 <o

n<Y
On the second sum, since the summation by parts
o t
gives 3 xo(m) _ J i();’—)dt, Theorem 3.2 leads
n>y T y ¢
to
oo 1 1
) xp(n) <</ Dfigngt: Df;ggD.
n>Y n Y
These give
ot D¥logD
IZ @_(ﬂl & lOgY + _O_g
n=1 n Y

On taking Y = D#, we get
IZ XDT(n)I < log D.
n=1

Since logep > log D by definition of ep, we have
the proposition from Theorem 3.1.

By using Proposition 3.3 and the following esti-
mates for the divisor function 7(u) of a natural num-
ber u, Theorem 1.3 will be proved.

Lemma 3.4. Foranya >1 andz > 2,
m(w) 7(u) 2
Z e §<1 ZT«(logz).
u<VT u<lx
where for the first inequality the implied constant de-
pends only on a.
Lemma 3.5. We have
#{n | n? = 4 (mod u?), n < u?} <« 7(u),
where u and n are integers.
Proof of Theorem 1.3. Let B, O, and O be the

same as before. Set T' = O C SLy(R). By the
definition of rg(z),

mp(z +y) - 7wp(z) = > L
3
z<Np(e)<z+y
where the sum is taken over € € Prm*(0')/0O? sat-
isfying £ < Np(e) < ¢ +y. We write this sum in
terms of positive discriminants D satisfying the con-
ditions (Pr-i) and (Pr-ii) in Section 1:

*
a(@+y) —mp@)= Y
D>0
Vz<ep<+ Tty

and

h(D)A(D).
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Let t(B) denote the number of distinct primes divid-
ing d(B). Then obviously,

MD) < 24B),

We have
(e +y) ~mp() <2® ¥ Dpi
ﬁ<ez>Ds\/EI?
< Y pi
ﬁ<snDs~/i7§

The estimate of the right hand side is proved by
Iwaniec [I]. We give here a more detailed presen-

tation of that proof. Put ep = @ with o, 8 €
Z-~g. From the condition on €p, there follows that

(3.1) 2z < a+p8vVD <2VZT ¥y,

and the inverse of each term gives

2 2
ﬁﬁa‘ﬂ@< 7

since (a, B) is a solution of the Pell equation.
From (3.2) we have a = 8v/D + T with
2 2
e < T < —.
VEaty — T TV
By combining this with (3.1), we have

T T
\/;H_E <a_<_\/x+y+5.
By expanding

y
= Y o+ E
N R \/5+2\/5+

with E the error term satisfying E = O(z~2y?) as
y < z, (3.3) can be written by

(3.2)

(3.3)

T T y

— < — 2 i
Vit <as<Vi+s +2ﬁ+E
We denote the region of a expressed in (3.4) by 7.
Then we have

w(z+y)~Tp@ <Y, > Di
a€T B
a?—-Dp2=4

(3.4)

2
By the Pell equation, we have D <« (%) . Hence

> oo

aeT
a?=4 (mod $2)

mB(z+y) —7B(x) K VE Y %

B<2/z

The last sum over « is estimated by

r(ﬂ)(%(% +E) +1)

from Lemma 3.5. The estimates in Lemma 3.4 now
give

2
m5(z +y) ~ (@) €y + =+ V3(log )",

1t is estimated by y as long as z3 (logz)? < y < z. I

Remark 3.6. Zeev Rudnick pointed out that for 1 <
y < T we can prove

7e(z +y) —7B(z) K ylogz
by omitting the congruence condition at the cost of

increasing the number of solutions in the proof of
Theorem 1.3.
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