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PRIME GEODESIC THEOREM FOR HYPERBOLIC 3-MANIFOLDS:
GENERAL COFINITE CASES

MAKI NAKASUJI

Running Title. Prime Geodesic Theorem for Hyperbolic 3-manifolds

Abstract. We obtain a lower bound for the error term of the prime geodesic theorem for
hyperbolic 3-manifolds of finite volume. Under the assumption that the contribution of the

1
discrete spectra is larger than that of the continuous spectra, our result is 2. (ﬂ"’{—g‘;’i—zﬁ)

Without the assumption we have Q(z!~¢).
2000 Mathematics Subject Classification: 11F72, 11M41, 58C40

1. INTRODUCTION

For a (d + 1)-dimensional hyperbolic manifold with I' being the fundamental group, the
prime geodesic theorem is

M
mr(z) = li(z?) + 3 li(z*) + (error), (L.1)

n=1
where 7r(z) is the number of prime geodesics P whose length I(P) satisfies that N(P) :=
eé®) < g, and s;, ... sy are the zeros of the Selberg zeta function Zr(s) in the interval

(4,d). The chief concern of this paper is to give lower estimates of the error term in (1.1).

Hejhal [5][6] obtained a lower bound in two-dimensional cases i.e. d = 1, by using the
explicit formula for ¥,(z) := [ ¥r(t)dt. Here we put ¥r(z) = Y. Ar(P), where Ar(P)

{P}
N(P)<=z
is defined by ,
Zr Ar(P)
()= > ;
Zr P N(P)
N(P)<z

and is an analogue of the von-Mangoldt function in the theory of the Riemann zeta function.

His result is as follows:
1
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Theorem 1.1. When T C PSL(2,R) is a cocompact subgroup or a cofinite subgroup satis-

fying that
J;ﬂn—% 1
- = P 2

7"Z>0 Y o (1 + (logw)z) ! (1.2)

it holds that

M
mr(z) = li(z) + Y li(z*") + O

n=1

(z%(log log z)3

) as T — 0o,
logz

where B, + i, are poles of the scattering determinant.
As we announced in [10], we generalize it to three-dimensional cases:

Theorem 1.2. When I' C PSL(2,C) is a cocompact subgroup or a cofinite subgroup satis-

fying that
b1 1
257 -0 () &

it holds that

mr(z) = li(z?) + 3 li(z*") + Qs

n=1

logz

(m(log log z)3

) as T — 00,

where B, + iy, are poles of the scattering determinant.

Assumptions (1.2) and (1.3) mean we can ignore the contribution of the continuous spectra.
Hence, the proofs are reduced to those of cocompact cases.

In this paper, we will loosen the assumption (1.3) by considering a generalization of Weyl’s
law:
Proposition 1.3. [2, p. 307 Theorem 5.4] Let T C PSL(2,C) be a cofinite group, A, be the
eigenvalues of the Laplacian on L*(T\H?®) with and ¢(s) is the determinant of the scattering
matriz. We put

Np(T) := {2 dn < 1+ T%}.
Then
vol(I'\H?)
Ne(T) - / 1+ it)dt ~ e s 14
(T) Zas - (14)

as T — oo.

The following result is our main theorem:

Theorem 1.4. For I' C PSL(2,C), which satisfies that
vol(I'\H3 )

672
2

Ne(T) ~ (1.5)
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we have

71'1"(1‘) = li(.’ﬂz) + % li(z‘s") + Q4

n=1

z(loglog z)3
log z

) as T — 00.

Though we imitate the proof of Theorem 1.1 for those of Theorems 1.2 and 1.4, by the
reason that the order of Zp(s) is three, abundance of the zeros of Zr(s) gives rise to a difficulty
concerning the estimate of ¥;(z). We overcame it by considering the explicit formula for
Uy(z) := J{ Uy (t)dt.

Remark. The conjectural exponent of T in the error term in (1.1) is g . Theorems 1.1,
1.2 and 1.4 give sharp estimates in that sense.

When the assumption (1.5) doesn’t hold, a different approach gives a weaker §2-result,
Q(z'7¢). Combinintg it with Theorem 1.4, we have the following theorem:

Theorem 1.5. When T’ C PSL(2,C), then we have

mr(z) = li(z?) + Y li(z*) + Q(z'™°) as z — oo,

n=1
where € is any positive constant.

In Section 3, we deal with cocompact cases. Its generalization to cofinite cases when the
contribution of the continuous spectra is small is given in Section 4, where we will also show
the assumption (1.3) implies (1.5). As an example which satisfies the assumption (1.3), we
will see any Bianchi group in Example 4.11. In Section 5, we will give the proof of Theorem
1.5.

2. PRELIMINARIES

Throughout this paper we put G to be PSL(2,C) and T to be a cofinite subgroup of G.
Let j be an element in the quaternion field which satisfies j2 = —1, ij = —j4, and let H® be
the 3-dimensional hyperbolic space:

H:={v=z2+yj|z=2+2i€C,y>0}

with the Riemannian metric
2 _ dz,? + dzo? + dy?

dv 7

The hyperbolic distance d(v,v") is given by

12 2 12
coshd(v,v') = 2= +y +y ,
2yy’

where v = z + yj and v' = 2’ + ¢'j. The volume measure is given by

dridzedy

y3
3
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The group PSL(2,C) acts on H? transitively by

a b . _1_ (az+b)(cz+d) +azy® +yj
(c d) (v) :=(av+d)(cv+d)™" = ez 1+ dF + [0y

The Laplacian for H? is defined by

A= -y & +a—2+ il 1yl
=Y\ bz, T 92,2 Oy? yay‘

We denote the eigenvalues of Aby 0= <A1 S A < <Ay 1 < Appr -0
The classification of conjugacy classes is given as follows:

Definition 2.1. An element P € I' — {1} is called

parabolic  iff [tr(P)| = 2 and tr(P) €R,
hyperbolic  iff [tr(P)] > 2 and tr(P)eR,
elliptic iff [tr(P)] < 2 and tr(P) € R,

and lozodromic in all other cases. An element of PSL(2,C) is called parabolic, elliptic,
hyperbolic, loxodromic if its preimages in SL(2,C) have this property. A conjugacy class
{P} in T is called hyperbolic, elliptic, parabolic if each P in the class has this property.

The norm of a hyperbolic or loxodromic element P is defined by N(P) = |a(P)|?, if
a(P) € C is the eigenvalue of P € G such that |a(P)| > 1.

Definition 2.2. An element P € I' — {1} is called primitive if and only if it is not an
essential power of any other element. A conjugacy class {P} in T is called primitive if each
P in the class has this property.

For every hyperbolic matrix P € T there exist exactly one primitive hyperbolic element
P, € I and exactly one n € N such that P = P,". We define that np(z) is the number of
Py which is primitive hyperbolic or loxodromic and satisfies N(F) < z.

Definition 2.3. For Re(s) > 2, the Selberg zeta function for T is defined by
k-2 s
Zr(s) =[] T1(1 - a(Ro)"*a(Ro) "N(R)™),
{Po} (k1)
where the product on {P,} is taken over all primitive hyperbolic or lozodromic conjugacy
classes of T, and (k,l) runs through all the pairs of positive integers satisfying the following

congruence relation: k =1 (mod m(P,)) with m(P) the order of the torsion of the centralizer
of P.

Elstrodt-Grunewald-Mennicke proves the following lemma:
Lemma 2.4. [2, p. 208, Lemma 4.2] For Re(s) > 2, we have
Z_IT(S)_ N(P)log N(F)
Z )T & m(P)la(P) - a(P) 1P
4

N(P)”,
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where P, is a primitive element associated with P, and {P} runs through the hyperbolic or
lozodromic conjugacy classes of T

Recall that the von-Mangoldt function A(n) appears in the logarithmic derivative of the
Riemann zeta function:

—%’(s) = 20.;1 A(n)n™. (2.1)

Comparing Lemma 2.4 and (2.1), the following definition is natural.

Definition 2.5. For a hyperbolic or loxodromic element P of T, we define
N(P)log N(Fp)

ArlB) =SB a(P) - a(P)
and
‘I’p((l’,‘) = {Z; AF(P),
N(P)<z

where Py is a primitive element associated with P, and {P} runs through hyperbolic or
loxodromic classes of T.

Then we have

z .
—Zf-(s) = {ZP; Ar(P)N(P)~°. (2.2)

In what follows that we simply write Z(s) for Zr(s).

3. Q-RESULT FOR COCOMPACT GROUPS

We will show some properties of Z(s) for cocompact I.

A determinant expression of Selberg zeta functions was discovered by Sarnak[12] and
Voros[16] for compact Riemann surfaces. Koyama generalized it to 3-dimensional Bianchi
groups [8, Theorem 4.4]. He expressed Z(s) multiplied with some gamma factors in terms
of the determinant of the Laplacian.

In the case of cocompact I', we do not have any contribution from the parabolic classes
and the continuous spectra in the formula in [8]. We introduce the spectral zeta function
generalized by a variables s:

A) e > 1 R 3
C(ws,8) = ,12:0 O — 5(2 — 5))¥ ( e(w) > 2) '

Theorem 3.1. Let R
Z(8) := Z1(s)Zg(s)Z(s)

2(6) = exp (X (o),

with

6
5
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Zg(s) = exp (Z }P'ngi\;—(RI;Ol VRZ— (1 — cos 2_m_1r_)" s) ,

(R} m=0 VR

where {R} also runs through all the primitive elliptic conjugacy classes of I, and vg is the
order of R. We denote by m(R) the order of the mazimal finite subgroup of the centralizer
of R.

Then

Z(s) = e“+<*)det p(A — 5(2 — 3)),

where detp is the determinant of the Laplacian composed of the discrete spectra :

detp(A — s(2 — s)) :=exp (— % ¢(w, s, A)) . (3.1)

w=0

The equation (3.1) is the zeta-regularization of a divergent product [I52(As — s(2 — 5)).
From Theorem 3.1, the zeros of Z(s) from the dicrete spectra are expressed as s, =

1+ iV, —1 and 3, = 1 —iy/A, — 1. Let t, := v/A, — 1. Then it leads to the following
proposition:

Proposition 3.2. We have,

1
+ — +O(|s]* +1),
§ = Sn |s—3n|<1 §— 8n

>

%(S) - s i 2 + s—snl<1
where s, = 1+ it, and 3, = 1 — it, are the zeros of Z(s) on Re(s) = 1.
Proof. From Theorem 3.1, we get

%(s) + ?(s) —%(s) =c'(2s - 2) + o d (log(detD( —s(2-3s)))), (3.2)
together with

Z;

7 =00 +1), (33)
and
Zg,y _
Z;(s) = 0(1). (3.4)

About the right hand side of (3.2), by Hadamard’s theory, we have

detp (A —5(2—35)) =@ J] (1 - _s._s_) (1 - ;) e, (3.5)
n=0 n

Sn
6
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where g(s) is an integral function and the product is absolutely convergent for all s. Elstrodt-
Grunewald-Mennicke [2, p. 215 Lemma 5.8] shows the order of (3.5) is three. Then we have

c-i‘?.; (log(detD(A - 8(2 - 3))))
1

— 2 _
= O(lsf*) + — +z (s—sn ) +,§(s_s,, s) (3.6)
Gathering together (3.2), (3.3}, (3.4) and (3.6), we have Proposition 3.2. O
As the existence problem for eigenvalues of A, we have Weyl’s law as follows:
Proposition 3.3. [2, p. 215, Theorem 5.6] Let I' C PSL(2,C) be a cocompact subgroup,
the counting function for eigenvalues of A in L*(T'\H?®), which is denoted by Np(T) :=
BH{An | An < 1+ T?}, satisfies

vol(P\H )

Nr(T) = T3+ 0(T? as T — oo.

From Propositions 3.2 and 3.3, we obtam the following estimates:

Lemma 3.4. For e > 0, we get

ZI ) |tl2
S(l+e+it) < —, (t|>2) (3.7)
Z €
A ) 1
-Z—(2+a+zt) <, (3.8)
ZI
~Z—(——s +it) < Jt* + 1, (3.9)
ZI
Z( )| < [t)2mex 02— og |t| (s=0+it, 0> 1 + 2Tl ]tl LE > 2). (3.10)
Moreover, for any T there exists T in [T, T + 1] such that
ZI
/ Z(a-i—z'r) do < T?logT. (3.11)
0

Proof. By Propositions 3.2 and 3.3, we get

ZI ) tZ 2
-Z—(1+6+zt)<< +;+O(|t|)

e+it—1
This implies (3.7). Here ¢ is any number with 0 <& < %
Since Definition 2.3 converges for Re(s) > 2, we have from Proposition 3.2 that

(s) ————+O(1) as s — 2,

for Re(s) > 2. It leads us to (3.8).
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For proving (3.9), we again appeal to Proposition 3.2. Putting s = —e + it gives the
conclusion.
The equation (3.10) is the consequence of (3.7) and (3.8) together with the Phragmen-

Lindeldf principle.
To see (3.11), we integrate the left hand side of (3.11) over 7 in

T={r|T<7t<T+1, |1 —t.| >T73}. (3.12)
By Propositions 3.2, 3.3 and (3.12), we estimate

/T/OZ’;TZZ—'(O—HT)

Since |T| = 1+ O(T~2) > 1 for sufficiently large T, we have (3.11) for that T'. For small T
the estimate is trivial. 1

dod <</2 S logTd
odt og T'do
0

8a—T|<2
<L T?logT.

Elstrodt-Grunewald-Mennicke also shows the functional equation:
Lemma 3.5. [2, p. 209, Corollary 4.4] The Selberg zeta function Z(s) satisfies

B vol(T\H?) (s

P — 1P +2E(s— 1)) Z(s),

Z(2—s) =exp (
log N(P)
here E .= ¥ ———=———,
B 7 (R (eR)? — 4
jugacy classes of .

and the summation of {R} is taken over all elliptic con-

This lemma leads to
z z .
7(s)+-2—(2—s) = O(]s|*). (3.13)
We now consider ¥p(x). Let ¥y(z) := [F Up(t)dt and Ua(z) := [ Uy(t)dt.
By using the following theorem, we can express ¥; and ¥; in terms of N(P) and Ar(P).

Theorem 3.6. [7, Theorem A] Let A, Ag,- -+, be a real sequence which increases (in the
wide sense) and has the limit infinity, and let
Clx)= ). cn,
An<z
where the ¢, may be real or complex, and the notation indicates a summation over the (finite)
set of positive integers n for which A, < z. Then, if X > X\ and ¢(z) has a continuous
derivative, we have

5 endln) == [ @I @)+ COSX).
An<X 1
8
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If, further, C(X)¢(X) — 0 as X — oo, then

S end) = - [ Ol @)z,

n=1

provided that either side is convergent.
We have the following lemma:
Lemma 3.7. It holds that
¥y(z)= Y, (z— N(P)Ar(P),

N(P)<z

2Wo(e) = Y (z— N(P)PAc(P).

N(P)<z

Proof. The first assertion is obtained by substituting n = P, A, = N(n), ¢(z) =z — N(n)
and c, = Ar(n) in Theorem 3.6. Similarly the second one is obtained by puttingn = P, A, =
N(n), ¢(z) = (z — N(n))? and ¢, = Ar(n) in Theorem 3.6. O

Theorem 3.8. {7, p. 31, Theorem B] If k is a positive integer, ¢ > 0, y > 0, then

1 / o yids i <),
26 Je—cosi s(s +1) ... (s+ k) | H1 -3¢ (y=1).

Substituting £ = 2 and y = ﬁ in Theorem 3.8, by comparing to Lemma 3.7 the

expression of ¥y(z) is obtained as follows:

c+oot s+2
Uy (z) = 5%/0_001_ 5(s +:v1)(s +2) N(PZ)Q Ijt;(g;zds for ¢>2.
From (2.2), we can express
Vofa) = o / :’ ﬁ%ﬁ%(s)ds. (3.14)

We now get the following theorem by estimating (3.14).

Theorem 3.9. We have

M pentl M et
VU, (z) = ar + frlogr + oy +'§]—————————-Sn(8n ) +,IZ:0?(§£ )

$3n+1 17§"+1
+Y =ty
tﬂzzzo Sn(sn +1) t"z>0 5.8, +1)
with some constants o, B and oy, where s, = 1 +it, and §, = 1 — it, are the zeros of Z(s).
9
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Proof. Suppose T' > 1000, and let A := N + % where N is a positive integer. Let
R(A,T):={z€C| —A<Re(z) <3,-T <Im(z) < T}
By applying the Cauchy’s theorem on R(A,T'), we have
1 3+iT 1:"+2 VA
2mi /3_iT s(s+1)(s+2) Z

1 —A+iT 3+iT 3—iT st YA d
T omi (/—-A—iT * /_A+iT B ./—A—-iT> s(s+1)(s+2) 7(5) y

z R ( z.s+2 ZI
+ CSs=z | 77—
e R(AT) s(s+1)(s+2) Z

(s)ds

(s)> . (3.15)

We now estimate each integral in the right hand side of (3.15), which will be denoted by
Ily Ig and 13.
We first consider J;. From (3.13), we have for A > 2

—A+iT :E3+2 Z! d —A+iT $a+2 VA o .
/—A+‘ s(s+1)(s+2) Z (s)ds /—A+i s(s+1)(s+2) ( Z( s)+O(js| )) ds
Since -—27'(2 — 5) = O(1), the right hand side of this equation is O(z?~#). By taking it into

account that

1'.2—-.4

A3

1

/ ;‘W ;E—;;;(—s:z—)%(s)ds <1x | x 0(4Y)] = 0@,

we obtain
I = O(z*>™4). (3.16)
For the next integral I3, we divide it into the following three parts,
34iT o +2 VA —1H4T 14T 34iT
./—A+1'T mi(s)ds - /—A-H'T + [—1+iT * ‘/1+iT '
We put them to be Ji, Jo and J;, respectively.
By the functional equation (3.13), we have

I < 1T 1HT \ o+2 oyl iy
1S [A+iT +<[-l+iT T3 + (‘Si )}! S[.

Z(2-s)|lds| = — =7

ld8|> +0 (m—zf_o;?l)) " (3.17)

ZI
7(2 —s)

Since | Z(2 ~ 8)| < |Z(3)] and [ r

.'L‘z(l _ :IJ"A) 3T xcr+2
J1+J2_O( Tlogz ) +0 ./1—iT 738

where the first estimate in the right hand side is from J; and the second and third terms are
from Js.

%(s)l |ds|, we have

2

10
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For J3, it holds obviously that

34T $a+2
Js < / 3
I, Y K

VA
Z0)

\ds|. (3.18)

The equation (3.14) for ¢ = 3 shows

1 34T za+2 5
V@)= 5 e e IGTD Z (S)d”o(Tz)

Therefore the equation (3.15) now becomes
z'

3 oA 3 1 3+iT 42
\Ilz(x)—f—O(ﬁ)_O(x )+O<Tlog:c +O TE/H;'T ’ Z

zs+2 !
+ z Res_,:z (m‘)— ?Z(S)) (319)

z€R(A,T)

—(s)

by gathering together (3.16), (3.17) and (3.18).
We will estimate [ 25 2t |Z (0 + zT)]da By using Lemma 3.4, we have

a+2 2(2—0) a+21
/ T T do + /

—do
€

o‘+zT)

do<</

3 zd z3te 4
.'L'+E ﬁ‘m xr (.’L‘-—l) T

<<T10ga:+log:1:—2logT T3logzx <<T(logx—2logT)'
Calculating the residues leads to

Wy (x)+0 (—;—Z) O(=**)+0 (Tlong) +0 (T(logmﬂf?lOgT))

M $n+2 M .’E§"+2

x
+
nz() $p(8p +1)(8n +2) E ¢ 5n(8n +1)(50 +2)
‘,L.s,.+2 xs,.+2
+ + P =
t,.zzzo $n(8n +1)(sn +2) t§0 5.(8, + 1)(3, + 2)
+ apz? + Bozlogz + oy + . (3.20)

5

Here we have used the following calculations for the residues:
For s = s, and s = §,, it is easily seen that
s+2 Zl Sn+2
Res;—s., __r ___Z ( ) pn)o
s(s+1)(s+2)Z n(s,, +1)(s, +2)

$8+2 ZI B ”(n)$§"+2
R, (G765 79) = 5 LT 20

where p(n) is the multiplicity of sy,.

—~
A%
—

~—

11
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Since we have by Theorem 3.1

! |(T\H? 1
%(s)z%—a—&—%’ﬂ—%—i%—(—vol(F\Hs)—Qc’—%)s—l—“-

with

log N(Pp) *2=! ( 2m7r) -t
1 —cos s
{ZR:} 2m(R) Z Vr

m=0

we can express for s =0

s(s+1) s+2)Z

where ag := £ "°1(F2H —a+2 — 2) and Fp =
For the case of s = —1 and s = —2, we have

s+2 Z/
Res,=—» (——z——(s)) = o,

s+2
Res,—o ( ) apz? + Box?log z,
1
2°

s(s+1)(s+2)Z
with some constants a; and as.
As both A and T go to oo in (3.20), we obtain

M $3"+2 M x§"+2

v = 1
o(z) = Ozox + ,3027 ogr + a1x + oy + Z sﬂ(s,, (s ¥ 2) Z_:O 5. + 1) 1 2)
IL‘s"+2 .'I)E"+2
+ + — - . (3.21
;;0 $n(8n +1)(sn + 2) tgo 5,(8, + 1)(5, + 2) (3.21)
Recall ¥y(z) = [ ¥, (t)dt, and we get the theorem. O

Our next goal is to show an Q-result for

M zn M $§"
P(z) .= ¥r(z) — (a +Blogz+ B+, + 3 ) . (3.22)
n=0Q “n n=0 “n
Definition 3.10. We define
Pi(z) = /0 " P(t)dt, (3.23)
Py(z) = /0 " Pi(t)dt, (3.24)
and further
P(z) := P(z) — N(0)z, (3.25)

Pi(z) == Pi(z) — %N(O)xz,
12
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%@yzgmy%Nmn%

Then we have

Py(z) = by + /2 " pt)dt, (3.26)
and

Py(z) = by + /2 " Py ()dt. 32
with constants by and b,.

The function P has the following property:

Lemma 3.11. There exists by € C such that

v Ple¥ e(s"fl)v e(§"~1)v
b3+/ (“)du:Zz—ﬁ——-———+2:~__~ _ )
1 € th>0 Sn(S" - 1) ta>0 sn(sn - 1)

Proof. Put
Fv):=/ +/ Bgi—ldu for v > 1,
1
where §; € C is unspecified temporarily. By changing of variables with = e*, we have
e’ P
Fo)=pi+ [

(=)
22 dz.
By integration by parts and (3.26), F(v) is written with a constant by as

Pi(e’) e’ Py (x)
F(’U)=,31+b4+-—é§}—+2/e ——“r?dw

Integrating by parts again, and from (3.27) it follows that

F(v) = f1 +bs + Pl(; ) + 2,P2gi ) + 6/8 p—z—gz)dm (3.28)
e e e T
with some constant bs.
Since applying Theorem 3.9 leads to
ontl péntl

Pi(z) =Y

T AN + -~ 7~ . v
1, >0 8n(8n +1) tnz>(] 8u(8,+1)

Pl(ev) B e(sn-—l)v N e(Zx,.,-—l)u
0 su(8n+1)  3,(6.+1)/)°

we have

e2v
From (3.21) and (3.27), we obtain
/P2(eu) _ ( e(.s,,—-l)u e(é,,—l)u )
t,>0

+ —= =
edv Sn(Sn +1)(8n +2)  3(8n+1)(5.+2)
13
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and

ot Pg(l') B e(s,.—l)v e(in—l)u
/e o =2 (Sn(sn T+ 90— 5alon + (e +2)(5n — 1)) '

tn>0
Inserting these calculations into (3.28) gives
F b elsn=1)v eln—1)v
v) =Py +05+ 4
W) =h+bs tnzm Sa(sn+1)  8n(3,+1)
e(sn"l)" e(En—l)v
+2 +— _
z.,2>:0 (Sn(sn +1)(sn+2)  3.(3.+1)(8, + 2)>

glen—1)v e(in—1)v
> (Sn(sn +1)(sn +2) (s, — 1) + 52(8n + 1)(5n + 2)(Ga — 1))

tn>0
(8n—1)v (3n—1)v
e e
=B +b5+ NRa :
Br+bs t,.z>:0 (sn(sn —1) 3.8, — 1))

By taking ) = —bs =: b3, we have the lemma. O

In what follows we put
F(v) :=bs + / P g, _ (3.29)
1 e
Similarly, we find the following property:

Lemma 3.12. There exists by € C such that
v elsn=1)v (i1}
be +/1 F(u)du = g;o PR + ::,S;o PGSR
In what follows we put
G(v) == bs + /1 " Flu)du. (3.30)
Further for G(v) we have
Lemma 3.13. There exists by € C such that

v e(s"—l)v e(En—l)v
b3+/ Gu)du= )
1

__1)_3_{._2

£, >0 n(8n — .50 8n(8n — 1)3.
In what follows we put
H(v) == bg + / G(u)du. (3.31)
1

Lemma 3.12 and 3.13 are proved similarly to Lemma 3.11. We note H(v) is uniformly
convergent for all v € R. Therefore it is possible to extend the definition of H(v) to all R
by using the series representation.

We here introduce the following lemma.
14
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Lemma 3.14. Let k(z) := (2222)2 Then
a) k(z) is a C®-function on R,
b) k(z),k'(z),k"(z), k" (z) are all O(z~?) when |z| — oo,
c) J°2, k(z)e™dz = max[0,1 — &1].

Proof. Every statement except for k" (z) in b) is proved by Hejhal [5, p. 264, Lemma 16.9].
The relevant property of k() is also deduced by the same method. O

We will express
r+A
[ P - o
with large 7, A and N:

Lemma 3.15. Let A be a positive constant. We have

[P kv~ )y
:_3 E sin(t,,r)(1 tn >+O( )+O( )+O(1)

N 0<ta<onN t, 2nN

Proof. For convenience, we assume A and N are integers. From (3.29) and the property of
k(z), it follows that

/TM 7D(ev)k(N('v —r))dv = <N2 2) N/ Flo) (N = r)dv.

1 (3.32)
From (3.30), the integral in the right hand side of (3.32) can be written as
1 r+A ,
%) ( » 2) + N? / C)K"(N(v = 7))dv.
Therefore using (3.31) yields
A 'P(e ) 1 3 [TT4 1
[ k(W - v = ( er) N [T HER (N = r)dv. -

The function H(v) has been defined for all v € R. Since H(v) is uniformly bounded, we can

estimate as follows: ;
3 " . —
N 7 HER W@ =)l =0 (55),

and
1

1
v [ _H@K"(N@ = )ldo = 0 (73) .
Hence (3.33) becomes

[P k=i = 0 (%) o () -a [ ‘:H(v)k’"(N(v—r))dv-(3.34)

15
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Since the series representation for H(v) converges uniformly on R, we can substitute
e(s,.—l)u e(é,.—l)v

Gt 2 G

tn >0

H(v)= 3"

tn >0

into (3.34) and change the order of integration and summation. After integrating term-by-
term, we obtain

/1T+A Bgﬁk(N(v —r))dv
=of As) ( ) - = 3 ( es) K(N(v —r))dv. (3.35)

By considering s, = 1+ it,, §, = 1 — it, and changing of variables with X := N(v —r), we
have

/IHA P(eu)k(N(v —r))dv

_o( )+o( ) - %;/_ZRe(%)k(X)dX.

Let k(u) := [ k(z)e™*dz. Tt holds

/1+AP(")k(N(v ))dv=0(23)+0() %tgoRe(%:)k(%)

From Lemma 3.14 (c), the part of the last sum corresponding to ¢, > 0 is

> cos(t,r) + tn sin(é,.r) (1 _tn ) .

1+t,2 2N

0<tn <27 N

Since Proposition 3.3 gives
1

S mE=O®)
0<t.<R 150
and we have
tn 1 1
T+t tn  to(tn2+1)
it becomes
r+A v
/ Ei%_)k(zv(v —r))dv
1
2 sin(t,7) ( tn )
=_—= 1- +O( )+O( )+O(1)
N 0<t,§2wN t, 2N
This completes the proof of the lemma. ]

We next consider t, in the range of (0, 27 N).
16
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Lemma 3.16. For N large, there exist some constants ¢; and c; which satisfy

e < 1 (1 + IOOWN) < eV’
0<ta<2rN n
Proof. From an obvious estimate
100r N
H (1007rN) < H (1 + 007 ) < H (2007rN) "
0<t, <27 N tn 0<tn<2xN tn 0<ta<27N tn

we find ¢3 and ¢4, which satisfy

. 2rN 100n N . 2n N
o T (50)s I (v)<e” T (5

0<t, <2 N 0<t, <27 N n 0<t, <27 N

)  (3.36)

For the logarithm of the product [] (%), integration by parts gives

2rN 2nN 2r N
T log (—”——) =0(log )+ [ log (—”—) dN(z) = O(N®).
0<tn<2nN tn ! . (3.37)
From (3.36) and (3.37), the lemma follows. O
Lemma 3.17. [5, p. 266 Lemma 16.10] Let ay, . . . , a,, be real numbers. Suppose that T, 6y, . ..,0n
are positive numbers. There will then exist integers x1,...,z, and a number r such that:
lray —zx] <0 for 1<k<n
- 1
TogrgTO]'[(1+—). (3.38)
k=1 Ok
Applying Lemma 3.17 to Lemma 3.16 leads us to the property of ¢,.
Lemma 3.18. There exists ry such that
rotn =2nl +¢e, for 0<t, <27N, (3.39)
where I is an integer and |e,| < 5’:)"?’ and
eV < gy < 2051, (3.40)

and with z; an integer

Proof. By applying Lemma 3.17 with k = n, ap, = £, §, = 2x,

27
we obtain (3.39).
Set Ty = eV in (3.38), and Lemma 3.16 yields (3.40). O

From Lemmas 3.15 and 3.18, we obtain the Q-result for P(xz), which gives the following
result.

Theorem 3.19. We have .
P(z) = Q4 (z(log log :c)i) .
17
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Proof. We define
1
A=
From (3.39) in Lemma 3.18, it holds
t
t,=2nl + e, — —,
! Tl + € N
where —3% < en — iy < (50’117 - Z}IW) tn
For N large, there exists cs > 0 which satisfies —sin(ryt,) > cg%. Therefore we find
c7 > 0 such that

2y b)Yy s

N o<tazonN  In 2N N octiZonn

Referring back to Lemma 3.15, we obtain

r1+A v
/1 1 P—S—)k(N(v —71))dv > ¢ (3.41)
with some cg > 0, where A and N are kept sufficiently large. The number A is independent
of N. Let
M:=sup{£(f—) 1§v§A+r1}.
e’l}

From (3.41), we immediately deduce that
oo r1+A
M/ k(N (v —r))dv > M/l E(N(v—7))dv > cs.
It follows from [ k(N (v — r1))dv = O(%) that
M > e/ N (3.42)

with some ¢g’ > 0.
Since (3.40) in Lemma 3.18 leads us to that

cs N3 _ 1 < < 2¢cs N3
¢ 47N — e ’
we find ¢g and ¢y such that
cgN < (log rl)% < ¢V (3.43)

By (3.42) and (3.43), there exists cg” > 0 such that
sup P—(E—z > cg' N > cs”"(log rl)%.
1<v<r+A4 €Y

Since it shows that
— P(eY)
lim ————
v=0ev(log v)3
18
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by putting z = €, we obtain
= P@
=9 z(loglog z)3
It can be expressed that P(z) = Q. (z(log log x)ﬁ).
The _-result is proved similarly by using ry = ro + ;5. Then we have

Pz) = (x(log log z)ilf) .

From the definition of P(z)} in (3.25), this concludes the proof of this theorem.

We now show the relation between np(z) and ¥r(z).

Theorem 3.20. [2, p. 224 Lemma 7.1] For z — oo,
log N (Py) log N(Py)

—_— = O(log z).
o NB) i, mPalP) — (PP
From Definition 2.5 and Theorem 3.20, we have
> log N(B) — ¥r(z) = O(zlogz).
N(Po)<z
Let
M
Py(z) == Z log N(Py) —
N(Po)<z n=0 °n n=0 Sn

From (3.22), we express
P(z) = Py(z) + O(zlogz).
Whereas it holds

= dPy(t) 2 (M ogenmt g
[z N Z 1_/; (Z logt Z:logt

logt  yr<s n=0
Z (Z T ts,.—l Z T ts,.—l
- B B e B
N(Po) <z = logt logt

{l

mr{z) — (Zoli(a:"") + Zoli(z‘;")> + O(1).
Putting

Q) = m(@) - (3 i) + 3 1),

_ [*dP(t) = logt+ 1
Q(w)_/z logt +O</2 logt dt)'

19

from (3.44) we have

(3.44)
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By using the definition (3.23), it can be

P [ AW | / =_B(t)
= - —————dt + O(x). 3.45
Q=) logz [t(log t)?2], ) t2(log t)? +0() (3.45)
On the other hand, by (3.22), (3.23) and (3.24),we have
’ pont? i +2 16
= + — = . 3.
2(z) tgo 8n(sn +1)(5, + 2) tgo 5a(3, + 1)(5, +2) (3.46)
Since f;* %dNr(z) = log R by Proposition 3.3, we have
1
0<tn<R Sn|
Applying it to (3.46) gives
Py(z) = O(z®log ). (3.47)
Since (3.47) leads to Py(z) = O(z? log ), the equation (3.45) is expressed with
_ P(z) z
Q(z) = ogz o (k)gw) , (3.48)

which shows the relation between 7nr(z) and ¥r(x).
Inserting the result in Theorem 3.19 into (3.48), we reached our main theorem for cocom-
pact subgroup I'.

Theorem 3.21. When I' C PSL(2,C) is a cocompct subgroup, we have

wl z(loglog z)3
mo(z) = li(e®) + Y li(z*) + Qx (—%) z — o0.

n=1

4. Q-RESULT FOR COFINITE GROUPS WITH SOME ASSUMPTION

In this and next sections, we obtain the Q2-result of mp(z), where I is a cofinite subgroup
of G. We have to consider the contribution from the elliptic classes, the parabolic classes
and the continuous spectra. In this section, we consider the generalization of Hejhal’s result
(Theorem 1.1), which is Theorem 1.2 and its extension Theorem 1.4.

At first we treat the scattering determinant ¢(s), which is regarded as the contribution
from the continuous spectra. We start off with the Eisenstein series.

By [2, p. 111 Theorem 4.1], when we choose A € G such that AC = oo, for a cusp
¢ € PLC = C U {o0}, the Eisenstein series of I" at ( is defined for v € H? as

Ea(v,8) = > y(AMv)'**,
MED/\T
20



KSTS/RR-02/005
July 17, 2002

where y(*) is the (0,0,1)-entry in H®. T is the stabilizer-group of ¢ with its maximal
unipotent subgoup I",. It converges for Re(s) > 0o. Let n = B~'oo € P!C be another cusp
of ', then E4(B~'v, s) has the Fourier expansion;

Ea(B7'v,8) = 8y e[l¢ : T'clldol ™" Do = . DG ( > ICI_2") v

La)eR |
27s N e2mitn,%) i
+ orgy, 2 X e yK,_1(2r|uly, ™), (4.1)
ver \(2er

where the following notation is used. The Kronecker symbol is defined as

P 1, (if n=¢ mod ),
me 0, (if n#£ ¢ modT).

If  and ¢ are T'-equivalent, let Ly € I' be such that Lyn = ¢ and let dy be defined by

g (-
ALyB —(O d())'

We denote the multiplication of E4 by [I'; : I";]. For A C C being the lattice corresponding
to the maximal unipotent subgroup I, C I'w, put the Euclidean area of the fundamental
paralleogram of A for ( =ocoand A=1tobeD:

1 1
o, 02 € R, Jou| < 3, o] < 2} (4.2)

D := area {alwl + orpwe

where 0 # w; € A is such that |w;| is minimal and where wy € A\Zw; is such that |ws| is
minimal. The bracket (-, -) is the usual scalar product on R? = C. By R we denote a system
of representatives (% ) of the double cosets in AI"(A~*\AI'B~!/BI", such that ¢ # 0. The
lattice dual to A is written by A* and K, is the usual Bessel function.

When we write a Fourier expansion of E4(B~1v,s) as

EA(B——I’U) 3) = Z all(yv 3)62‘"1’(#’1) ('U =z+ ZUJ),
PEA*

then from the equation (4.1), we have

ao(y, ) = 8y e[Te, '] |dol >y 'D(s ( > !C|_23) . (4.3)

(ca)

For the scattering matrix, we have the following properties which is in [2, p. 232]. We
choose hr representives, ci, ..., Cpg, for the I'-classes of cusps of I' such that

-1 -1 1
Gt=c1700,...,(hp =Ch. 00 EPC.
21
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We put for v =1,...,hr and v € H?,
E.(v,8):= >  ylec,Mv)

Mer’ \I'

and
1

[T, : T'¢,]
Then the E, (v, s) have Fourier expansion in the cusps of the form

E,,(C,,AI’U, 3) = ys + ¢w(5)y2_3 + -

E,(v,8) := E. (v,s).

and in case v # i
E,(c, v, 8) = duu(8)y* "+ -+ .
We define the scattering matrix ®(s) as

O(s) == (¢uu(s)) - (4.4)
Compared with (4.1), we have the following proposition for ¢(s) = det (®(s)):

Proposition 4.1. Let I be fited. Assume that I' has hr > 0 classes of cusps represented by
Ciy---»Chp- Then the scattering determinant (s) can be written in the following form for

sufficiently large Re(s): X
o0 = (5=y) 2

where the following notation is used.
An absolutely convergent Dirichlet series is defined as for sufficiently large Re(s):
L(S)= p_’”;s’ pmec>p1#070<ql<q2<"'7
m=1 1m

and D is defined by the above notation (4.2).
Let p, = B, + iv, be poles of the scattering determinant. We estimate the sum of G,:

Proposition 4.2. It holds
> Bu=0(XlogX).

0<y <X

Proof. Let |cr] be the smallest absolute values of the non zero left-hand lower entries of the
elements of T'. Let 0 < 0y < 02...0x = 1 be the poles of ¢(s) in the segment (0, 1]. From
(2, p. 289], when we define

§ —0;

N
*(s) = |e 2(s—1) s
9*(s) = |er] w()i:HlHUi

(4.5)
for s € C, then we obtain ~
© I St pn

prEP(p*) S — Pn

22

p*(s) = ¢’
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where g is a polynomial of degree at most 4 and P(¢*) is the set of poles of ¢*. The growth
properties (|¢*| is bounded for Re(s) > 0 and ¢*(s) — 0 as Re(s) — oo) and symmetry of
©* imply that e is constant. Hence we have

N
—9(s— R $—0; S+ pn
ple) = ler| MO T o I S (4.6)
=181 0i pcp(pr)S ™ Pn

For positive constants c¢;, we express

2
—2(s— S+ pn
@(s) ~ erler| 2D T |- (4.7)
n>0 18 7 Pn
From Proposition 4.1, we obtain
lo(s)] ~ czs7"T |ep| 7> (4.8)

for positive constant c;. Gathering together (4.7) and (4.8), there exists c3 > 0 such that

|CF'—2(svl) H

Yn >0

S+ pn

2
~ CaS-hrlcl-*lhzs.
S = Pn

It follows that
48,5 —h
14—~ T,
L, ( RERYALES />
Therefore, we see

48, X
> (_——(X _ﬁn)2+%2) ~ cilog X,

0<yn<X
and it leads to Proposition 4.2 O

From Propositions 4.1 and 4.2, we have the following theorem, which shows the assumption
in Theorem 1.2 includes that in Theorem 1.4:

Theorem 4.3. Suppose that

Bn—1
T 1
Z 2 - o ( 3) ’
S0 M 1 + (log z)
as £ — 0o, where p, = B, + in are poles of the scattering determinant. Then it holds

No(T) ~ YD) s

672
as T — oo.
Proof. Let
-
wit)=1- —<p_*(1 +it) (4.9)

23
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with ¢* in (4.5). Since
A ~2B,
Tt = ,,n;(w., B2+ (t— )7
by [2, p. 289] it follows that
—20n
s B (E= 70
Let NI"(O'(),T) be the number of p,, in the region 8, < gq, |1 < T.
Using [ T ﬁ—(z%;dt hos ﬂ%dt, we have

w(t) = O(logt) +

t
T
/ w(t)dt < 2 Np(1,2T) + i Tlog T
-7

with some constant c;.
Whereas, there exists a constant ¢, satisfying the following inequality:

/_ (t)dt> ) /,Bn +(t'3_ A

yal<LT

Since [T /?f(z-tlg_"v—)—zdt = (—2) arctan —T;lﬂ leads to

/ w(t)dt > Z ( +c3 (g,)) +coTlog T,
T Iml<3T

It follows from Proposition 4.2 that
T T
/ w(t)dt > wNp (1, —2-) + T log T + cs,
-T

where ¢3, ¢4 and c5 are some constants.
Gathering together (4.11) and (4.12), we have

T T
w Ny (1, 5) +eqTlogT < / w(t)dt < 2xNp(1,2T) + ;T log T

Since the assumption shows that > —15 converges, we see that

1507
Nr(1,T) = o(T?).
It shows r
[ L w(t)dt = o(T?).
The definitions of ¢* and w, which are (4.5) and (4.9) respectively, lead to
/ﬁ Y1 it)dt = o(T).
VT @

By applying this to Proposition 1.3, we have the theorem.
24
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This theorem shows that Theorem 1.2 implies Theorem 1.4. In the case of cofinite subgroup
T, it is enough to show the case of Theorem 1.4. Hence We restrict ourself to it from now.
The Selberg trace formula is explicitly written by Elstrodt-Grunewald-Mennicke as follows:

Theorem 4.4. [2, p. 297 (5.4)] We use the notation in Proposition 4.1. Put h to be a
function holomorphic in a strip of width strictly greater than 2 around the real azis satisfying
the growth condition h(1 + 22) = O((1 + |2[2)27¢) for |2| — oo uniformly in the strip. Let g
be the cosine transform

1 0 o it 1 /oO 2
= gt = — [ h(1+t .
9(z) o /_m h(1 + t%)e**"dt 5 ) (1 + ¢%) cos(zt)dt
Then there is for each cusp ¢; a number l; € N (i =1,..., hr) and constants

¢r, &r, dr, d(’t,]), a(z’,j)>0 (i=1,...,hr, j=1,...,li)

so that the following identity holds with all sums being absolutely convergent:

Z h(An) —VOI(I—\Hs)/ h(1 + 2)t%dt

7 log N(FPp) 4rg(log N(P))log N(F,)
2 m(ysint (25) 0" & m(P)la(P) - alP)
+ erg(0) + Erh(1) — Efqi%)h—(ll

/ h(1+t) (1+Zt)dt—dp/ h(1+t2) (1+it)dt

hr & sinh z

+ZZd(z ])/ 9(z) coshx — 1+a(i,j)d1

i=1 j=1

The first sum in the second line extends over all T'-conjugacy classes of elliptic elements in
' which do not stabilize a cusp. The second sum extends over all hyperbolic or lozodromic
conjugacy classes.

If the stabilizer T, of the cusp (; is torsion free then d(i,5) =0 for 5 =1,...,1L.

When we add the assumption (1.5), we have the following proposition.

Proposition 4.5. Assume (1.5). Then we have for Re(s) > 1,

A 1
7(8)23—2+ > +I ; P +0(s]* +1), (4.15)
s—8n|<1 n

|s— sn|<1

— 8n
where s, =1+ it, and 3, = 1 — it, run over the zeros of Z(s) on Re(s) = 1.

Proof. In Theorem 4.4, we take the test function
1 1
22+1+s(s—2) 2+p6%
25

h(1+#) :=
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and

1
_ ~(s-D)fz| _ L -Blal
g(z) 55 =3¢ 55 "

where 8 > 1 is fixed and 2 < Re(s) < 8+ 1. Then

& 1 1
2, (t,ﬁ +(s—1)2 t.2+ 52)

n=0
= I (5 41)
MR (1 1),
Rt () B2 " 28) Tam120 "z Y

s
- L) 4 ! 1) _ o) ( 1 1
+Cr<2—s*~_—2‘—%)+cr‘ W—_@ - (S—_T)f'bi)
L= 1 1\,
+?4?/;00 <t2+(s__ 1)2 - t2+ﬁ2) Tp”(l+2t)dt
o0 1 1 FI '
_dr/_w (t2 —(s—1)? - t2+ﬂ2) F(l + it)dt

sinh z

+ i id(i,j) /Ooo 9@ T a(i,j)dx. (4.16)

i=1j=1

Since the assumption (1.5) means
T N
—(1 4 it)dt = o(T7),
/. o1 +it)de = o(T?)

it leads to
!

%(1 +it) = o(t?). (4.17)

Inserting (1 + it) = O(logt)[4, 8.362.2] and (4.17) into (4.16), the proposition follows

from (3.6). O
Gangolli-Warner [3, Theorem 4.4] shows the functional equation:

22— s) = 2(s) (”ﬁ(;)s)) o1 — )

! —1— 4rby s—1
[1 (f__qk) exp[ [ 4mavol(T\H*)dt + (s — 1)}, (4.18)
i\l —s—a 0

where & and k; are constants defined through the process described in [3], and g (1 < k <)
are the finitely many poles of ¢ in the interval (0, 1] with order b;. It leads to the following
lemma:

26



KSTS/RR-02/005
July 17, 2002

Lemma 4.6. Assume (1.5). Then the Selberg zeta function satisfies
z' 2
(3)+—(2—S) O(Is[")-

Proof, By the logarithmic derivative of (4.18), we have
FI l'\l <pl
—5) = —(2— i drt-(1 —
() (2 s) = 4fchp(F(2 s)+F(s))+ fe(p(l s)
!
- Z(‘lﬂbk) (
k=1

From the property of the I'-function [4, 8.362.2} it holds that

1 + 1
s—~1-—q 1—s5—g

) — drkvol(T\H?)(s — 1)® + k1. (4.19)

——(2 -8+ = (s) O(log s). (4.20)
The lemma follows from inserting (4.17) and (4.20) into (4.19). a

Taking Proposition 4.5 and Lemma 4.6 into account, we see that the proof of Lemma 3.5
goes through in this case. For the expression of ¥r(x), we have the same arguments as in
Theorem 3.9 except for the residue. We notice from (4.16) that the residues for the poles of
©(s) are added to the right hand side of (3.20):

z°t2 A _ p1(n)zret?
e (i D7) s v 20

7542 p1(n)zPnt?
Ressep, | ——7—= = — n > 0),
~(wroern 7 )) G 20
where p1(n) is the multiplicity of pr,.
Then we have the following theorem:

Theorem 4.7. Suppose (1.5), then for constants «, B, o, we have

sp+1 M Sn+1

xTr z
0 =azx + Bzl + oy + —
@) prlogz +au 20 oo D TSR

g+l x5n+1 .’L‘p"+1 :l:ﬁ"+1

+ + — * — + 0
tZ>0 8n(sn +1) tnzz:o 5.(3,+ 1) 7%0 pnlpn +1) 'ynz>0 Pn(Pn +1)

where s, = 1+ it, are the zeros of Z(s), and p, = Bn + iy, are poles of the scattering
determinant. 5, and p, are the conjugacy elements for s, and p,, respectively.

We now need to show an Q-result for P(z) defined by (3.22).
Appeal to P, P and P; (i=1, 2) as in Definition 3.10. The following facts are obtained by
the same arguments as in Lemmas 3.11, 3.12 and 3.13.
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Lemma 4.8. There exists dy € C such that
dy + / PE)
1 ev
elBn—1)v elpn—1) N e(Pn—1)v
>0 ﬁn(ﬁn - 1) '

e(s"~1)v
= + — +
t,,g>:0 sn(8n — 1) tﬂz;o 5.(3, — 1) V>0 pnlpn — 1)
When we put
F(v) =dy + / Pfj ) du,
1

there exists dy € C such that
e(l-’ﬂ"l)v

da + / F(w)du
1
e(s"—l)u e(.?t,.——l)v e(p,,«l)u
R A o + 3 .
DB P 1L DN ¥ NS 1 LD DA P I D N ey

Further, when we put
G(v) = dy + / F(u)du,
1

there exists d3 € C such that
dy + / G (w)du
1 .
(3n—1)v (8n—1)v (pn—1)v (Pn—1)v
e e € e
= _— 4 — =+ + P :
tn>0 Sn(sn —1)3 t..z>:0 8n(8n —1)3 7,,Z>o pn(on —1)3 7,,2>o Prn(Pn — 1)3
In what follows we put F'(v) and G(v) to be as in Lemma 4.8 and

H(v) = dy + /1 " G(u)du.

The equation (4.17) shows the degree of the number of p,, is less than 3. From 3, —1 < 0,
(4.21)

we find a constant e; such that
elpn—1)v elpn—1)v e

+ —— < .
>0 Palpn —1)3 >0 Pn(Pn — 1)3 1+v
Y 7Y

It leads us to express H(v) under (1.5) as
(sn—1)v (8n—1)v
e e 1
H(v) = —= + ( ) .
() Z Sn(8n —1)3 50 8n(5n — 1)3 1+

ta>0 1

This estimate shows that

(sn—1)v (8n—1)v 1

e e
Gv) = =+ — + O ( ) )
() t"2>0 Sp(8p — 1)2 tn§>:ﬂ 5.(8, — 1)2 142
(sn—1)v (3n—1)v
e e 1
o ( ) .
E ) + 143

F(v) = + —
t,.z>0 Sn(sn—1) 0 8n(3a -1
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Since all O-terms in H(v), G(v), F(v) are O(1) as v — oo, Lemma 3.15 is established and
we include this case in that of cocompact groups.

Through the same arguments as in Lemma 3.16 and 3.18, we now have the following
theorem, which is the same estimate in Theorem 3.19.

Theorem 4.9. When we suppose (1.5), we have
P(z) = Q4 (z(log log z)%) .
Recall Definition 3.10, then the estimate in Theorem 4.7 leads us to
ont2 2nt2
Pz) =3, st Dt | tgo 50 (5n + 1) (3 + 2)

tn20
+ + —= ~ .
7%0 Pa(pn + 1)(pn +2) 7?;0 Pr(Pn +1)(Pn + 2)
Because of the same reason for (4.21), we find a constant e; such that

Z 1 S €9 )

) pn(pn"l' 1)(pn+2) 1+vw

xpn+2 mﬁn+2

(4.22)

It follows that

xs,.+2 x§n+2 ‘,1:3
P. = + — = +0 .
5(z) tnz>_:0 $n(Sn +1)(sn +2) tgo 5,(8n + 1)(8n +2) (1 + logm)

As the analogue of (3.47), we now obtain
Py(z) = O(z®log z),
from which we have
Pi(z) = O(z%log ).
By this estimate for Pi(z), we can use the equation (3.48), so that Theorem 4.9 leads us to
our main theorem:

Theorem 4.10. Assume (1.5). When z — oo, we have

n=1

Remark In the case of Theorem 1.2, from (4.5) and (4.10) we have

¢ . 1 1
~(1+it) < — K —.
'S 'y,.2>0 (t - Yn)? “/;;0 Yn?
The equation (4.14) shows
!
%(1 +it) = O(1). (4.23)
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Because of (4.23), we follow the whole proof more easily under the assumption (1.3). In
particular, we find e; and ey without a difficulty which satisfy (4.21) and (4.22), respectively.
The example which satisfies the assumtion (1.3) is as follows:

Example 4.11. When T is the Bianchi group associated to an imaginary quadratic number

field K = Q(v=D) (D # 1,3), i.e.

I'=Tp=PSL(2,0x) = { (i 3)

a,b,e,d € Og,ad — bc = 1} /{£1},

where Ok 1is the ring of integers of K, the assumption (1.3) is satisfied.
We will deduce it. By Efrat-Sarnak [1],
Theorem 4.12. {1, p. 817 Theorem 1] For I'p, let
€n(s) = (du'?/(2m)"") " T(s)"" Cu(s),
where H is the Hilbert class field of K, dp is the absolute value of the discriminant of H,
Cu(s) is the Dedekind zeta function of H and hr is the class number of K. Then,
_gt—1 s_abm(s—1
= (_1)(hr 2 )/2wK2 2§ {(H(s) )’

where wg = \/i/d;(% with di being the absolute value of the discriminant of K and t is the
number of prime divisors of dk.

w(s)

By Suetsuna [15], (g(s) has no zeros in the region

a
>1—- ——70 > 0). 4.24
’ log(J¢| + 2) (a>0) (424)
From Theorem 4.12 and (4.24), we have
a
n <1 — ———,
R (A R)

Since it shows

1 (10g(i7nl + 2)>3
(1-5,)° a !
we have

1
Z 77!2(1 . ﬁn)3

>0

=0(1). (4.25)

On noting that

Z e(Bn—1)v < Z 6 l
S0 Mt T S0 12 (1 = B)? v’
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from (4.25) we have

(ﬁn_l)u 1
Z 2 7— =0 (_3> :
1a>0  Tn v

By substituting z = e?, the assumption (1.3) is satisfied.

5. GENERAL COFINITE CASES

In this section, we consider the Q-result for the case of that (1.5) doesn’t hold. This case
means that the second term in the left hand side becomes the main term in (1.4) or that the
first and second tems have same order in it. By combining the results of those cases with
Theorem 1.4, we have Theorem 1.5.

We start off with an extension of Proposition 4.5. The following equation holds:

Proposition 5.1. Let s, = 1+ it, be the zeros of Z(s) on Re(s) =1, and p, = B, +iv, the
poles of the scattering determinant. Put §, and p, to be the conjugate element for s, and
Pn, Tespectively. Then we have for Re(s) > 1,

A 1 1 1
—(s) = + > + > =
Z 5§—2 |s—sn|<1 §— 5n Js—sn|<1 8= 8n
1 1
+ > + Y — +O(sP +1).
[s—pn|<1 8= Pn |s—pn|<1 = Pn
Proof. From (4.6), it is expressed that
¢ 1 1
()= D — Y. —=+O0(sP+1). (5.1)
¥ |s—pnl<l 5= Pn |s—pnl|<1 n
Applying this to (4.16), the proposition follows. O

Since (4.5), (4.9) and (4.13) shows
T
- /T %(1 +it)dt = CNp(1,T) + O(T?)

with some positive constant C, we assume there exists some constant C’ such that

c - , _ vol(T\H?)
— ~ < . .
=N, )~ C'T (0 <0< (5.2)

From Proposition 5.1 and (5.2), Lemma 3.4 now becomes as follows:

Lemma 5.2. Fore > 0, we get

z s
Zaterit) <L 1P (1>2) (5.3)
A . 1
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ZI
—Z—(—e +it) < |t +1, (5.5)
ZI
7| < |t]2meax02=) og |t| (s =0 +1it, 0 > Lt l i |t > 2). (5.6)
Moreover, for any T there exists T in [T, T + 1] such that
Zl
/ — Z (o +1i7)|do < T*logT. (5.7)
0
Proof. By a direct calculation with Proposition 5.1, we have
Z' 1 1 1
Z(l4etit)=——+ —+ e
Z et+it—1 |3_¥,,|<1€+2(t_t") |s—§,.:|<15+z(t+t")
1 1
+ Y 1t Y ———+O0(ltP)
ls—pnl<1 l+e+it—pn ls—pal<1 1+e+it—pn

Considering the order of Np(T') and (5.2), the equation (5.3) is obtained.

We deduce (5.4), (5.5) and (5.6) by imitating the arguments as in (3.8), (3.9) and (3.10),
respectively.

To see (5.7), we now take 7 as follows instead of (3.12):

T={r|T<7<T+1 |T—ta| 2T 3|7 — | 2T7°}.
After taking the same way as in (3.11), it completes the proof. a
Inserting the estimate (5.1) into (4.19) leads us to the following functional equaion:
Lemma 5.3. We have )
251+ Z2-9) = 0llsP).
Now we are ready to consider about Wr. In this case, we need ¥3(z) := [ Wa(t)dt. The
following result holds:

Theorem 5.4. For constants a; (i =0,1,2,3) and By, we have
U3(z) = apz® + Bz’ logz + onz® + onz + 03

M o t3 M o t3
+6
{ZO Sn(Sn + 1)(8n +2)(8n + 3) "2: +1)(8n + 2) (S + 3)
$5n+3 o t3
+ + — p p
2;'0 5n(8n + 1)(8n + 2)(sn + 3) tgo $u(Sn + 1) (S + 2)($n +3)
Pnt3 hnt3
+ + —— = p
7%0 pn(pn + 1)(pn +2)(pn +3) ,2;0 Pn(Pn + 1)(pn +2)(pn +3) }
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where s, = 1+1it,, are the zeros of the discrete spectrum for Z(s), and p, = B, + iV, are that
of continuous spectrum. Put s, and p, be the conjugacy elements for s,, and p,, respectively.

Proof. We have
6\1»’3(1) = Z ((L' - N(P))gAF(P),

N(P)<z

which comes from Theorem 3.6 by taking n = P, A, = N(n), ¥(z) = (z — N(n))® and
¢, = Ar(n). By using Theorem 3.8, it holds

v 1 c+oot xs+3 A
3(x) = 2ni /c-ooi s(s+1)(s+2)(s+3) Z

(s)ds.

Taking ¢ = 3 leads us to
1 34T zo+3
Uy(z) = — /
() =55 b SGIDG+DGTI)

—?(s)ds +0 (;—Z) . (5.8)

We will imitate the argument as in Theorem 3.9. Suppose T' > 1000, let A := N+ % where
N is a positive integer. By Cauchy’s residue theorem, we have

1 [3+iT 25+3 7'
omi /3_” sGs+ 1)(s+2)(s + 3) 7 (8)ds (5.9)
5+3

1 —AHT 3-+iT 3—iT T VA d
T 2mi (/A—i:r + /~A+iT - /—A—iT) s(s+1)(s+2)(s+3) 7(8) s

$s+3 Zl
+ > Res,—; (5(3 +1)(s+2)(s+ 3)7(3)) ’

z€R(A,T)

where R(A,T) := {z € C| — A <Re(z) < 3,-T <Im(z) < T}
We denote each integral in the right hand side of (5.9) by I’, I’ and I5'. Then by using
Lemma 5.3 we obtain

.[1’ = O(SC3—A),
ZI

, :C3 1-— .T_A 34T _,L,a+3
I :o(_—(Tlng )> 1o (/HT Z 12 [ds[)
3z — 1) 3T got3 | 77
+o(———-—Tlogx )+o /MT 50 [ds|).

From Lemma 5.2, we have

/3 xﬂ+3
1 T¢

.’L'G

d o
7 < Tlogz — 3logT’
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with which I3’ and the terms of integral of I,’ are expressed. The calculations of residues

lead
xs+3 VA >
Res,—, —(s
ZGR(ZA,T) (s(s+1)(s+2)(s+3) Z( )
M ront3 M s t3
Z% (sn(sn+1)(8n +2)(5, + 3) Z ($n(Sn + 1)(S +2)(8n + 3)
a3 pont3
+ ,go Galon T D 2)n 7 3) T };0 GGt )G+ 2)(5. 1 3)
gPn 3 P t3

+ + —— po po
7§0 Pr(0n + 1)(pn + 2)(pn + 3) 7"22:0 Pn(fn + 1) (Pn +2)(6n + 3)
+ apz® + Bozlog z + ayx? + oz + .

with some constants o; (i =0, 1,2,3) and By. Gathering together (5.8) and above estimates,
the equation (5.9) becomes

z° 3A z! z8
Vs(z) +0 (ﬁ) =0@E")+0 <Tlogm) +0 (Tlogav —~ 310g’f)

M 8n+3 M ot

+> 7 +2
w20 (sn(sn +1)(sn +2)(sn +3) 15 ($n(8n +1)(8 +2)(5n +3)
pont3 ont3
+ + = = =
2;0 Sn(8n + 1)(sn + 2)(8, + 3) t,.%:o $n(8n +1)(Sn +2)(5n + 3)
Pnt3 P t3
+ + ———= = =
"/nz?:_o Pn(pn + 1) (pn + 2)(pn + 3) %22:0 (P + 1)(6n + 2)(6n + 3)
+ apz® + Bozdlogz + ay2® + apr + 3. (5.10)
As both A and T go to oo in (5.10), we obtain the theorem. O

Recall the definitions of ¥;(z) (¢ = 1,2, 3), and we obtain

xs,.+1 M Sn+1

T
U, (z) = "z + Bo"zlog z + " +Z———(—+—1)+Zm
n=0 Sn\5n n=0 $nlSn

pintl pentl rPntl phntl

+ — + + — ,
tz>:0 S" 5n + 1) tzzo sﬂ(sﬂ + 1) 7%0 pn(pn + 1) Yn >0 pn(pn + 1)

with some constants ag”, 04" and 3,".
Before estimating for

P(z) := ¥r(z) — (ao” + 3" logz + Bo”
34
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we introduce the property for p, = 83, + i,, which are poles of the scattering determinant.

Lemma 5.5. [14, Lemma 2] Let f(s) be holomorphic for ¢ > a, except for at most a finite
number of poles in this region, and let f(s) have continuous boundary values on o = a.
Further, assume that we have

a(f(s)—1)—0
as o — 0o and
F(5)f(3) = O(ltl),
Jor |t| > to and 0 > «, with some positive constant c, then, for T < 2,

S (T - )8 - o) 2/ T — |t)log |f(a+it)|dt+T 3 (05 — ) + O(log T).

hi<T oj>a
B>a

From this lemma, we obtain

Proposition 5.6. We have

kT T 3
ST (1- ) 2F log — — m(hr log |D| — log|a| — iwhp + hp)T + O(log T),
O%Z"ST (5.11)

where hy and D are defined in Section 4 and a is some constant.

Proof. In the definition for scattering matrix (4.4), we note
Guu(s) = b (s)-
It leads that we can conclude that L(s) has real coefficients. We shall write
L(s) = ab' " L*(s), (5.12)

with a # 0 and real, b real and positive, and

[e+}

L) =1+ 5,
n=1 1n

where the ¢, are greater than 1. Since L*(s) satisfies the assumption of Lemma 5.5 with
some constant ¢ > 0, taking o = 1 gives

S (T b= 1) = o [ (T~ ) log| (1 + iD)de + T 3 (05~ 1) + 008 T).
I}:I;T - 7;>1 (5.13)

By [2, p- 232 Theorem 1.2] we have
p(s)p(2 —s) =1,
and in particular
lo(1 +1t)| = 1. (5.14)
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From Proposition 4.1, (5.12) and (5.14) lead to
, 1 (Dt
L'l+4+id))=—={|— .
warii- o (29)

Then we get

T
/T(T — Jt]) log |L*(1 + it)|dt

T T |t|

= 2(hrlog D — log|al) / (T — t)dt + 2hr / (T —t)log —d¢

0 0 m

3
= hpT? log% + (hr log D — log |a| — —2—7rh,p) T2 (5.15)

Substituting (5.15) into (5.13) gives

Y (T=1mD(Ba—-1)

|1n|<T
Bn>1

1

o {hrT2 10g§ + (hr log D — logla| — gvrhr) T2} +T > (0; — 1)+ O(logT).

o;>1
Since the zeros are symmetric around the real axis, it follows

S b= =5 T (Tl -1

0<Yn<T [val<T
Pn<l Bn>1

- ﬁhﬂ"z log;[:—l- + Zl; (hp log D — log |a| — gmp) 72
+ %Tgl(o,- ~ 1)+ O0(log T). (5.16)
We denote the left hand side of (5.16) by A(T') and the left hand side of (5.11) by B(T).
Then we have
AT +1)— A(T) < B(T) < A(T) — A(T - 1).
From (5.16) we have the proposition. ]
This proposition leads us to the desired estimate for P(z).

Theorem 5.7. We assume (5.2). For e > 0, we have

P(z) = Q(z').
Proof. Suppose that for some & > 0, there exists K > 0 such that

P(z) < Kz'™=. (5.17)

36



KSTS/RR-02/005
July 17, 2002

From (2.2), we have for Re(s) > 2

—(s) = /Ooo z7°d¥r(z).

Since the definition of P(z) leads to
%’(s) < /1 ¥ ~*dP(z),

the integration by parts and applying the assumption (5.17) show that
—ZZ—’(s) < /100 Is|lz™" dz

for ¢ = Re(s). This gives an analytic continuation of Zé(s) in ¢ > 1 — € so that zeros of
Z(s) are only in Re(s) < 1 —e. It means the scattering determinant ¢(s) is holomorphic in
Re(s) > 1 — € except for poles on the real line. Therefore we have

> (1—pBn) = eNe(1,T).
19 <T
From (5.2) this contradicts Proposition 5.6. |
The point of the consideration in the proof of Theorem 5.7 is similar to that in [11]. The

author is indebted to Professor Sarnak who suggested this point.
We define P, and P, as in Definition 3.10. Theorem 5.4 shows

Z‘s"‘+2 xs‘.—.+2
Py(z) = —_——< + — =
x(z) 2;0 8n(sn+1)(sn +2) t,,z>:0 $n(Sn + 1) (80 +2)

Z Pnt? Z P2
+ Y —.
50 n(pn +1)(pn +2) o balfn +1)(6n +2)

We shall write

n(T) := Np(T) + Np(1,T).
Gathering together (4.5), (4.9), (4.10) and (4.13), we have I Zdn(z) = log R by Proposition
1.3. It leads us to (3.47). Further, it gives us (3.48). Now we have the following theorem.

Theorem 5.8. Assume (5.2). When z — oo, fore >0

(@) = i) + 3° (@) + 0 (”1_5) .

= log =

This theorem implies

M
mr(z) = li(z?) + 3 li(z*") + Q=) as T — 00.
n=1

Taking Theorem 4.10 into consideration, we reach our main theorem, Theorem 1.5.
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