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ERROR TERM OF PRIME GEODESIC THEOREM

MAKI NAKASUJI

1. INTRODUCTION

For a (d+ 1)-dimensional hyperbolic manifold with finite volume, let I" be the fundamental
group. Then the prime geodesic theorem is
mr(z) ~ li(z?) (1.1)

where 7p(z) is the number of prime geodesics P whose length I(P) satisfies that N(P) :=
e'P) < z. Since the relation “~” means that the quotient of both sides goes to 1 as  — o0,
the equation (1.1) can be written by

mp(z) = li(z?) + (error). (1.2)

The conjectural exponent of z for lower estimate of the error term in (1.2) is 4. The chief
concern of this paper is to give lower estimates of this error term.
Known cases are when d =1 and d = 2:

Theorem 1.1. [5, p. 477, Theorem 3.8] When I' C PSL(2,R) satisfies that
@3 ( 1 )
= _o—m ], 1.3
7§0 Yn2 1+ (log z)? (1.3)
it holds that
z% (log log )2

mp(z) = li(z) + Q4 ( ogz ) as T — 0o, (1.4)

where B, + iy, are poles of the scattering determinant.
Theorem 1.2. [7, Theorem 1.2] When I' C PSL(2, C) satisfies that

ghn1 1
o _ofl—1 ), 1.5
D (9
it holds that
z(loglog z)3

mp(z) = li(z?) + Qs ( log 2 ) as T — o0, (1.6)

where By, + ivn are poles of the scattering determinant.
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Assumptions (1.3) and (1.5) mean we can omit the contribution of the continuous spectra.
We will consider the meaning of these assumptions by using a generalization of Weyl’s law
by Selberg:

Proposition 1.3. [10, p. 15 (0.2)] Let T' C PSL(2,R) be a cofinite group, A, be the eigen-
values of the Laplacian on L2(I'\H?) and ¢(s) is the determinant of the scattering matriz.

We put
1
Ne(T) = # {/\,,1,\,, <7 +T2}.
Then
1 [Ty r1 vol(T\H?), ,
as T — oo.

The asymptotic formula for d = 2 is as follows:

Proposition 1.4. [1, p. 307 Theorem 5.4] Let T' C PSL(2, C) be a cofinite group, A, be the
eigenvalues of the Laplacian in L*(T\H?3) with and (s) is the determinant of the scattering
matriz. We put

Np(T) := #{a]dn < 1 +T7}
Then

1

Nr(T) o /_i %(1 + it)dt ~ vol(T\H?)

T3 1.8
672 (18)
as T — oo.

Each second terms on the left hand side of (1.7) and (1.8) measure the contribution of the
continuous spectrum which are connected with the variation of the argument of ¢(3 + it)
and (1 + it) respectively, on the interval =T < ¢ < T. The assumption (1.3) implies that

vol(T\H?)_,
Nr(T) ~ ————=T
r(T) 4
and assumption (1.5) implies that
vol(T'\H3)
672

In this paper we deal with the opposite situation, where conribution of the discrete spectra
can be ignored.

We have the following main theorems.

Theorem 1.5. For ' C PSL(2,R), it satisfies that Np(T) = o(T?) in (1.7), we have

Ne(T) ~ T3,

mr(z) = li(z) + Qz?™°) as € — oo,

where € is any positive constant.
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Theorem 1.6. For I' C PSL(2,C), when it satisfies Np(T') = o(T®) in (1.8), we have
mr(z) = li(z?) + Q(z' ™) as z — oo,
where € is any positive constant.

In those main theorems, we can’t use the same method as in the proofs of Theorems 1.1
and 1.2. We overcame the difficulty by reffering to the method of Phillips and Rudnick [9)]
in which they treat the circle problem.

Acknowledgement: The author expresses her gratitude to Professor Peter Sarnak for his
valuable suggestions and helpful comments.

Also she is thankful to Professor Shin-ya Koyama for his encouragement and patient
support in all the process, who introduced her to the subject.

2. PRELIMINARIES

Let H¥t! = {(z,y)|z € R% y > 0 € R} be the hyperbolic d-plane with the Riemannian

metric
s dz® 4+ +dzg’ + dy?
ds® = 5 .
y
The group I' acts on H? discontinuously. The volume measure is given by
dCL"l A d$ddy

The Laplace-Beltrami operator is defined by
82 &2 o2 7]
A= —q? e — 4 — d—1Dy—.
Y (83:12 o Oz q? + 8y2> * )yay
Let 0= X < A < A € -+ < Ay < % < Ayqa... be the eigenvalues of A and let

tn =1/ — (£).

In this paper we restrict ourselves to d =1 and d = 2.
The Selberg zeta functions for those cases are defined as follows, respectively. Here Fp is
a primitive element associated with P:

Definition 2.1. For the case of d = 1, the Selberg zeta function is given by

Zi(s) = ] T1{1 - N(R) ™}, Re(s)>1,

{Po} k=0
where the product on {Py} is taken over all primitive hyperbolic conjugacy classes of .
Definition 2.2. For the case of d = 2, the Selberg zeta function is defined by
_ —21 s
Z(8) == H H(l—a(Pg) *a(Py) “N(Py)™*),
{Po} (k1)
where the product on {Py} is taken over all primitive hyperbolic or lozodromic conjugacy

classes of T, (k,1) runs through all the pairs of positive integers satisfying the following
3




KSTS/RR-02/004
July 17, 2002

congruence relation: k =1 (mod m(P,)) with m(P) the order of the torsion of the centralizer
of P, and a(P) € C is the eigenvalue of P € G such that |a(P)| > 1.

For these Selberg zeta functions we have the following logarithmic derivatives.
Lemma 2.3. [4, p. 67, Proposition 4.2] For Re(s) > 1, we have
Z' log N(Pp)

7= R T-Mp

where {P} runs through the hyperbolic conjugacy classes of I' C PSL(2,R).
Lemma 2.4. [1, p. 208, Lemma 4.2] For Re(s) > 2, we have
ﬁ N(P)log N(F)

72 )= 2 m(P)lalP) — alP) T

where { P} runs through the hyperbolic or lozodromic conjugacy classes of ' C PSL(2,C).

Recall that the von-Mangoldt function A(n) appears in the logarithmic derivative of the
Riemann zeta function:

N(P)™*,

N(P)—s?

CI (oo s
——Z(s) =Y A(n)n". (2.1)
n=1
Comparing Lemma 2.3 or 2.4 and (2.1), we define A4 by the following:
Z ’
% ()= X Aa(PIN(P)™. (2.2)
d
{P}
By using this A4, we define
Ur(z) = Y AuP). (2.3)
{P}
N(P)<z

3. THEOREM 1.5

In this section, we consider the case of d = 1 and give the proof of Theorem 1.5.

Throughout this section, let I' be a cofinite subgroup of PSL(2,R).

We denote poles of ¢(s) by p, = B, + iV, and let Nr(oo,T) be the number of p, in the
region fa < 00, |ya] < T.

Selberg shows [10, p. 18, (0.15)]

1 (T¢ /1 . 1
— LA = = . 3.1
4W/—T(P(2+zt)dt Np<2,T)+O(T) (3.1)
We therefore rewrite (1.7) as
1 1(T\ H2
Ne(T) + Ny (5,T) ~ YO_(_4>__~)T2. (3.2)

4
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Our assumption in Theorem 1.5 says
1 vol(T\H?), ,
Np(=,T) ~ —————=T". 33
r (2’ ) 4 (33)
Selberg also shows the following theorem.
Proposition 3.1. [10, p. 23, Theorem 1] We have

1 _heT. T 1 (hr
052,,:@ (5 - /Bn) = ar log piw (—2— + log lal) T + O(logT), (3.4)
Bn<%

where hy is the number of cusps and a is some constant.
By applying this proposition we will show an Q-result for ¥r:
Theorem 3.2. Assume (3.3). Then for e > 0, we have
Up(z) = Qz?7°).
Proof. Suppose that for some € > 0, there exists K > 0 such that
Up(z) < Kz3~° (3.5)

for sufficiently large z.
Since we have from (2.2) and (2.3)
Z s) = /oo z7°dUr(z)
Z1 - b T 3

integration by parts and applying the assumption (3.5) show that
z o0
L(s) < f 5|z~ ¥ dz
Z1 1
where 0 = Re(s). This gives an analytic continuation of %(s) in 0 > 1 — ¢ so that zeros of
Zy(s) are only in Re(s) < £ —¢. It means that the scattering matrix ¢(s) is holomorphic in
Re(s) > 1 — & except for poles on the real line. Therefore we have
1 1
1_8)>eN (—, T) .
> (2 g ) =7 \2

Pn
[yn|<T

From (3.3) this contradicts Proposition 3.1. O

Hejhal shows the relation between ¥r and mp:
Proposition 3.3. {5, p. 477, Proof of Theorem 3.8(d)] We have

() —éli(ws") —0 ( ki ) + b (\Ilp(z) S xs) .

logz log z = sn

Theorem 3.2 and Proposition 3.3 lead to the following theorem:
5
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Theorem 3.4. Assume (3.3). When z — oo, fore >0

1
rz ¢
Q .
)+ (loga:)

b=

mr(z) = li(z

This theorem leads to Theorem 1.5.

4. THEOREM 1.6

In this section, we consider the case of d = 2 and now let I' be a cofinite subgoup of
PSL(2,C).

We again denote poles of ¢(s) by p, = B, + ¢y, and let Nr(oy,T) be the number of p, in
the region 8, < gy, || < T.

We will generalize (3.1) and Proposition 3.1. We first show the following proposition and
lemma.

Proposition 4.1. Let T be fized. Assume that I' has hr > 0 classes of cusps represented by
Ciy---yChy- Then the scattering determinant ¢(s) can be written in the following form for
sufficiently large Re(s):

ols) = (3(—’—27)) L(s),

where the following notation is used.
An absolutely convergent Dirichlet series is defined as for sufficiently large Re(s):

0o
p
L(S) = r;s’
m=1 1m

mEC, P#F0O0<q << -,

and for a fized tmaginary quadratic field K whose class number is one, we denote its dis-
criminant by Dk and put D = |Dg]|.

Proof. By [1, p. 111 Theorem 4.1}, when we choose A € G such that A( = oo, for a cusp
¢ € PIC = C U {oo}, the Eisenstein series of I' at ( is defined for P € H? as

EA(P’ S) = Z y(AMP)lJrs)
MET" L

where y(x) is the (0,0,1)-entry in H3. T'¢ is the stabilizer-group of ¢ with its maximal
unipotent subgoup I'". It converges for Re(s) > go. Let n = B~1oo € P'C be another cusp
6
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of T, then E4(B!P, s) has the Fourier expansion,;
Ea(B™'P,s) =8yl : T'clldo] ™y

T
o reevd DR al i
PED N\ Pen
Pind . e27rt'(p,g) -
+DF() Z |u*~ Z ————-—] B yK, (27| ply, ™ ", (4.1)
¥ oueon: e 1

where the following notation is used. The Kronecker symbol is defined as

P 1, (if n=¢ modT),
770, (if p#£¢ modT),

and R denotes a system of representatives (} §) of the double cosets in
AT’ A"\ AT'B'/BI",
such that ¢ # 0. If  and ¢ are [-equivalent, let Ly € T be such that Lyn = ¢ and let do be

defined by
a [ -
ALyB™" = (O do) .

The multiplication of E4 written by [['¢ : I'] is restricted to the values 1,2,3,4,6. The
bracket (-,-) is the usual scalar product on R? = C. Let Ok be the integer ring of K
corresponding to I, and we denote Og/ ~ by Ok*, where n ~ m means that they generate
the same ideal in Og. We use K, for the usual Bessel function.

Now, when we write a Fourier expansion of Eo(B™'P,s) as

Es(B7'Ps) = 3 au(y,s)e?™? (P =z+yj),
pHeEOK™

then from the equation (4.1), we have

— ™ - —s
a0(y, 8) = 8nc[Te, TVclldol ™y + =——=v | 2o le|™ | o™ (4.2)
D(s—1) |
(¢ a)
For the scattering matrix, we have the following properties from [1, p. 232]. We choose hr
representives, ¢y, . . ., Cur., for the I'-classes of cusps of I such that
G=c"too,. .., Chy = chr_loo e P'C.

We put for v =1,...,hr and P € H?,
E. (Ps):= Z y(c, M P)*.

MET/,\T
7
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We further put
1

[T¢, : ¢, ]
Then the FE, (P, s) have Fourier expansion in the cusps of the form
E,(c,'P,s) =y + du(s)y* " +...
forv=1,...,hp and in case v # u
E(c,™'P,s) = ¢u(8)y* " +....

The scattering matrix ®(s) is defined as

E, (P s) = E. (P, s).

0(s) := (duu(s)) - (4.3)
By using (4.1), we have
™ hr k
(s) = det ((s)) = (5 LE
g (5=7) R
hr
with k = Z o] r' . O

Lemma 4.2. [10, Lemma 2] Let f(s) be holomorphic for 0 > a, except for at most a finite
number of poles in this region, and let f(s) have continuous boundary values on o = a.
Further, assume that we have

o(f(s)=1)—0
as 0 — 0o and
F(8)f(s) = O(lt]°),
for [t| >ty and o > «, with some positive constant c, then, for T < 2,

X (T~ (B~ a) = o [ (T~ i) log|f(a+it)ldi+ T ¥ (o; - @) +O(logT).

r|<T g;i>a
B>a

We now show the generalization of (3.1).
Proposition 4.3. Let p,, = B, -+ ty, be poles of the scattering determinant. Then

Y. Bn=0(XlogX) (4.4)
0<yn<X
and we have
—/ [(1+ it)dt = CNp(1, T) + O(T2) (4.5)

with some positive constant C'.
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Proof. Let |cr| be the smallest absolute values of the non zero left-hand lower entries of the
elements of I, where I is a cofinite subgroup having one class of cusps and let 0 < o7 <
os...0n = 1 be the poles of ¢(s) in the segment (0, 1]. We define

§ —0;

#*(s) = ler*Ve(s) TT (46)

=1 s +ai

for s € C, then we obtain from [1, p. 289]

o*(s) = e9(s) H 8 +__p,.,
pn€P(pr) & 7 Pr
where g is a polynomial of degree at most 4 and P(y*) is the set of poles of ¢*. The growth
properties (|¢*| is bounded for Re(s) > 0 and ¢*(s) — 0 as Re(s) — oo) and symmetry of
©* imply that €9 is constant. Hence we have

N ~
Y s 8§ — 0; S+ pn

<p(s) = ICrl 2(s 1)69( ) I l — I I —— (47)
s+ o pn€P (%) S — Pn

=1

For positive constants c;, we express
2

—2(s— S+ pn
o(s) ~ erlen| 20V T |=—= (4.8)
Yn>0 §— Pn
From Proposition 4.1, we obtain
lo(s)] ~ cas™""fer| . (4.9)
Gathering together (4.8) and (4.9), we have
2
—2(s— S+ pPn - —2s
|er] 2(s—1) H STPal c3$ hr|Cr‘| 25
1a>0 |8 ™ Pn
It follows that
4:6113 > —~h
14 ————— ] ~ 387"
7g0 ( (5 - /Bn)2 + ’Ynz s
Therefore, we see
48, X )
—_—— | ~vylog X,
0<~/§.,:<x ( (X = Bn)? + 72
and it leads to (4.4)
We put
@’
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Since

(p’* . —2ﬁn
L (1+it) = . (4.11
® pnég(w‘) B+ (t =) :

by [1, p. 289], it follows that
_2/871
[t—va|<1 ﬁn2 + (t - 'Yn)zl

Using [2r gzt < [%, gromite—sdt, we have

T
/ _w(t)dt < 2nNe(1,2) + T log T (4.12)

w(t) = O(logt) +

with some constant ¢;.
Whereas, there exists a constant ¢, satisfying the following inequality:

/_ w(t)dt> v / mdt2+c2TlogT

m|<3T

Since [ —;—%dt (-2) arctan»T—"f’ﬂ leads to

/_ witydt> 3 (- 2)( +cs('§,))+cleogT

Im|<3T

from (4.4) it follows
T T
/Tw(t)dt > nNp (1, 5) +esTlog T + cs, (4.13)

where c¢3, ¢4 and cs are some constants.
Therefore, gathering together (4.12) and (4.13), we have

T
wNp ( 2) +cTlogT < / w(t)dt < 2nNr(1,2T) + ;T log T. (4.14)
From (4.6) and (4.10), it leads to (4.5). O
From this proposition, our assumption in Theorem 1.6 means
o} vol(\H3), ,
—Nr(1,T) ~ ———=T". 4.15
in I‘( ) ) 672 ( )

As the generalization of Proposition 3.1, we have the following proposition.
Proposition 4.4. We have

heT T 1 3
> (18 = = log = 2—71_(]7,[‘ log D — log |a} — E’ﬂ'hr + hr)T + O{log T),

0<yn <T o ™ (4.16)

where hr is the number of cusps and a is some constant.
10
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Proof. Since
¢w1(3) = P (s)

in (4.3), we can conclude that L(s) has real coefficients. We shall write
L(s) = ab'™*L*(s), (4.17)

where a # 0 and real, b real and positive and
L*(s) =1 —+ E qﬂ';;-,
n=1in

where the g, are greater than 1. Then L*(s) satisfies the assumption of Lemma 4.2 with
some constant ¢/ > 0. When we take o = 1 in Lemma 4.2, it gives

Y T =B —1)= 51— /T (T — [t]) log |L*(1 +dt)|dt + T 3_ (o — 1) + O(log T).
i< T o;>1 (4.18)
We have

o(s)p(2—35) =1,
by [1, p. 232 Theorem 1.2] and in particular
lp(1+it)] = 1. (4.19)
From Proposition 4.1, (4.17) and (4.19) lead to
_ 1 (D™
*Q+i))=—{—] .
s (%)

Then we get

[ =l tog e+ it)ae
= 2(hrlogD — log la]) /OT(T —t)dt + 2hr /(;T(T —t)log l:‘r‘ldt

T
= heT?log — + (I log D = log Ja] - gmr) 2. (4.20)

Substituting (4.20) into (4.18) gives

2 (T =B —1)

fyn|<T
Bn>1

1 T
= — {h[‘T2 log — + (hr log D — log |a| — §7rhp) T2} +T Y (05— 1)+ O(log T).
2 ™ 2 o;>1
11
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Since the zeros are symmetric around the real axis,

S (T=baha- ) =31 & (=@ -1

0<Yn<T [ |<T
Bn<l Bn>1

1 T 1
= —hpT?log — + — (hr logD —logla| — §ﬂ'hr) T2
47 T 4r 2

1
o;>1
If we denote the left hand side of (4.21) by A(T') and the left hand side of (4.16) by B(T'),
we have
AT+1)—AT)<B(T) < A(T)- AT -1).
Thus, from (4.21) we have the proposition. O

Our next goal is to show an Q-result for Yp.
Theorem 4.5. We assume (4.15). Then for € > 0, we have

Ur(z) = Q(z'°).
Proof. Suppose now that for some ¢ > 0, there exists X > 0 such that
Ur(z) < Kz'™°. (4.22)
By the same argument as in Theorem 3.2, it gives
> (1-pa) 2 eNe(1,T).
I'r'fl"ST
From (4.15), it leads to contradiction for Theorem 4.4. O

We next introduce the following relation between ¥ and 7.
Proposition 4.6. [8, Proof of Theorem 5.8] We have

”w"EPWﬂZO($>+J;GH”_§ﬁv'

log z log z

Theorem 4.5 and Proposition 4.6 lead to the following theorem:
Theorem 4.7. Assume (4.15). When z — oo, fore >0

wﬁﬂ:h@%+ﬂ(ﬁ%>.

logz

This theorem implies Theorem 1.6.
12
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