Research Report

KSTS/RR-02/003
Jun. 19, 2002

Zetas and Normalized Multiple Sines

by

Shin-ya Koyama
Nobushige Kurokawa

Shin-ya Koyama

Keio University

Nobushige Kurokawa

Tokyo Institute of Technology

Department of Mathematics
Faculty of Science and Technology

Keio University

©2002 KSTS
3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522 Japan



KSTS/RR-04/003
June 19, 2002

Zetas and Normalized Multiple Sines

Shin-ya Koyama (Keio University)
Nobushige Kurokawa (Tokyo Institute of Technology)

Running title. Multiple sines

Abstract. By using normalized multiple sine functions we show expressions for special
values of zeta functions and L-functions containing {(3), ¢(5), etc. Our result reveals the
importance of division values of normalized multiple sine functions. Properties of multiple
Hurwitz zeta functions are crucial for the proof.

1 Introduction

Let S,(z;w) = Sy(z; (wi,-..,wr)) be the normalized multiple sine function constructed and
studied in the previous paper [KK].

In this paper we study special values of these functions and their relations to zeta func-
tions. Here we mainly use S,(z) = S-(z; (1,...,1)).

Our main results are as follows. The first result expresses the values of the Riemann zeta
function at positive odd integers.

Theorem 1.1 Letn=1,2,3,..., and for k=1,2,...,n put
ul o +1
_ _1\k=lj2n
a(2n+1,k)—l§:1( 1)1 (k—l)’

which is a positive integer. Then we have:
(1)
¢'(—2n) = —log (H S2n+1(k)a(2"+l’k)) .

(2)

-1 n~122n+1 2n n
¢@n+1) = u__(z_n)'__l_ log (H 52n+1(k)a(2n+1,k)) R
: k=1
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Examples 1.2 We have
¢(3) = 4n?logSs(1),
4nt 1
¢(5) = —7108(55(1)55(2) )

¢(7)

8nb 57 302
<= 08(51(1)51(2)75:(3)°).

The above formula (1.1) was proved in [KK] and [KW] previously.

Remark 1.3 By the formula
k-1 e
S,(k) = [ 8- )Y
1=0
for 1 0 k < r, we can also express ((2n + 1) in terms of S;(1) (20! 0 2n + 1):

_1\n—-192n+1,2n 2n+1
(2n+1)= ———————-—( DI log S)(1)b3n+10)
(2n)! e

with b(2n + 1,1) € Z.
Example 1.4 Since S5(2) = S5(1)S(1)7?,
4
¢(5) = ~ 22 log(S5(1)2S:(1) ™)

Next, let x be a non-trivial primitive Dirichlet character modulo N, and
oo
L(s,x) =Y _x(n)n™
n=1

the Dirichlet L-function. Then the values L(r, x) for » = 1,2, 3, ... are classified as

_ [ " - (x-Bernoulli number) .- x(-1) = (-1)"
L(T, X) = { “difficult” e X(—l) = (—1)T+1.

(1.1)
(1.2)

(1.3)

(1.4)

(1.5)

Here “difficult” means that these values have not been calculated explicitly yet except for the
r = 1 case appearing in the socalled Dirichlet’s class number formula: for even x (x(—1) = 1)

N-1 ()
L(l,x)=~1§VL)log (H Sy (%) )
k=1
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and
, 1 N-1 k x(k)
rox=-soe( 115 (5) ).
k=1
where

N-1
— Z X(k)e2mk/N
k=1

is the Gauss sum. We note that S;(z) = 2sin(nz).
We generalize Dirichlet’s result to the difficult case.

Theorem 1.5 Let x be a primitive odd character modulo N. Then:

(1)
ser=—bl (s (5) s (5))

L(2,x) = 2m<x> g: ( ( )N (%>k>x(k>'
Examples 1.6 We have
(2 - () 5 (o) 5
- infe(i)
L, (:;fi)) = —2?” log (Sz (%)351 (%) s, (%)'3 s (g) ”)
S e))

SQ(]. + (E)—l

(Se(z)S1(z)™Y) ™
= SQ(ZE)_Isl (.’E)

(2)

where we used

52(1 - (L‘)

Il

Theorem 1.7 Let x be a non-trivial primitive even character modulo N. Then:

3
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W N-1 2N? 2Nk—3N? 2\ x(¥)
120 = -3 loe [ (53 (&) =(5) s(%) ) .
& 2 N-1 2N? 2Nk—-3N? K2\ X(k)
£(3,5) = 20X 10g 11 (Ss (%) s(x) s (}f,—) ) .
Example 1.8

12 \/371_2 1 288 1 —408 1 5 —288 5 312 5 —-25
s () - “@“’g(SS(ﬁ) s(m) =(m)%(5) (@) (@)
7 —288 7 264 7 —-49 11 288 11 —164 11 121
s(n) s(m) s@) o) =) &) )

Thus the values S,(a) for a € Q satisfying 0 < a < r are quite interesting in relation to
zeta values. We formulate our conjecture as

Conjecture 1.9 S,(a) € Q for a € Q satisfying 0 < a <.
The situation would become transparent when we generalize it as below:
Conjecture 1.10 S, (fuatotbeer. ) € Q for N =1,2,3,.. and k; =0,1,...,N - L.

It is easy to see that Conjecture 1.9 is contained in Conjecture 1.10 for w = (1,..,,1),
and Conjecture 1.10 clearly indicates that we are studying division values of multiple sine
functions.

Remark 1.11 A suitable restriction on the form of division points such as made in Conjec-
ture 1.10 will be needed as the following example shows:

5x(2,(1,v2))
5:(1,(1,v2))

Hence, at least one of S5(2, (1,/2)) and Sy(1, (1,+/2)) is not an algebraic number. By this
example, we must seriously look at S,.(ayw; + -+ + @.wy; (w1, ,w,)) for general a; € Q.
The proof of the above fact is given by

S2(27(17\/§)) _ S?(l + 1’(1> ‘/—2')) — Sl(l,\/i) — 2Sin( 7|' ) g@’

¢Q.

V2

52(17(17\/5)) 52(1)(1) \/—2))
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where
2sin (%) = —i(e'VA — e VA)
= —i((-)"V? = ((-1)"H)™)
and we used the transcendency result of Gelfond-Schneider (—1)/V2 ¢ Q.

Theorem 1.12 (1) Conjectures 1.9 and 1.10 are valid for r = 1.
(2) Conjectures 1.9 and 1.10 are valid for r = 2 with N = 2. Actually

Sy (%;g) =Sy (%,Q) = \/5

Sy (ﬂ%—a}i;g> =1L

2 The Riemann zeta function

and

We use the multiple Hurwitz zeta function due to Barnes
Glsz,w) = Y. (mw+-+nw+z)°

for w = (w1, ...,w,) and the definitions of the multiple gamma and the multiple sine:

).
=0

Su(z,w) = [p(z,w) " To(ws + - + wy — 7, w) V"
When w = (1, ...,1) we simplify the notation:

I\ (z,w) = exp (b%cr(s,m,g)

(s, z2) = ¢ (s,2,(L,..,1)) = Z (m+-+n.+z)°= Z oHe(n+2)7°,
T1yeenytr=0 n=0

where ,H, = "j:l) and

I'v(z) =T (z,(1,..,1)),
S.(z) = Tp(z) T (r — ).
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Lemma 2.1 There ezist uniquely determined integers a(r, k) such that

r~1

= Z a(r, k) rHy—x (2.1)

k=1

with Hy = = oktr-D(a=k+l) £, o indeterminate . Indeed a(r, k) are given as follows:

1)
i 1)k-4r- 1( f—z) (2.2)

Moreover,
a(r,r — k) = a(r, k). (2.3)

Proof. The existence of a(r, k) follows from the fact that the (r — 1) polynomials Hq_
(k=1,..,7 — 1) are linearly independent over Q. By putting z = k in (2.1), we have

k+r—2 k+r—3
r_l el .. .
k -a(r,l)( re1 )+a(r,2)( re1 >+ +a(r, k) - 1.
This leads to -
_ - Sk+r—1—73
— r—=1 _
a(r,k) =k ;:1 a(r,j)( .1 )
Thus (2.2) is proved by induction on k. Next, from (2.1)

r—1

|

(.—;E)T—l = a(r, k) rH—z—k
k=1
_(-z— r—1)--(—z—-k+ r—1
Hpy = -1 =T e,
S0
r—1 r—1
7l = za(r k) rHo (roiy = Za(r,r — k) +He g,
1 k=1

Hence, by the uniquenes of a(r, k) we have a(r,r — k) = a(r, k). 8

Examples 2.2 Forz=n € Z and r = 2,3,4,5 we have

2Hny,
n? = 3Hnp1+ sHa o,
n® = 4Hnp1+44Ho o+ Hyos,
n' = sHp 1+ 115Hy o+ 11 5H, 3+ sHus
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Proof of Theorem 1.1:
For r > 2 we have by Lemma 2.1

o nr-1
dae1-n) = 3
n=1
r—1 [o <]
an—k
= D alnk) Y
k=1 n=1
r—1
= a(r, k)¢ (s, k),
k=1

where (-(s, k) is the multiple Hurwitz zeta function

Glo,b) =Y e

n=0

Thus we have

r—1

¢(1—r)=>_a(rk)logT,(k).

k=1
In case r = 2n + 1, it follows that

2n

('(—2%) - Z a(2n + 1,k) log Pont1(k)

k=1

= - Za(Zn +1,k) log Sant1(k)

k=1

— ~10g (H S2n+l(k)a(2n+l,k)) ,

k=1

where we used Sy,i1(k) = Tonp1(k) 'Tonpi(2n+1—k)! and a(2n + 1,20 +1 - k) =
a(2n+1,k)a

Examples 2.3 We saw in [KK] Theorem 3.8(c) (and [KW] also) that
¢(3) = 4n? log Sa(1).

Combining this with the fact that
1\ /3
S3(1) = v25; (—2-> :

7
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which can be obtained by the facts

S3(1)

I
$
™
L

|
R
—
2
R
—_
i
~—
w
y
—~
N W
~
o«
P
~~
[S%]
~—

and that Sy(3) = V2, we have

as [KK] Theorem 3.8(b).

3 Dirichlet L-functions for odd characters
We prove the formula for L(2, x) for odd characters. Since our method follows a proof for
Dirichlet’s result on L(1,x) for even characters, we first recall it. We show the formula for

L'(0,x). Then the result on L(1, x) follows via the functional equation.
Let x be a non-trivial primitive Dirichlet character modulo N. We have

- 1
L(s,x) = E x(k) Z% (—mm

where
{s,) = mt o)y

is the Hurwitz zeta function. Hence
N-1
L0, x) = k O,
(0,%) ;x( )(0, %)

and

4

-1

N-1
L'o,x) = x(k)C’(O,ﬁ (log N) > x(k C(O
k=1

zZ >
Ll
[

= Y xR0, 3) ~ (og N)L(0, ).

1

E
i
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When Y is even, it holds that L(0,x) = 0 (this is the reason of “difficult”), so we have

z2

-1

DO = Y xKC0, 5

-
[
—_

— 3" x(k)logD: (%)

—lx(k) (logFl (—'“—) +logT, (NJJ k))

T
zb—‘

[ ST
2

= L

>

N =

x(k) log S; (-—) )

2

x>
-

This gives the Dirichlet’s result.

Proof of Theorem 1.5
We prove (1), then (2) is obtained via the functional equation. Since

> T ad +1 d 1
C(s—1,2) = g (:im)’ = nz;o (:+ T +(z—1) Z O G(s, x) + (z — (s, z),

n=0

we have

¢'(=1,2) = §(0,2) + (z — 1)(1(0, ),
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as (1(s,z) = ((s,z). Now that x is odd and that L(—1,x) = 0, we compute
L'(-1,x) = NX:X(’C -1, %)

N-1
=NZMWM%HNZMW%4mmﬁ

=1

= NZX k)log 'y (%) +NZX(/c ~1)log Ty (%)

= N3 o (Ta(Hr ()
VS Byt [T
= 3 ;X(k‘)l g (1‘2(1 - ‘1\7) ri(1- %)‘%)
N1 Ty(£ k N1
- -5 S s (spsi)
= —-%7— . x(k) log (52( )Sl(%)ﬁ),

where we used the fact S1(£) = S1(%7%) with x(N — k) = —x(k). 9

4 Dirichlet L-functions for even characters

Proof of Theorem 1.7
We again show (1), then (2) is obtained via the functional equation. Since

(n+z)* =2 3H, + (22 - 3) oH, + (z — 1) 1 H,,

we have

—2,17)= Z E: i i;j = 2G3(s,z) + (22 — 3)Ca(s, z) + (2 — 1)°Ci(s, 7).

Therefore we have
¢'(=2,z) = 2¢3(0,7) + (2z — 3)¢5(0,2) + (z — 1)*¢; (0, z).

10
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Now that x is even and that L(—2, x) = 0, we compute

N-1

L(-2,x) = N x(k)¢(-2,%)
k=1

N-1
= N2> x(k) (26500, %) + 2% - 3)G:(0, &) + (% — 1)’ (0, %))
v . .
= N?) x(k)log (F3(%)2F2(%)2N_3F1(I_I\CJ_)(N*I))
k=1
1 . k\2N2 k \2Nk—3N2 k \k2 x(k)
= —§1°gH(53(N) Sa(%) Si(%) ) a

=1

x

5 Division values of normalized multiple sines

Proof of Theorem 1.12
Since Si(z,w) = 2sin(*2) by [KK, §2], we have

Si(5, w) = 2sin(%) = —i(e™ /N _ emim/NY € Q,

which leads to (1).

Recall that Ta(w; + (w1, ws))
w Wy — Z, (W, W
Sa(z, (w1, w2)) = : 11‘2(:1;2((4}1 w2); :
First Tp (52, ( )
Sy(ertez () _ R0, whw)
2(AF#2, (w1, w2)) To(32, (wy,ws))
Secondly

F2(W_2L + wy, ((.()1,(4)2))
T34, (w1, wr))

52(%1’ (w1, w2)) =
Here we use (KK, §2])
Ty (2 4 ws, (w1, ws)) = Doz, (w1, w2))T1(z, wi) ™t

Then
Fz(%l + wy, (w1, we)) = Fz(w—{» (w1,w2))r‘1(%:wl)_l-

Hence
Sa(%, (w1, we)) = Pl(%l’wl)_1~

11



KSTS/RR-04/003
June 19, 2002

Now ([KK, §2])

—
—~
€8
e

Fl(x,w):mwf’%,
SO I"(l) 1

T (4, w) = —22 = —

()= 7= 7
Thus

SZ(%: (wl)“‘J?)) = \/5‘.
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