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Strange phenomena related to ordering problems
in quantizations

Hideki Omori§ , Yoshiaki Maeda† , Naoya Miyazaki¦ , Akira Yoshioka ∗

Abstract. In this paper, we introduce an object which looks like an extended
notion of covering spaces. Such an object is requested to understand the “group”
generated by the exponential functions of quadratic forms in the Weyl algebra.
This is in some sense a complexification of the metaplectic group.

1. Introduction

Quantum picture is basically set up by the Weyl algebra. It is derived from
the differential calculus via correspondence principle: Let u be the multiplication
operator x· by the coordinate function x on R acting on the space of all C∞

functions on R , and let v be the differential operator i~∂x . u and v generate
an algebra W~ , called the Weyl algebra. Thus, the Weyl algebra is an associative
algebra generated over C by u, v with the fundamental relation [u, v] = −i~ .

However, the correspondence principle, u ↔ x· , v ↔ i~∂x , causes a lot
of mathematical questions. We meet immediately the ordering problem (see §1).
Such ordering problem occurs mainly in Schrödinger quantization procedure which
assigns a differential operator defined on a configuration space to every classical
observable.

Apart from configuration spaces, Heisenberg procedure for quantum me-
chanics is a formalism to set up von Neumann algebras or C∗ algebras (cf. [Co]).
In this formalism, the ordering problem means how to express an element of an
algebra in the unique way. Whenever the expression is fixed, it makes us possible
to put a topology on the algebra and to take the topological completion (cf.§1).
However in this formalism, it is difficult to know how the quantum world relates to
the classical world. It is very heavy to treat everything in the theory of selfadjoint
operators.

In this paper, we first make several topological completions of the Weyl
algebra. Here, we are not restricted within C∗ -algebras or operator algebras, but
we want only to treat ~ as a deformation parameter (a positive real parameter) by
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following the notion of deformation quantization initiated by [BFFLS]. Remarking
that many laws in physics are expressed as evolution equations, we will consider
the evolution equation d

dt
ft = i~p∗(u, v)∗ft in W~ . Thus, solving the evolution

equation, we have to know the individual phenomenon.

In the theory where ~ is treated as a formal parameter, which is called
formal deformation quantization, no problem occurs to solve evolution equations.
In the theory where ~ is treated as a positive real parameter, the existence of
solutions of evolution equations is not so obvious. However, it is easy to see the
uniqueness of real analytic solution if it exists. To obtain solutions, we have to
make some topological completion of the Weyl algebra, in which one can define
the exponential function e

itp∗(u,v)
∗ .

Along the direction of Schödinger, which uses configuration spaces, Hör-
mander made the notion of pseudo-differential operators (ψDO) on any manifold,

and of Fourier integral operators [Hö1] to treat e
itp∗(u,v)
∗ such that p(u, v) is in the

symbol class of order one with respect to v .

Furthermore, Hörmander [Hö2] proposed the Weyl calculus on R2n by using
extended notion of ψDO’s where u and v have the same weight. In these theories,
the essential self-adjointness of p∗(u, v) is crucial, because the evolution equations

for e
itp∗(u,v)
∗ are treated as partial differential equations.

On the other hand, there is another classical way of treating such evolution
equations. This is indeed the method of Lie theory, which treats such evolution
equations within the system of ordinary differential equations. In order to use
this method, we restrict our attention to the linear hull over C of ∗-exponential
functions of polynomials of degree ≤ 2.

However, in this restricted objects, we have met some pathological phenom-
ena: A typical phenomenon is that the area where the product is defined depends
on the way of ordering expressions. (See Lemma10.) In spite of this, one can ob-
tain some product formula by collecting various ordering expressions all together.
Moreover, it happens that an element has two different inverses. Since this causes
associativity breaking (see §1), we can not treat such a system as an associative
algebra.

Motivated by such pathological phenomena, we should know more precisely
what sort of difficulties will happen in such objects. To extend products, we have
to treat intertwiners between several ordering expressions. It happens however,
that intertwiners are defined only 2-to-2 mappings on the space of exponential
functions of quadratic forms, because of the ambiguity of

√
in the calculation

(see § 6), and such ambiguity can not be eliminated by treating an appropriate
double covering spaces. (See § 4.)

Think about the serious meaning of such a pathological phenomenon. This
forces us to treat the notion of manifolds which do not form a point set. We
propose in this paper the idea of two-valued elements.

Besides of such strange phenomena, we have another motivation to treat
~ as a genuine parameter. The deformation quantization of [BFFLS] made us
free from operator theory. Especially, if we treat the deformation parameter ~
as a formal parameter and consider everything in the category of formal power
series of ~ (formal deformation), then the quantization problem goes very smooth.
Kontsevich [K] showed every Poisson algebra on a manifold is formally deformation
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quantizable. However it is apparent that formal deformation quantization plays
only a probe for the quantum world with exact physical significance.

After Kontsevich’s result, deformation theory is coming up the next gener-
ation, called the exact deformation theory. We have to pay a lot of effort to make
the deformation theory more close to the theories where C∗ algebras or von Neu-
mann algebras are explicitly used (cf. Connes [Co]). Actually, Rieffel [R] proposed
a notion of such a deformation theory, called strictly deformation quantization,
and pointed out many serious problems.

In this paper we attempt to point out several serious problems are still
involved in the theory of classical ordering problems.

This paper is organized as follows:

In §2, we give several basic facts, several orderings, and product formulas.
We explain also several pathological phenomena, and how such strange phenomena
appear naturally in the exact deformation quantization theory. But no problem
occurs as for exponential functions of linear functions of generators. (See Theorem
3, and the equation (30).)

Thus, in §3, we restrict our attention to the space of exponential functions
of quadratic forms. Infinitesimal action of quadratic forms are computed in Weyl
ordering and normal ordering, and these define involutive distributions on the
space of exponential functions. We easily obtain maximal integral submanifolds.

In §4, we give the explicit formula of ∗-exponential functions in the Weyl
ordering and in normal ordering. Via these explicit expressions, we find an “el-
ement” ε00 , called polar element, having a very strange property that one must
say this is a “two valued” element, although such notion have never appeared in
ordinary mathematics.

In spite of this, ε00 is very useful in the computation. We give in §5
several product formulas, and show that ∗-exponential functions of quadratic forms
generates a group-like object, which looks like a double cover of SLC(2). In spite of
this, technicality is involved in a standard classical Lie theory. To understand why
such strange element appears, we define in §6 the notion of intertwiners between
several ordering expressions. We see that such strange phenomena is caused by
the ambiguity of 1√ of intertwiners. Because of this ambiguity, intertwiners are

defined only as “2-to-2 diffeomorphisms” on the set of exponential functions of
quadratic forms.

Hence in §7, we will try to understand how the glued object looks like. We
happen to know that a similar phenomena occurred in the magnetic monopole
theory, and to manage this phenomena mathematically, Brylinski [Br] uses gerbes
of Giraud. (See last chapter of [Br].) But we prefer to use the notion of two-valued
element, because this is very simple and intuitive. To make these more clear, we
propose the notion of blurred C∗ -bundles.

Our conclusion in this paper is that ∗-exponential functions of quadratic
forms generate a group-like object which is not a point set, but is understood as a
non-trivial double cover of SLC(2). In spite of this, this object contains the non
trivial double covers of SLR(2) and SU(1, 1). Hence this object may be understood
as a complexification of metaplectic group Mp(2,R) [GiS]. It is known that there
is no complexification of such groups as genuine Lie groups.
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2. The Weyl algebra and extensions

We consider the Weyl algebra W~ generated by u, v over C with the
fundamental relation [u, v] (= u∗v − v∗u) = −i~ where ~ is a positive constant.
The pair (u, v) of generators is called a canonical conjugate pair.

2.1. Orderings and product formulas.

To express elements of the Weyl algebra W~ , we introduce an ordering.
Namely, we choose the typical orderings in W~ ; normal ordering, anti-normal
ordering, and Weyl ordering, respectively. The normal ordering (resp. the anti-
normal ordering) is the way of writing elements of the form

∑
am,nu

m∗vn (resp.∑
am,nv

m∗un ) by arranging u to the left (resp. right) hand side in each term. The
Weyl ordering is the way of writing elements in the form

∑
am,nu

m¯vn defined by
using the symmetric product · given by u·v = 1

2
(u∗v + v∗u). (See [OMY] §1.2).

But we have no need to know about the symmetric product.

Using such orderings, one can identify the Weyl W~ algebra with the space
C[u, v] of all polynomials on C2 with the coordinates u, v . Thus, the Weyl algebra
W~ can be viewed as a non commutative associative product structure defined on
the space C[u, v] for fixing an ordering of W~ . According to the (normal, anti-
normal, Weyl) orderings of W~ , we have the noncommutative product on C[u, v] ,
and denote them by ∗N , ∗Ñ , ∗M , respectively.

Product formula. Let f(u, v), g(u, v) ∈ C[u, v] . We use these notations
for the ordinary continuous products and denote them by ◦, • , · to explain the
orderings of W~ .

• The normal ordering : the product ∗ of the Weyl algebra is given by the
ΨDO-product formula as follows: (Noting this coincides with the product
formula of ΨDO’s,)

f(u, v) ∗N g(u, v) = f exp{i~(←−∂v ◦
−→
∂u)}g. (1)

• The anti-normal ordering : the product ∗ of the Weyl algebra is given by
the ΨDO-product formula as follows:

f(u, v) ∗N̄ g(u, v) = f exp{−i~(←−∂u •
−→
∂v)}g. (2)

• The Weyl ordering : the product ∗ of the Weyl algebra is given by the
Moyal product formula as follows:

f(u, v) ∗M g(u, v) = f exp
i~
2
{←−∂v

·∧ −→∂u}g (3)

where
←−
∂v

·∧ −→∂u =
←−
∂v · −→∂u −←−∂u · −→∂v , and

f(
←−
∂v · −→∂u −←−∂u · −→∂v)g = ∂vf · ∂ug − ∂ug · ∂vf.

Every product formula yields u ∗ v − v ∗ u = −i~ , and recovers the Weyl
algebra W~ . We notice that commutative products ◦ , • , · play only supplementary
roles to express elements in the unique way. We distinguish these to indicate what
ordering expression is used.
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On the contrary, in the Weyl algebra W~ ,
1
i~ad(v) and − 1

i~ad(v) form mu-
tually commutative pair of derivations. These derivations also reproduce commu-
tative products ◦ , • , · from the ∗-product by reversing formulas (cf.[OMY]). Such
inverse expressions ensure that there is no other relation imported unexpectedly via
such ordering expressions.

For elements p∗(u, v), q∗(u, v) ∈ W~ , we have various expressions according
to the orderings. The product is given as follows:

p∗(u, v) ∗ q∗(u, v) = f·(u, v) ∗M g·(u, v) = f◦ (u, v) ∗N g◦ (u, v) = f• (u, v) ∗N̄ g• (u, v).

If no confusion is suspected, then we omit the suffix M,N, N̄ in the ∗-product.

Let Hol(C2) be the space of all entire functions on C2 with the compact
open topology. The product formula (1), (2), (3) have the following properties.

Then, obviously we see

Proposition 1. (1) f ∗ g is defined if one of f, g is a polynomial.

(2) For every polynomial p = p(u, v), the left-(resp. right-) multiplication p∗
(resp. ∗p) is a continuous linear mapping of Hol(C2) into itself under the compact
open topology.

We call such a system Hol(C2),C[u, v], ∗) a (C[u, v]; ∗)-bimodule.

By the polynomial approximation theorem, the associativity

f ∗(g∗h) = (f ∗g)∗h

holds if two of f, g, h are polynomials. We call this 2-p-associativity.

2.2. Canonical conjugate pairs.

For every A ∈ SLC(2), we change the generators

(
u′

v′

)
= A

(
u

v

)
.

It is obvious that [u′, v′]∗ = −i~ , and hence u′, v′ may be viewed as generators.
The replacement (pull-back) A∗ of u, v by u′, v′ gives an algebra isomorphism of
W~ . Thus, we may consider the ordering problem by using u′, v′ instead of u, v .

The following is the most useful property of Moyal product formula (3):

Proposition 2. For every A ∈ SLC(2) and
(

α
β

) ∈ C2 , let Φ∗ be the replacement

(pull-back) of u, v into u′, v′ by the combination of the linear transformation by
the matrix A and the parallel displacement

(
α
β

)
:

(
u′

v′

)
= A

(
u

v

)
+

(
α

β

)
, A ∈ SLC(2), (α, β) ∈ C2.

Then, Φ∗ is an isomorphism both on (C[u, v], ·) and (C[u, v], ∗).
Remark that normal, anti-normal orderings do not have such a property. It is
easily seen that

(au+ bv)m
∗ = (au+ bv)m

· , but (au+ bv)m
∗ 6= (au+ bv)m

◦ for ab 6= 0.
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For the proof of Proposition 2, we have only to remark the following identity:

←−
∂v

·∧ −→∂u =
←−
∂v′

·∧ −→∂u′ .

2.3. Evolution equations.

In the (C[u, v], ∗)-bimodule (Hol(C),C[u, v], ∗), we consider the evolution
equation

d

dt
ft = p∗(u, v) ∗ ft, f0 = f(u, v) (4)

for every polynomial p∗(u, v), whenever we do not mind about the existence of
solutions. However, the real analytic solution in t is unique if it exists. The
solution, if it exists for the initial function f0 = 1, will be denoted by e

tp∗(u,v)
∗ .

If the infinite series
∑

tk

k!
p(u, v)k

∗ converges, then it must be the solution of (4).

Since
∑

tk

k!
(αu + βv)k

∗ converges, we use the ∗-exponential function e
t(αu+βv)
∗ to

define the intertwiners between different orderings. (See §6.)

2.4. Extensions of product formula.

Starting from (C[u, v]; ∗), we extend the ∗-product to a wider class of
functions. For every positive real number p , we set

Ep(C2) = {f ∈ Hol(C2) | ‖f‖p,s = sup |f | e−s|ξ|p <∞, ∀s > 0} (5)

where |ξ| = (|u|2 + |v|2)1/2 . The family of seminorms {|| · ||p,s}s>0 induces a
topology on Ep(C2) and (Ep(C2), ·) is an associative commutative Fréchet algebra,
where the dott · is the ordinary product for functions in Ep(C2). The product
· may be replaced by ◦ or • to indicate the ordering. It is easily seen that for
0 < p < p′ , there is a continuous embedding

Ep(C2) ⊂ Ep′(C2) (6)

as commutative Fréchet algebras (cf.[GS]), and that Ep(C2) is SLC(2)-invariant.

It is obvious that every polynomial is contained in Ep(C2) and C[u, v] is
dense in Ep(C2) for any p > 0 in the Fréchet topology defined by the family of
seminorms {|| ||p,s}s>0 .

We remind that every exponential function eαu+βv
· is contained in Ep(C2) for

any p > 1, but not in E1(C2), and functions such as eau2+bv2+2cuv
· are contained in

Ep(C2) for any p > 2, but not in E2(C2). Functions such as
∑

1

(k!)
1
p
uk is contained

in Eq(C2) for any q > p , but not in Ep(C2). Hol(C2) is a complete topological
linear space under the compact open topology.

The following theorem is the main result of [OMMY1]: 2

Theorem 3. The product formulas (1), (2), (3) extend to give the following:

(i) For 0 < p ≤ 2, the space (Ep(C2), ∗) forms a complete topological associative
algebra.

(ii) For p > 2, every product formula gives continuous bi-linear mappings of

Ep(C2)× Ep′(C2)→ Ep(C2), Ep′(C2)× Ep(C2)→ Ep(C2), (7)

for every p′ such that 1
p

+ 1
p′ ≥ 1.

2In [OMMY1], the proof is given in the case of Weyl ordering, but the same proof works for
other orderings.
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Let E2+(C2) =
⋂

p>2 Ep(C2). Thus, E2+(C2) is a Fréchet space under the

natural intersection topology. Note that e
1
~ (au2+bv2+2cuv) is continuous in E2+(C2)

in (a, b, c) ∈ C3 .

By Theorem 3, it is easy to handle (Ep(C2), ∗) for 0 < p ≤ 2. We now focus
to the space E2+(C2). As we mention in §2.5, the extended space E2+(C2) has
several strange phenomena.

2.5. Vacuums, half-inverses and the break down the associativity.

A direct calculation using the Moyal product formula (3) shows that the

coordinate function v has a right inverse and a left inverse v ◦ = 1
v
(1− e 2i

~ uv) and

v • = 1
v
(1− e− 2i

~ uv) respectively in E2+(C2), i.e,

v ∗ v ◦ = 1 = v • ∗ v, v ◦ ∗ v = 1− 2e
2i
~ uv, v ∗ v • = 1− 2e−

2i
~ uv,

where uv means u·v in precise. The ·-sign is occasionally omitted in the expression
of the Weyl ordering.

If the associativity holds in E2+(C2), then v ◦ should coincide with v • .
Hence 1

v
sin 2

~uv = 0, which is a contradiction (cf. [OMMY1]). Then, we loose
the associativity in E2+(C2). This is one of the typical phenomena which shows
the lack of the associativity. That is, coordinate functions have both left- and
right-inverses.

By the Moyal product formula (3), we also have

v ∗ e 2i
~ uv = 0 = e

2i
~ uv ∗ u, u ∗ e− 2i

~ uv = 0 = e−
2i
~ uv ∗ v.

We denote by $00 = 2e
2i
~ uv , $̄00 = 2e−

2i
~ uv which are called a vacuum, a bar-

vacuum respectively. Using the Moyal product formula and the 2-p-associativity,
we easily have

(uv − i~
2
) ∗ e 2i

~ uv = u ∗ v ∗ e 2i
~ uv = 0. (8)

In Lemma4 in §4, we show that e
it
~ uv
∗ = 1

cosh t
2

e
i
~ (tanh t

2
)2uv in the Weyl

ordering. Remark that
∫∞
−∞

1
cosh t

2

e
i
~ (tanh t

2
)2uvdt <∞ in the space E2+(C2). Setting

(uv)−1
+i0 = −i~

∫ ∞

0

e
it
~ uv
∗ dt, (uv)−1

−i0 = i~
∫ 0

−∞
e

it
~ uv
∗ dt,

we have uv has two different inverses, since the difference is given as

(uv)−1
+i0 − (uv)−1

−i0 = −i~
∫ ∞

−∞
e

it
~ uv
∗ dt. (9)

The r.h.s. of (9) has the expression as follows by using Hansen-Bessel formula:

∫ ∞

−∞
e

it
~ uv
∗ dt =

∫ ∞

−∞

1

cosh t
2

e
i
~ (tanh t

2
)2uvdt =

π

2
J0(

2

~
uv),

where J0 is the Bessel function. This is obviously 6= 0. This causes another break
down of the associativity. Thus, it is impossible to treat (uv)−1

+i0 and (uv)−1
−i0 in

the same associative algebra.
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Since the r.h.s. of (9) can be viewed as the ∗-Fourier transform of the
constant function 1, it may be regarded as the ∗-delta function −iδ∗(uv) (cf.
[OMMY1]). This is actually expressed as the difference of two holomorphic func-
tions and several nice relation to Sato’s hyper functions are observed [O],[OMMY1].
(See also [M].)

Hence, the ∗-delta function δ∗(uv) is expressed as an entire function in
terms of the Weyl ordering. We are much interested in such phenomena, since
these may be useful in nano-technology.

3. Quadratic forms

These strange phenomena as in §2 are deeply related to ∗-exponential

functions, such as e
t
~u·v
∗ , defined by the evolution equation (4) of quadratic forms.

It is easy to see that the set of all quadratic forms in W~ is closed under
the commutator bracket [a, b] = a∗b− b∗a . Set X = 1

~
√

8
u2, Y = 1√

8~v
2, H = i

2~uv ,

where uv = u ∗ v + i~
2

. Then, they form a basis of the Lie algebra slC(2): We see

[H,X] = −X, [H, Y ] = Y, [X,Y ] = −H,
and {X,Y,H} generate an associative algebra in the space C[u, v] , which is an
enveloping algebra of slC(2). Setting ad(W )V = [W,V ] , we see

ad(
i

2~
(au2 + bv2 + 2cuv))

[
u
v

]
=

[−c −b
a c

] [
u
v

]
. (10)

Thus, ad( i
2~(au

2 + bv2 + 2cuv)) generates the complex Lie group SLC(2), which
is a useful fact to fix the product formula involving ∗-exponential functions of
quadratic forms (see (30)). In a (C[u, v]; ∗)-bimodule (Hol(C2),C[u, v], ∗) with
an ordering expression as in §2, we consider the evolution equation (4) for every
polynomial p(u, v) with the initial function f . If p(u, v) = u2+( i

~v)
2 , the equation

corresponds to that of standard harmonic oscillator. For a complex parameter
t , the evolution equation (4) may not be necessarily solved for arbitrary initial
function. However a real analytic solution for (4) in t is unique if it exists. If the

real analytic solution of (4) exists, then we denote it by e
tp(u,v)
∗ ∗f(u, v), where

e
tp(u,v)
∗ is the solution with initial condition 1. Thus, following standard method

of Lie theory, we change a partial differential equation to a system of ordinary
differential equations.

3.1. Singular distributions in Weyl ordering.

In what follows, we identify (a, b, c; s) ∈ C3×C∗ with

se
1
~ (au2+bv2+2cuv) ∈ E2+(C2), i.e. (a, b, c; s)⇐⇒ se

1
~ (au2+bv2+2cuv),

if no confusion is suspected. s and 1
~(au

2 + bv2 + 2cuv) are called the amplitude

and the phase respectively. The function e
1
~ (au2+bv2+2cuv) is called the phase part.

For every point (a, b, c; s) in C4 , we consider a curve s(t)e
1
~ (a(t)u2+b(t)v2+2c(t)uv)

starting at se
1
~ (au2+bv2+2cuv) . The tangent vector of this curve at t = 0 is given as

(1

~
(a′u2 + b′v2 + 2c′uv)s+ s′

)
e

1
~ (au2+bv2+2cuv).
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On the other hand, consider the ∗-product e
t
~ (a′u2+b′v2+2c′uv)∗se 1

~ (au2+bv2+2cuv) . We
now compute the derivative of this quantity at t = 0. By using the Moyal product
formula, we have

d

dt

∣∣∣
t=0
e

t
~ (a′u2+b′v2+2c′uv) ∗ se 1

~ (au2+bv2+2cuv)

=
1

~
(a′u2 + b′v2 + 2c′uv) ∗ se 1

~ (au2+bv2+2cuv)

=
1

~
(a′u2 + b′v2 + 2c′uv)se

1
~ (au2+bv2+2cuv)

+
2i

~
{(b′v+c′u)(au+cv)− (a′u+c′v)(bv+cu)}se 1

~ (au2+bv2+2cuv)

− 1

2~
{b′(~a+ 2(au+cv)2)− 2c′(~c+ 2(au+cv)(bv+cu))

+ a′(~b+ 2(bv+cu)2)}se 1
~ (au2+bv2+2cuv).

(11)

Then, (11) is written as

d

dt

∣∣∣
t=0
e

t
~ (a′u2+b′v2+2c′uv) ∗ se 1

~ (au2+bv2+2cuv)

=
1

~
(a′, b′, c′)M(a, b, c; s)




u2

v2

2uv
~


 se

1
~ (au2+bv2+2cuv),

(12)

where

M(a, b, c; s) =



−(c+ i)2, −b2, −b(c+ i); − b

2

−a2, −(c− i)2, −a(c− i); −a
2

2a(c+ i), 2b(c− i), 1 + ab+ c2; c


 (13)

We denote by M(a, b, c) the submatrix of first three columns of M(a, b, c; s).

Remark that
detM(a, b, c) = (c2−ab+1)3. (14)

It is seen that every radial direction is the eigen vector of M(a, b, c):

(a, b, c)M(τa, τb, τc) = (1 + (c2−ab)τ 2)(a, b, c). (15)

If c2−ab+1 = 0, then we write as

au2 + bv2 + 2cuv = 2i(αu+ βv)(γu+ δv), αδ − βγ = 1.

Clearly, [αu+βv, γu+δv] = −i~ . By setting u′ = αu+βv, v′ = γu+δv , (u′, v′) is
a canonical conjugate pair. Applying (3) for (u′, v′), we easily see that

(γu+ δv) ∗ e 2i
~ (αu+βv)(γu+δv) = 0, for αδ − βγ = 1. (16)

It follows by 2-p-associativity that

(γu+ δv)2
∗ ∗ e

1
~ (au2+bv2+2cuv) = 0,

(αu+ βv) ∗ (γu+ δv) ∗ e 1
~ (au2+bv2+2cuv) = 0.

(17)
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The second identity of (17) yields (a, b, c)M(a, b, c) = 0, if c2 − ab+ 1 = 0, which
corresponds to (15), and the first identity of (17) yields

(γ2, δ2, γδ)M(a, b, c) = 0, c2 − ab+ 1 = 0.

Hence M(a, b, c) has rank 1 at the point c2−ab+1 = 0, but the rank of M(a, b, c; s)

is 2 at there. Setting u′ = αu + βv , v′ = γu + δv , we call 2e
2i
~ u′v′ the vacuum

w.r.t. (u′, v′). Thus, one can allow to call the bar-vacuum 2e−
2i
~ u′v′ the vacuum

w.r.t. (−v′, u′).
We consider a holomorphic singular distribution Dµ on C3 × C∗ given by

Dµ(a, b, c; s) = {(a′, b′, c′)M(a, b, c; s)| (a′, b′, c′) ∈ C3}.
Let π : C3 × C∗ → C3 be the natural projection. Set

Vµ = {(a, b, c); c2−ab+1 = 0} (phase part of vacuums). (18)

Then, 2e
1
~ (au2+bv2+2cuv), (a, b, c) ∈ Vµ is a vacuum. Though Dµ is singular on the

submanifold Vµ×C∗ , this gives an ordinary involutive distribution on (C3−Vµ)×C∗ .
Hence, there is the 3-dimensional maximal integral holomorphic submanifold M3

of Dµ through the origin (0, 0, 0; 1). Since

M(a, b, c)−1 =
1

(1+c2−ab)2



−(c− i)2, −b2, −b(c− i)
−a2, −(c+ i)2, −a(c+ i)

2a(c− i), 2b(c+ i), c2+ab+1


 ,

the distribution Dµ on (C3−Vµ)× C∗ is given by



1, 0, 0; 1
2
∂a log(1 + c2 − ab)

0, 1, 0; 1
2
∂b log(1 + c2 − ab)

0, 0, 1; 1
2
∂c log(1 + c2 − ab)


 .

Hence M3 is given by

(a, b, c;
√

1+c2−ab)⇐⇒
√

1+c2−ab e 1
~ (au2+bv2+2cuv), (a, b, c) ∈ C3−Vµ. (19)

Since
√

is two-valued function, M3 is in fact a non-trivial double cover of C3−Vµ .
(See also Proposition 5 below.)

3.2. Singular distributions in the normal ordering.

Since uv = u◦v + i~
2

, we have au2 + 2cuv + bv2 = au2 + 2cu◦v + bv2 + ~ci .
In this subsection, we compute e

t
~ (au2+bv2+2cuv)
∗ = ecite

t
~ (au2+bv2+2cu◦v)
∗ by ΨDO-

product formula (1). Setting

e
t
~ (au2+bv2+2cuv)
∗ = s(t)e

1
~ (a(t)u2+b(t)v2+2c(t)u◦v)
◦ , (20)

as in the similar computations in §3.1, we have (20) as follows:

d

dt

∣∣∣
t=0
e

t
~ (a′u2+b′v2+2c′uv) ∗ se 1

~ (au2+bv2+2cuv)

=
1

~
(a′u2 + b′v2 + 2c′(u◦v +

i~
2

)) ∗ se
1
~ (au2+bv2+2cu◦v)
◦

={1
~
(a′u2 + b′v2 + 2c′(u◦v +

i~
2

)) +
i

~
(2b′v + 2c′u)◦(2au+ 2cv)

+
−1

~
1

2
(2b′)((2au+ 2cv)2 + 2a~)}◦se

1
~ (au2+bv2+2cu◦v)
◦ .

(21)
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This is written as

=
1

~
(a′, b′, c′)N(a, b, c; s)




u2

v2

2u◦v
~


 ◦se

1
~ (au2+bv2+2cu◦v)
◦ , (22)

where

N(a, b, c; s) =




1, 0, 0; 0
−4a2, (1 + 2ci)2, 2ai(1 + 2ci); −2a
4ai, 0, 1 + 2ci; i


 (23)

We denote by N(a, b, c) the submatrix of first three columns of N(a, b, c; s). The

determinant of N(a, b, c) is (1 + 2ci)3 , i.e. = 0 occurs at e
1
~ (au2+bv2+iu◦v)
◦ . This is

in fact a phase part of a vacuum computed in the normal ordering w.r.t. a certain
canonical conjugate pair. (See Proposition 22 below.) Let Dν be the the singular
distribution given by N(a, b, c; s). Let

Vν = {(a, b, c); 1 + 2ci = 0} (phase part of vacuums). (24)

Since

N(a, b, c)−1 =
1

(1 + 2ci)2




(1 + 2ci)2, 0, 0,
−4a2, 1, −2ai

−4ai(1 + 2ci), 0, 1 + 2ci


 ,

Dν is an ordinary involutive distribution on (C3 − Vν)× C∗ given by

Dν(a, b, c) = {(a′, b′, c′; c′i
1 + 2ci

); (a′, b′, c′) ∈ C3}.

The maximal integral holomorphic submanifold N3 of Dν through the origin
(0, 0, 0; 1) is given by

(a, b, c;
√

1 + 2ci)⇐⇒ √1 + 2ci e
1
~ (au2+bv2+2cu◦v)
◦ . (25)

Since
√

is a two valued function, N3 is the non-trivial double cover of C3−Vν .

4. ∗-exponential functions and vacuums

We now consider the evolution equation (4) for every quadratic form as
integral curves of the distributions mentioned in §3. To define the ∗-exponential

function e
t(au2+bv2+2cuv)
∗ , we set e

t(au2+bv2+2cuv)
∗ = F (t, u, v), and consider the evo-

lution equation

∂

∂t
F (t, u, v) = (au2+bv2+2cuv)∗F (t, u, v), F (0, u, v) = 1 (26)

First, we compute the r.h.s. of (26) by the Moyal product formula (3). Minding a
real analytic solution of (26) in t is unique, if it exists, we assume that F (t, u, v) has
the form s(t)ea(t)u2+b(t)v2+2c(t)uv) . Then, we solve the system of ordinary differential
equations:

(a′(t), b′(t), c′(t); s′(t)/s(t)) = (a, b, c)M(a(t), b(t), c(t); s(t)),

(a(0), b(0), c(0);s(0)) = (0, 0, 0; 1).
(27)
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Lemma 4. (Cf.[B], [MS]) The solution of (26) is given by

ft(x) =
1

cosh(~
√
ab−c2t) exp

x

~
√
ab−c2

{
tanh(~

√
ab−c2 t)

}
,

where x = au2 + bv2 + 2cuv.

Thus, Lemma4 holds for the case ab−c2 = 0. We may set

1

~
√
ab−c2 tanh(~

√
ab−c2 t) = t.

via Taylor expansion.

By Lemma4, we have

e
t
~ (au2+bv2+2cuv)
∗ =

1

cosh(
√
ab−c2 t)e

1
~ (au2+bv2+2cuv)

(
1√

ab−c2
tanh(

√
ab−c2 t)

)

=
1

cos(
√
c2−ab t)e

1
~ (au2+bv2+2cuv)

(
1√

c2−ab
tan(

√
c2−ab t)

) (28)

The ambiguity of ±√ab− c2 makes no difference for the result.

By (28), we have in particular, if c2 6= ab , then e
π

~
√

c2−ab
(au2+bv2+2cuv)

∗ = −1,

but e
π

2~
√

c2−ab
(au2+bv2+2cuv)

∗ diverges in the Weyl ordering. Let Πµ be the subset of

C3 where e
1
~ (au2+bv2+2cuv)
∗ is singular in the Weyl ordering:

Πµ = {(a, b, c) ∈ C3;
√
c2 − ab = π(Z+

1

2
)}.

The ∗-exponential mapping exp∗ is a holomorphic mapping of C3−Πµ into M3 .
Using (19) and Lemma 4, we have

Proposition 5. M3 is a non-trivial double cover of C3 − Vµ , and

M3 = {±
√
c2−ab+1 e

1
~ (au2+bv2+2cuv); c2−ab+1 6= 0}.

{e
1
~ (au2+bv2+2cuv)
∗ } covers the open dense subset

M3 − {−e 1
~ (au2+bv2+2cuv); c2 − ab = 0, (a, b, c) 6= (0, 0, 0)}

of M3 .

Proof. Suppose Q ∈ M3 . Set πQ = (a, b, c). Then, c2−ab+1 6= 0. Since the
exceptional values of tan z are ±i , there is θ such that tan θ =

√
c2 − ab . By

(28), we have

√
c2−ab+1e

1
~ (au2+bv2+2cuv) = e

θ

~
√

c2−ab
(au2+bv2+2cuv)

∗

Remind limθ→0
tan θ

θ
= 1. For c2 − ab = 0, 1√

c2−ab
θ should be read as 1.
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Remark that e
t(au2+bv2+2cuv)
∗ ∈M3 , whenever this is defined. The difference

of the periodicity of cosine and tangent gives that if c2 − ab 6= 0, then

π−1π{e
1
~ (au2+bv2+2cuv)
∗ ; (a, b, c) 6∈ Πµ} = {±e

1
~ (au2+bv2+2cuv)
∗ ; (a, b, c) 6∈ Πµ}. (29)

However, we have to set
√

1 = 1 in the case c2 − ab = 0 to get the initial value
1 at t = 0. Thus we can not get −e 1

~ (au2+bv2+2cuv) by the exponential function, if
(a, b, c) 6= (0, 0, 0). This proves the last assertion.

Remark that e
2π
~ uv
∗ = −1 ∈ M3 means the integral submanifold through

(0, 0, 0;−1) is in M3 . These arguments together with (19) give the first and second
assertions. 2

In what follows we denote by M3
∗ the set of elements of M3 expressed in

the form of ∗-exponential functions:

M3
∗ = {±e

1
~ (au2+bv2+c(u∗v+v∗u))
∗ ; it’s Weyl ordering ∈M3}.

Similarly, we denote for each canonical conjugate pair (u, v),

N3
∗ = {±e

1
~ (au2+bv2+c(u∗v+v∗u))
∗ ; it’s normal ordering ∈ N3}.

By the uniqueness of analytic solution of the evolution equation (4), the

exponential law eisx
∗ ∗eitx

∗ = e
i(s+t)x
∗ for a quadratic function in x holds where both

sides are defined. Using this, we have

Lemma 6. For s, σ ∈ C such that 1 + sσ(ab− c2) 6= 0, we have

e
s
~ (au2+bv2+2cuv) ∗ eσ

~ (au2+bv2+2cuv) =
1

1 + sσ(ab−c2)e
s+σ

~(1+sσ(ab−c2))
(au2+bv2+2cuv)

In particular, we have an idempotent element

2e
1

~
√

ab−c2
(au2+bv2+2cuv) ∗ 2e

1

~
√

ab−c2
(au2+bv2+2cuv)

= 2e
1

~
√

ab−c2
(au2+bv2+2cuv)

.

Recall 2e
1

~
√

ab−c2
(au2+bv2+2cuv)

is a vacuum defined in §2.

Corollary 7. Vacuums are obtained as the limit point of ∗-exponential func-
tions; i.e.

2e
1

~
√

ab−c2
(au2+bv2+2cuv)

= lim
t→∞

ete
t

~
√

ab−c2
(au2+bv2+2cuv)

∗

is a vacuum for every (a, b, c) such that c2 − ab 6= 0.

This shows that vacuums may be regarded as certain equilibrium states (cf. [BL]).

Remarks. Let Ad(g)h = g∗h∗g−1 . Using (10) and the uniqueness of the solution,
we see that

Ad(±e
it
2~ (au2+bv2+2cuv)
∗ )

[
u
v

]
=

(
exp t

[−c −b
a c

]) [
u
v

]
. (30)
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Remark that Ad(±e
it
2~ (au2+bv2+2cuv)
∗ ) has no singularity in t , and ±e

it
2~ (au2+bv2+2cuv)
∗

makes no difference. Hence, the “group” generated by the ∗-exponential functions
of quadratic forms looks like a “double covering group” of SLC(2), which is known
to be simply connected.

Moreover, (30) is useful to make the product formula involving elements
f, g of Ep(C2), p < 2. We compute as follows:

(f ∗ ep(u,v)
∗ ) ∗ (g ∗ eq(u,v)

∗ ) = (f ∗ (ead(p(u,v))g)) ∗ (ep(u,v)
∗ ∗ eq(u,v)

∗ )

This is welldefined whenever e
p(u,v)
∗ ∗ eq(u,v)

∗ is welldefined. Hence, we have only to
care about the product formula e

p(u,v)
∗ ∗ eq(u,v)

∗ .

The following lemma is useful to make transcendental formula, and is proved
by that both quantities satisfy the same partial differential equation with the same
initial condition, but intuitively this is given by the trivial identity v ∗ (u ∗ v)m =
(v ∗ u)m ∗ v , which explain the name of the next lemma:

Lemma 8. (Bumping lemma)

v ∗ eitu∗v
∗ = eitv∗u

∗ ∗ v, eitu∗v
∗ ∗ u = u ∗ eitv∗u

∗ .

4.1. ∗-exponential functions by the normal ordering.

Although e
±π
~uv

∗ diverge in the Weyl ordering, we prove in this subsection
that such elements make sense in the normal ordering. We now consider the
evolution equation (26) in the normal ordering. Assuming that

e
t
~ (au2+bv2+2cu∗v)
∗ = ψ(t)eφ1(t)u2+φ2(t)v2+2φ3(t)u◦v

◦ ,

we solve the system of ordinary differential equations:




φ′1(t) =
1

~
a+ 4icφ1(t)− 4~bφ1(t)

2

φ′2(t) =
1

~
b+ 4ibφ3(t)− 4~bφ3(t)

2

φ′3(t) =
1

~
c+ 2icφ3(t) + 2ibφ1(t)− 4~bφ1(t)φ3(t)

ψ′(t) =− 2~bφ1(t)ψ(t)

(31)

with the initial condition φi(0) = 0 and ψ(0) = 1.

Proposition 9. There exists a unique analytic solution of (31) given by the
following form:





φ1(t) =
a

2~
sin(2

√
D t)√

D cos(2
√
D t)− ic sin(2

√
D t)

,

φ2(t) =
b

2~
sin(2

√
D t)√

D cos(2~
√
D t)− ic sin(2

√
D t)

,

φ3(t) =
i

2~
(
1−

√
D√

D cos(2
√
D t)− ic sin(2

√
D t)

)
,

ψ(t) = e−cit
( √

D√
D cos(2

√
D t)− ic sin(2

√
D t)

)1/2

(32)
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where D = c2−ab. This works also for the case D = 0 by setting 1√
D

sin(2
√
D t) =

2t via Taylor expansion. The ± ambiguity of
√
D makes no difference for the

result, but the ± ambiguity of ( )1/2 remains in the expression of ψ(t).

Remark that taking the complex conjugate of (32), we obtain the formula
of ∗-exponential function for the anti-normal ordering. By this observation, we
have the following:

Lemma 10. In every ordering, the ∗-exponential function e
1
~au2+bv2+2cuv
∗ has

singularities in (a, b, c) ∈ C3 . However, there is no common singularity of the
normal ordering and of the Weyl ordering.

Remarking 2uv = u∗v+v∗u = 2u∗v+i~ = 2u◦v+i~ , we can use Lemma 9 to

obtain the formula of e
t
~ (au2+bv2+c(u∗v+v∗u))
∗ . Remark that e

t
~ (au2+bv2+2cuv)
∗ is a curve

contained in N3 , that is,
√

1 + 2i~φ3(t) = ecitψ(t) should hold by (25). This is
checked by direct calculation. For the special case ab = 0, we have

e
t
~ (au2+bv2+2cu◦v)
∗ = e

1
4ci~ (e4cit−1)(au2+bv2)+ 1

2i~ (e2cit−1)2u◦v
◦ , ab = 0. (33)

This is because by setting
√
c2 = c , (33) gives the real analytic solution of (31)

with initial data 1. Remark (33) has no singularity in t ∈ C . Using (33), we have

e
t
~ (au2+bv2+c(u∗v+v∗u)
∗ = ecite

1
4ci~ (e4cit−1)(au2+bv2)+ 1

2i~ (e2cit−1)2u◦v
◦ , ab = 0. (34)

By remarking u∗v+v∗u = 2u∗v+ i~ again, Proposition 9 gives the formula

of e
π
2~ (au2+bv2+c(u∗v+v∗u))
∗ for c2 − ab = 1, and we have a very strange formula:

Lemma 11. In the normal ordering w.r.t. (u, v), e
π
2~ (au2+bv2+c(u∗v+v∗u))
∗ with

c2−ab = 1 is given identically as
√−1e

2i
~ u◦v
◦ .

4.2. Polar element.

Here a new question arises whether the ± ambiguity of
√−1 of Lemma

11 can be eliminated for all a, b, c ∈ C . Our conclusion in this section is that the
ambiguity can not be eliminated.

Remark first that e
π
2~ (au2+bv2+c(u∗v+v∗u))
∗ diverges in the Weyl ordering for

c2−ab = 1.

By Lemma11, e
π
2~ (au2+bv2+c(u∗v+v∗u))
∗ is independent of a, b, c whenever c2−

ab = 1. Thus, it must be viewed as a single element. We call it the polar element
and denote by ε00 . We have in particular that

ε00 ∗ ε00 = −1, Ad(ε00) = −I (35)

but ε00 has several strange features.

4.3. It looks like a contradiction.

It is clear that π(ε00) = (0, 0, i). Moreover ε00∗ε00 = −1 by the exponential
law. But this does not imply that ε00 =

√−1, because the following holds by the
bumping Lemma 8:
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Proposition 12. u ∗ ε00 + ε00 ∗ u = 0, v ∗ ε00 + ε00 ∗ v = 0. In particular, ε00

commutes with every t
~(au

2 + bv2 + 2cuv), and hence with e
t
~ (au2+bv2+2cuv)
∗ .

Moreover, since (a, b, c) = (0, 0, 1) and (0, 0,−1) are arcwise connected in
the set c2−ab = 1, Lemma 11 gives

e
π
2~ (u∗v+v∗u)
∗ =

√−1e
2i
~ u◦v
◦ = e

− π
2~ (u∗v+v∗u)

∗ .

Considering the exponential law of the ∗-exponential function e
t
2~ (u∗v+v∗u)
∗ for t ∈

C− {singular set} , we must set by (34)

e
π
2~ (u∗v+v∗u)
∗ = ie

2i
~ u◦v
◦ , e

− π
2~ (u∗v+v∗u)

∗ = −ie
2i
~ u◦v
◦ .

If one wants to fix ± ambiguity, the exponential law gives

−1 = e
π
2~ (u∗v+v∗u)
∗ ∗ e

π
2~ (u∗v+v∗u)
∗ = e

π
2~ (u∗v+v∗u)
∗ ∗ e−

π
2~ (u∗v+v∗u)

∗ = 1.

Remark that (−v, u) is a canonical conjugate pair and the set of all canonical

conjugate pairs is arcwise connected. Then, it seems rigorous to set ε00 = ie
2i
~ u◦v
◦ =

ie
2i
~ (−v)¦u
¦ , but it causes the same trouble. Therefore, we must conclude that the ±

ambiguity in Proposition 9 cannot be eliminated. One has to set ε00 =
√−1e

2i
~ u◦v
◦

with ± ambiguity. It is better to understood ε00 as a “two-valued” element. But
since such notion does not exist in the set theory, it seems to be impossible to
define ε00 as a point of a point set. Because of this anomalous character of ε00 we
had spent a lot of time to check our calculation, and remark a conclusion that the
polar element ε00 should be understood as a “two-valued” element. Remark that if
one considers m-tensor power of our system, we have an element

∏m
i=1 ε

(i)
00 which

should be treated as a 2m -valued element. In §5, we claim this anomalous element
is still useful in the calculation of ∗-product.

Olver [Ol] gave some examples of local Lie groups which does not form a
group, because the associativity breaks down globally. Though these are exam-
ples within point sets, the situation seems similar and helpful to understand the
appearance of the ambiguity. We have to study such phenomena more closely, in
order to understand the difficulties we must manage in treating exact deformation
quantizations. (Cf. also [R].)

To understand ε00 rigorously within the set theory, we give several notions
in §7.

5. Product formulas, restriction to real forms

We now study the “group” generated by eaH+bX+cY
∗ by using the Weyl

ordering and the polar element ε00 . We see that the ∗-product

eaH+bX+cY
∗ ∗ea′H+b′X+c′Y

∗

is defined in general with an ambiguity of ±-sign of
√· , and the ambiguity can

only be eliminated locally.

5.1. Product formula with ± ambiguity and singularity.
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We first want to establish the product formula with ± ambiguity. If we
use the Weyl ordering, Proposition 2 gives that the general product formula for
quadratic exponential functions can be obtained from the two cases as follows:

etu2 ∗ eau2+bv2+2cuv, eτuv ∗ eau2+bv2+2cuv.

Solving (27) with the general initial condition

(a(0), b(0), c(0); s(0)) = (a, b, c; 1), (36)

we see that the first one is written as

e
t
~u2

∗ ∗ e 1
~ (au2+bv2+2cuv) =

1√
1 + bt

e
1

~(1+bt)
{(a+(ab−c2−2ci+1)t)u2+bv2+2(c−ibt)uv} (37)

where the ambiguity of ±√1 + bt can not be eliminated for all t, b . Remark
also that the discriminant of (a + (ab − c2 − 2ci + 1)t)u2 + bv2 + 2(c − ibt)uv is

(c2−ab+1)(1+bt)−(1+bt)2 . Thus, e
t
~u2 ∗√c2−ab+1 e

1
~ (au2+bv2+2cuv) is contained

in M3 . (Compute the discriminant +1 of the phase function.)

Remarking e
t
~u2

∗ = e
t
~u2

, we have the following:

Lemma 13. For e
t
~u2

and Q ∈ M3 such that π(Q) = e
1
~ (au2+bv2+2cuv) and

bt 6= −1, Q is written in the form
√
c2−ab+1 e

1
~ (au2+bv2+2cuv) , and the product

e
t
~u2 ∗Q is an element of M3 .

Similar to (37), we have in the Weyl ordering that

e
t
~v2

∗ ∗ e 1
~ (au2+bv2+2cuv) =

1√
1 + at

e
1

~(1+at)
{au2+(b+(ab−c2+2ci+1)t)v2+2(c+iat)uv}, (38)

and hence we have the similar result as Lemma13.

Remark e
t
~2uv
∗ =

√
1 + s2 e

s
~2uv , where s = tan t . Solving (27) with the

initial condition (36), we have in the Weyl ordering that

e
s
~2uv ∗ e 1

~ (au2+bv2+2cuv) =

1√
1−2cs+(c2−ab)s2

e
1

~(1−2cs+(c2−ab)s2)
(a(1+is)2u2+b(1−is)2v2+(c−(c2−ab−1)s−cs2)2uv)

(39)
where the ambiguity of ±

√
1−2cs+(c2−ab)s2 can not be eliminated.

Note the following identity for the computation of discriminant of the phase
function of (39):

(
1−2cs+(c2−ab)s2

)2
+

(
c−(c2−ab−1)s− cs2

)2 − ab(1+is)2(1−is)2

=(c2−ab+1)(1 + s2)
(
(c2−ab)s2 − 2cs+ 1

)
.

(40)

Using (39) and (40) for the computation of 1+discriminant, we see :
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Lemma 14. If Q1, Q2 ∈M3 such that π(Q1) = e
s
~2uv, π(Q2) = e

1
~ (au2+bv2+2cuv) ,

then
Q1 = ±

√
1 + s2 e

s
~2uv, Q2 = ±

√
c2−ab+1 e

1
~ (au2+bv2+2cuv)

with 1 + s2 6= 0, c2 − ab+ 1 6= 0. Furthermore, if 1− 2cs+ (c2 − ab)s2 6= 0, then
the ∗-product Q1 ∗Q2 is defined as an element of M3 .

Though every product formula in Weyl ordering has some singularity, this
does not mean that the ∗-product can not be defined at such points. Recall that
every quadratic form Q(u, v) is written in the form (αu+ βv)2 if ab− c2 = 0, or
the form λ(αu+ βv)(γu+ δv) with αδ− βγ = 1 otherwise. Solving the evolution
equation by using the ΨDO-product formula (1) under the standard procedure of
Lie theory, we have the following product formula in the normal ordering:

e
t
~u2

◦ ∗ e
1
~ (au2+bv2+2cuv)
◦ = e

1
~ ((a+t)u2+bv2+2cuv)
◦ ,

e
t
~uv
◦ ∗ e

1
~ (au2+bv2+2cuv)
◦ = e

1
~ (a(1+it)2u2+bv2+(c+(ci+ 1

2
)t)2uv)

◦ .
(41)

This shows that every product can be computed without ambiguity by a canonical
conjugate pair which is suitably chosen depending by elements to be calculated.
However, since we have to use various canonical conjugate pair to write elements
in the above standard form, this does not necessarily imply that ∗-products are
defined without ambiguity.

Here, we remark on the associativity as follows: Though all formulas that
we have given are written by using elements written in the form e

1
~ (au2+bv2+2cuv) ,

but we can replace (a, b, c) by (~a, ~b, ~c). After this replacement, whole formulas

(except the formula involving such an element as e
2i
h

uv , where one can not eliminate
~ in the expression) are changed into those which is real analytic in ~ and these
are meaningful at ~ = 0.

Now if ~ is viewed as a formal parameter and everything is treated in formal
power series in ~ , we see that the associativity holds well, and ± ambiguities
disappear in the product formula. Using the Taylor expansion in ~ , we have:

Proposition 15. The associativity

(eau2+bv2+2cuv ∗ ea′u2+b′v2+2c′uv) ∗ ea′′u2+b′′v2+2c′′uv

=eau2+bv2+2cuv ∗ (ea′u2+b′v2+2c′uv ∗ ea′′u2+b′′v2+2c′′uv)

holds if both sides are defined.

5.2. Product formulas involving polar element.

Even though ε00 is viewed as a two-valued element, we make product
formulas. We first remark the following lemma, which shows the mapping a →
ε00 ∗ a is better to be understood as a 2-to-2-mapping:

Lemma 16. If D = c2 − ab 6= 0, then

ε00 ∗ e 1
~ (au2+bv2+2cuv) =

1√
c2−abe

− 1
~(c2−ab)

(au2+bv2+2cuv)
.
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Proof. Set s = tan t . Then we have e
± t
~2uv

∗ =
√

1 + s2 e
s
~2uv , and we remark that

s→ ±∞ as t→ ±π
2
. Multiplying

√
1 + s2 to (39) and taking the limit s2 →∞ ,

we have Lemma. 2

Since the ambiguity of
√
c2−ab depends on the choice of paths for s2 →∞ ,

it is better to understand the equality of Lemma16 as

ε00 ∗ ±e 1
~ (au2+bv2+2cuv) =

±1√
c2−abe

− 1
~(c2−ab)

(au2+bv2+2cuv)
.

Remark that ε00 commutes with every e
1
~ (au2+bv2+2cuv) and ε00

2
∗ = −1. Then, ε00∗

gives a 2-to-2-diffeomorphism of M3 −M3
0 onto itself, where

M3
0 = {e

1
~ (au2+bv2+2cuv)
∗ ; c2 − ab = 0}.

For a point P of M3
0 , the computation of ε00 ∗P is represented by the case

P = e
1
~au2

. Since we see for t 6= ±π
2

that

e
t
~2uv
∗ ∗ e 1

~au2

=
√

1 + s2 e
1
~ (a(1+is)2u2+2suv), tan t = s, (42)

this is written in the form of ∗-exponential function and is a member of M3 . As

t→ ±π
2
, then the r.h.s of (42) diverges. Hence, we see that e

±π
~uv

∗ ∗ e 1
~au2

can not
be a member of M3 . Thus, we see M3 ∩ ε00∗M3

0 = Ø.

In the normal ordering w.r.t. (u, v), we see by (41)

ε00 ∗ e
1
~au2

◦ =
√−1e

1
~au2

◦ , ε00 ∗ e
1
~ (au2+bv2+2cuv)
◦ =

√−1e
1
~ (au2+bv2+(i−c)2uv)
◦ .

Since ε2
00 = −1, we see that N3

∗ = ε00 ∗N3
∗ for every canonical conjugate pair.

In other words, we see that

N3
∗ ⊂M3

∗ ∪ (ε00∗M3
∗ ) for every canonical conjugate pair. (43)

Note that e
1
~ t(αu+βv)2

∗ ∈ N3
∗ by the normal ordering w.r.t. a certain canonical

conjugate pair u′ = αu+βv, v′ = γu+ δv , and ε00∗N3
∗ = N3

∗ . Then, we have that
every element of ε00∗M3

0 is contained in N3
∗ w.r.t. a certain canonical conjugate

pair. Combined these arguments with (43), we see that

M3
∗ ∪ (

⋃

(u,v)

N3
∗ ) = M3

∗ ∪ (ε00∗M3
∗ ) (44)

where the union takes for all canonical conjugate pair mutually related linearly.

By (44), we have only to consider the “set” obtained by “gluing” M3
∗ and

ε00∗M3
∗ by the “2-to-2-diffeomorphism” ε00∗ given by Lemma 16.

5.3. General product formula.

By the argument in § 5.1, we have two cases that Q1∗ Q2 are not defined
in the Weyl ordering:

e
t
~u2 ∗

√
c2−ab+1 e

1
~ (au2+bv2+2cuv), for 1 + bt = 0,

and
√

1 + s2 e
s
~2uv ∗

√
c2−ab+1 e

1
~ (au2+bv2+2cuv), for 1− 2cs+ (c2 − ab)s2 = 0.

By Lemma16 and (37) we obtain the following:
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Corollary 17. If 1 + bt = 0, then

e
t
~u2∗(ε00∗

√
c2−ab+1 e

1
~ (au2+bv2+2cuv)) = e

1
~(c2−ab+1)

((a+(ab+(ci−1)2)t)u2+bv2+2(c−ibt)uv)

and the r.h.s. is written in the form e
1
~ (αu+βv)2 ∈M3

0 .

If 1− 2cs+ (c2 − ab)s2 = 0, then remarking (40) again, we have

(ε00∗
√

1 + s2 e
s
~2uv) ∗

√
c2−ab+1 e

1
~ (au2+bv2+2cuv)

=e
1

~(c2−ab+1)(1+s2)
(a(1+is)2u2+b(1−is)2v2+(c−(c2−ab−1)s−cs2)2uv)

.

This is written in the form e
1
~ (αu+βv)2 , since the discriminant of the r.h.s. vanishes.

As a consequence, we have the following:

Theorem 18. M3
∗ ∪ (ε00 ∗M3

∗ ) is closed under the ∗-product. Moreover the set
{eaH+bX+cY
∗ ; a, b, c ∈ C} generate M3

∗ ∪ (ε00 ∗M3
∗ ).

For the proof, it is enough to remark the following: For Q1, Q2 ∈ M3 , if
Q1 ∗Q2 is not defined in the Weyl ordering, then Q1∗ (ε00∗Q2) or (Q1∗ ε00)∗Q2

is defined in the Weyl ordering as an element of M3 and

Q1∗ (ε00∗Q2) = (Q1∗ ε00)∗Q2

holds, whenever both sides are defined. If Q1∗Q2 , Q1∗(ε00∗Q2), and (ε00∗Q1)∗Q2

are defined, then we have Q1∗(ε00∗Q2) = (ε00∗Q1)∗Q2 = ε00∗(Q1∗Q2). Moreover,
(ε00 ∗Q1) ∗ (ε00∗Q2) is defined as −Q1 ∗Q2 .

M3
∗ ∪ (ε00 ∗M3

∗ ) is “locally” isomorphic to SLC(2). As is remarked at (30),
M3
∗ ∪ ε00 ∗M3

∗ may be viewed as a non-trivial double cover of SLC(2), although
such it can not be treated as a point set.

Looking product formulas (37), (38), (39) and Lemma16 more carefully, we
see the following:

Theorem 19. Restrict the coefficients a, b, c in the real number and consider
(ia, ib, ic) ∈ C3 , or (a, b, ic) ∈ C3 , then all product formula are closed in these

spaces respectively. That is, {e
i
~ (au2+bv2+2cuv)
∗ } and {e

1
~ (au2+bv2+2ciuv)
∗ } generate

Lie subgroup-like objects under the ∗-product whose Lie algebra is slR(2), su(1, 1)
respectively.

Since the first homotopy group π1 of SLR(2), SU(1, 1) are both Z , we see
that the ± ambiguity can be treated as genuine double coverings in such subgroup-
like objects. Hence, we see that M3

∗ ∪(ε00∗M3
∗ ) contains the double covering group

of SLR(2) = Sp(2;R), which can be regarded as the metaplectic group Mp(2;R).
Thus, M3

∗ ∪ (ε00 ∗M3
∗ ) may be viewed as the complexification of Mp(2;R). It is

obvious that there is no such Lie group in the genuine group theory. Similarly,
M3
∗ ∪ (ε00 ∗M3

∗ ) contains the double covering group of SU(1, 1).
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6. Intertwiners and extensions

Remark that ε00 is defined by using several orderings. To understand
the anomalous element ε00 , and anomalous phenomena related to ∗-exponential
functions of quadratic forms, we fix the notion of intertwiners.

We mentioned that, as in §4, ε00 is viewed as a two-valued element, by using
a canonical conjugate pair (u, v). If we take another canonical conjugate pair u′ =

au+ bv, v′ = cu+ dv with ad− bc = 1, then e
π
2~ (u′∗v′+v′∗u′)
∗ must equal

√−1e
2i
~ u′ ¦v′
¦

where ¦ indicate this element is expressed in the normal ordering w.r.t. (u′, v′).
We view ε00 as the collection of expressions by the various normal orderings.

Thus, it is not clear whether one may identify
√−1e

2i
~ u◦v
◦ with

√−1e
2i
~ u′ ¦v′
¦ . (See

Proposition 23 for our conclusion.)

To consider this problem, we have to fix the notion of intertwiners between
several orderings. In this section, we consider intertwiners between these ordering
expressions. In particular, we consider the intertwiner between normal ordering
and the Weyl ordering w.r.t (u, v).

6.1. Intertwiners or coordinate transformations.

The principle of making intertwiners is based on that the ∗-exponential
function eαu+βv

∗ is given as follows by solving the evolution equation (4):

eαu+βv
∗M

=eαu+βv
· , (in Weyl ordering)

eαu+βv
∗N

=e
i~
2

αβeαu+βv
◦ , (in normal ordering)

eαu+βv
∗N̄

=e−
i~
2

αβeαu+βv
• (in antinormal ordering)

We define the intertwiner from the Weyl ordering to the normal ordering w.r.t.
(u, v) by a densely defined linear operator

I ◦· = e
i~
2

∂u∂v . (45)

In particular, we remark that I ◦· (f ∗M g) = (I ◦· f) ∗N (I ◦· g) holds if both sides are
defined, where ∗M , ∗N denote the Moyal-product and ΨDO-product respectively.
This is because that both sides are the expressions of f ∗ g by different ordering.

Suppose (u, v) and (u′, v′) are related by

u′ = au+ bv, v′ = cu+ dv, ad− bc = 1, u = du′ − bv′, v = −cu′ + av′.

The ∗-exponential function is given by eα′u′+β′v′
∗ = e

i~
2

α′β′eα′u′+β′v′
¦ w.r.t. a canoni-

cal conjugate pair (u′, v′), where ¦ indicates the normal ordering expression w.r.t.

(u′, v′). Thus, we must identify e
i~
2

αβeαu+βv
◦ with e

i~
2

α′β′eα′u′+β′v′
¦ . Hence, we have

to define the intertwiner I ¦◦ from the normal ordering w.r.t. (u, v) to that w.r.t.
(u′, v′) as follows:

I ¦◦ f = e
i~
2

∂u′∂v′− i~
2

∂u∂vf. (46)

Precisely, we must consider the exponential of the operator

∂u′∂v′ − ∂u∂v = −bd∂2
u + (ad+ bc− 1)∂u∂v − ac∂2

v

If
g¦ (u, v) = e

i~
2

(−bd∂2
u+(ad+bc−1)∂u∂v−ac∂2

v)f◦ (u, v),
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then g¦ (u, v) is regarded as the normal ordering w.r.t. (u′, v′). By the following
decomposition

e−bd∂2
u+(ad+bc−1)∂u∂v−ac∂2

v = e−bd∂2
ue(ad+bc−1)∂u∂ve−ac∂2

v ,

we may treat these intertwiners separately. Remark here that these intertwiners
are welldefined if ~ is a formal parameter. For real parameter ~ , intertwiners are
first defined on the space C[u, v] , and extended as follows:

Theorem 20. For every 0 < p ≤ 2, I ¦◦ extends to continuous linear isomor-
phisms of Ep(C2) onto itself, and I ¦◦ is also an algebra isomorphism of (Ep(C2)◦ ; ∗)
onto (Ep(C2)¦ ; ∗).
Proof. We first remark that by [OMMY1] Proposition 6.1, the system of semi-
norms (5) can be replaced by the following system of norms: Set τ = 1

p
, and for

f =
∑
am,nu

mvn we define

‖f‖τ,s =
∑
m,n

|am,n|(m+ n)τ(m+n)sτ(m+n), s > 0.

This system defines the same Fréchet space as Ep(C2) for every p > 0.

We show eα∂u∂v , eβ∂2
u and eγ∂2

v extend to continuous linear isomorphisms
of Ep(C2) onto itself for every 0 < p ≤ 2. For every f =

∑
am,nu

mvn , we see that

eα∂u∂vf =
∑

m,n,k

αk

k!

(m+ k)!

k!

(n+ k)!

k!
am+k,n+ku

mvn.

Hence,

‖eα∂u∂vf‖τ,s =
∑
m,n

∑

0≤k≤m∧n

αk

k!

m!

(m−k)!
n!

(n−k)! |am,n|(m+n−2k)τ(m+n−2k)sτ(m+n−2k)

<
∑
m,n

∑

0≤k≤m∧n

αk

k!
(mn)(1−τ)ksτ(m+n)|am,n|(m+n)τ(m+n).

If 1
2
≤ τ , then we have (mn)(1−τ) ≤ K(m+ n). Thus, we have

‖eα∂u∂vf‖τ,s ≤ |am,n|(m+n)τ(m+n)(eK/ταs)τ(m+n).

Since e−α∂u∂v gives the inverse of eα∂u∂v we have that for every p ≤ 2, eα∂u∂v is a
linear isomorphism of Ep(C2) onto itself. By the similar proof, we obtain the same
result for eβ∂2

u and eγ∂2
v .

We now choose α, β, γ appropriately so that eα∂u∂veβ∂2
ueγ∂2

v defines an in-
tertwiner I ¦◦ . Since it is clear that I ¦◦ is an algebra isomorphism of C[u, v] onto
itself, the continuity of I ¦◦ gives the second half of the theorem. ¤

It is remarkable that the composition of intertwiners gives another inter-
twiner, symbolically as I ¦

′
¦ I

¦
◦ (f) = I ¦

′
◦ (f) for f ∈ E2(C2), but this holds also for

f = eau2+bv2+2cuv if both sides are defined. This is because these are real analytic
w.r.t. ~ and the formula holds on the formal level w.r.t. ~ .
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6.2. Strange characters of extended intertwiners.

However, the intertwiner does not extend to the space E2+(C2). In such
spaces, intertwiners are calculated only for exponential functions of quadratic forms
f = eau2+bv2+2cuv . It is not clear to what extent intertwiners are defined.

Normal orderings have less symmetries than Weyl ordering. Thus, it seems
to be natural to define as follows:

Definition 21. Let A and B be elements of Ep , defined by normal ordering
expressions w.r.t. some canonical conjugate pairs. We denote by A◦ , B¦ normal
ordering expressions of A , B w.r.t. (u, v; ◦), (u′, v′; ¦) respectively. We define
the notion of equal A = B , if and only if I ¦◦ (A◦ ) = B¦ through the intertwiner
between normal ordering expressions w.r.t. these canonical conjugate pairs.

However, it occurs that intertwiners are defined only as 2-to-2 mappings
because of the ambiguity of

√
. This shows that Definition 21 does not work in

the genuine sense. We have to understand intertwiners under 2-to-2 mappings in
the following. Consider the differential equation

∂

∂t
f = i~∂u∂vf, (47)

A real analytic solution in t is unique, if it exists. The solution with the initial
function eau+bv is given by ei~abteau+bv .

To obtain the solution with initial function e
1
~ (αu2+βv2+2γuv) , we set as

follows by following the standard techniques in the classical Lie theory:

f = s(t)e
1
~ (φ1(t)u2+φ2(t)v2+φ3(t)2uv).

Then, (47) is rewritten as a system of ordinary differential equations:

(φ′1(t),φ
′
2(t), φ

′
3(t); s

′(t))

=
(
4iφ1(t)φ3(t), 4iφ2(t)φ3(t), 2i

(
φ1(t)φ2(t) + φ3(t)

2
)
; 2is(t)φ3(t)

)
.

(48)

First we see that

φ1(t) = αe4i
R t
0 φ3(τ)dτ , φ2(t) = βe4i

R t
0 φ3(τ)dτ

Setting x(t) =
∫ t

0
φ3(τ)dτ , we have

x′′(t) = 2iαβe8ix(t) + 2ix′(t)2, x(0) = 0, x′(0) = γ.

We regard x as an independent variable and set φ3(t) = p(x(t)). Then since
φ3 = x′ , we have x′′(t) = p dp

dx
. It follows

1

2

dp2

dx
− 2ip2 = 2iαβe8ix, p(0) = γ,

and we have p2(x) = (γ2 − αβ)e4ix + αβe8ix. Thus, we obtain

e~ti∂u∂ve
1
~ (αu2+βv2+2γuv)

=
1√

1−4iγt−4(γ2−αβ)t2
e

1
1−4iγt−4(γ2−αβ)t2

1
~ (αu2+βv2+(γ−2i(γ2−αβ)t)2uv)

,
(49)



24 Omori, Maeda, Miyazaki, Yoshioka

where the ambiguity of the sign of
√

1− 4iγt+ 4(αβ − γ2)t2 will be discussed in
§6.3.

Set t = 1
2
. Then, we have the intertwiner I ◦· from the Weyl ordering to the

normal ordering:

(a′, b′, c′; s′) = I ◦· (a, b, c; s) =
1

1−2ic−D (a, b, c− iD; s
√

1−2ic−D), (50)

where D = c2 − ab .

Proposition 22. I ◦· (e
1
~ (au2+bv2+2cu·v)
· ) is singular if and only if (1−ci)2+ab = 0.

It is easy to see that D′ = (c′)2 − a′b′ = D
1−2ic−D

, and the inverse mapping

I ·◦ = (I ◦· )−1 is given by setting t = −1
2
. Indeed, we have

I ·◦ (a
′, b′, c′; s) =

1

1 + 2ic′ −D′ (a
′, b′, c′ + iD′; s′

√
1 + 2ic′ −D′ ).

To confirm the result, we check that applying the intertwiner I ◦· given by (50)
through (49) to the l.h.s. of (28) gives the normal ordering expression given in
Proposition 9.

6.3. The case e−i~∂2
u .

Remark first that the intertwiner from the normal ordering w.r.t. (u, v) to

that w.r.t.(u′, v′) = (u+ v, v) is given by e−
i~
2

∂2
u .

Consider now the operator d
dτ
f = i~∂2

uf , and set

f = s(τ)e
1
~ (φ1(τ)u2+φ2(τ)v2+2φ3(τ)uv). (51)

Thus, we have

(φ′1(τ), φ
′
2(τ), φ

′
3(τ); s

′(τ)) = (4iφ1(τ)
2, 4iφ3(τ)

2, 4iφ1(τ)φ3(τ); 2iφ1(τ)s(τ)).

The solution (51) with the initial data (φ1(0), φ2(0), φ3(0); s(0)) = (a, b, c; s) is
obtained as follows:

(φ1(t), φ2(t), φ3(t); s(t)) = (
a

1− 4iat
,
b+ 4iDt

1− 4iat
,

c

1− 4iat
;

s√
1− 4iat

) (52)

where D = c2 − ab . Setting t = −1
2
, we have the intertwiner

(a′′, b′′, c′′; s′′) = I ¦◦ (a, b, c, s) =
1

1 + 2ia
(a, b−2iD, c; s

√
1+2ia). (53)

It is easy to see D′′ = (c′′)2 − a′′b′′ = D
1+2ia

. The reversed relation of (53) is given

by setting t = 1
2
:

(a, b, c; s) = (
a′′

1−2ia′′
,
b′′+2iD′′

1−2ia′′
,

c′′

1−2ia′′
;

s′′√
1−2ia′′

).

By a similar calculation, we have eti~∂2
v : Consider the operator d

dτ
f = i~∂2

vf ,
and set f as in (51). The solution with the initial data (φ1(0), φ2(0), φ3(0); s(0)) =
(a, b, c; s) is given by:

(φ1(t), φ2(t), φ3(t); s(t)) = (
a+ 4iDt

1− 4ibt
,

b

1− 4ibt
,

c

1− 4ibt
;

s√
1− 4ibt

) (54)
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Then, we have the intertwiner from the normal ordering w.r.t. (u, v) to
that w.r.t. (u, u+ v) is given by

I •◦ (a, b, c; s) =
1

1− 2ib
(a+ 2iD, b, c; s

√
1− 2ib).

We now combine the above results. The general intertwiner is obtained
by composing (50), (52), (54). For instance, the intertwiner I ¦· from the Weyl
ordering to the normal ordering w.r.t. 1√

2
(u− v, u+ v) is given by

I ¦· (a, b, c; s) =
1

1+i(b−a)−D (a−iD, b+iD, c;
√

1+i(b−a)−D).

It is remarkable that intertwiners between exponential functions of quadratic forms
contain always ± ambiguity on the amplitude.

The following shows that polar element is defined globally only as a two-
valued element:

Proposition 23. For a canonical conjugate pair u′ = au + bv, v′ = cu + dv
with ad− bc = 1, then

e
i~
2

(−bd∂2
u+(ad+bc−1)∂u∂v−ac∂2

v)
√−1e

2i
~ u◦v
◦ =

√−1e
2i
~ u′ ¦v′
¦

where ¦ means the normal ordering w.r.t. (u′, v′).

7. Gluing via intertwiners

In this section we first want to glue C3 × C∗ and C3 × C∗ together by the
intertwiner I ◦· , where I ◦· is the intertwiner from the Weyl ordering to the normal
ordering w.r.t. (u, v). Let I ·◦ be the inverse of I ◦· . Let P ◦

· , P ·◦ be the phase part
of the intertwiners I ◦· , I ·◦ ;

P ◦
· (a, b, c) =

1

1−2ic−D (a, b, c− iD), P ·◦ (a
′, b′, c′) =

1

1+2ic′−D′ (a
′, b′, c′ + iD′).

Recall that
I ◦· (a, b, c; s) =

(
P ◦
· (a, b, c);

s√
1−2ic−D

)
.

By Proposition 22, it is not hard to see that P ◦
· ((Vµ−{c = −i}) ⊂ Vν and

P ·◦ (Vν−{4a′b′ = −1}) ⊂ Vµ . Then, the space of vacuums is preserved by the
intertwiner.

To understand such gluing, we define Σ = {(x, y, z) ∈ C3 | z2−xy = 0} .
Make a copy C3 − Σ′ of C3 − Σ, and consider a holomorphic diffeomorphism

T0 : C3 − Σ→ C3 − Σ′, T0(x, y, z) = − 1

z2 − xy (x, y, z),

Gluing two C3 by T0 , we have a complex 3-dimensional manifold B3 . On the
other hand, consider

∆ : C3 → C, ∆(x, y, z) = z2 − xy. (55)
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Reminding the identity ∆T0(x, y, z) = 1
∆(x,y,z)

, we extends ∆ naturally to the

mapping of B3 onto the riemann sphere S2 = C∪ {∞} . We denote this mapping
by the same notation ∆ : B3 → S2 .

We now consider the functions given by intertwiners:

fµ(a, b, c) = 1− 2ic−D, fν(a
′, b′, c′) = 1 + 2ic′ −D′, (56)

where D = c2−ab , and D′ = (c′)2−a′b′ . Take new coordinate functions as follows:

(x, y, z) = (a, b,−(c+ i)), (x′, y′, z′) = (a′, b′, c′ − i).

We see easily that ∆(x, y, z) = −fµ(a, b, c), ∆(x′, y′, z′) = −fν(a
′, b′, c′). Hence,

the manifold B3 glued by T0 is obtained also via the gluing diffeomorphism
Tµν : C3 − {fµ = 0} → C3 − {fν = 0} :

(a′, b′, c′) = Tµν(a, b, c) =
1

fµ(a, b, c)
(a, b, c− iD). (57)

Indeed (57) is equivalent to

(
a′, b′, c′ − i) = − 1

(c+i)2 − ab
(
a, b,−(c+ i)

)
.

Considering the path replacing i by τi; τ ∈ [0, 1], we see the mapping fµ ∪ fν :
B3 → S2 is homotopic to ∆. Therefore, we must consider the gluing of C3×C∗
and C3×C∗ by T̃µν , where

T̃µν(a, b, c; s) =
( 1

fµ

a,
1

fµ

b,
1

fµ

(c− iD);
1√
fµ

s
)
. (58)

As we look for the group-like object generated by exponential functions of
quadratic forms, we want to glue C3−Vµ and C3−Vν by P ◦

· (a, b, c). We denote the
glued manifold by B̃3 = B3−{vacuums} , where B̃3 is simply connected. Through
the adjoint mapping Ad(g), B̃3 is diffeomorphic to SLC(2). Hence, we must glue
(C3 − Vµ)×C∗ and (C3 − Vν)×C∗ by T̃µν given in (58). However, the gluing is
impossible as a manifold. Otherwise, we must obtain a nontrivial double over of
SLC(2).

Thus, we need a little wider notion, which seems similar to an object of a
gerbe of Giraud, or it may be better to say a flat unitary Diximier-Douady sheaf
of groupoids (cf. [Br]). Since these mathematical lingo does not fit directly to
our situation, we prefer to use other languages. These will be given in the next
subsection.

7.1. Blurred C∗ -bundles.

We introduce a notion of blurred C∗ -bundles on S2 as follows: For a
simple open covering U = {Uα}α∈Λ of S2 , we give a system of holomorphic
transition functions tαβ : Uα ∩ Uβ → C∗ such that tαα = 1, tαβ = t−1

βα , but

tαβtβγtγα ∈ {e 2πik
m ; k ∈ Z} on Uα ∩ Uβ ∩ Uγ 6= Ø. tαβ is viewed as the gluing

diffeomorphism

Tαβ : Uβ×C∗ → Uα×C∗, Tαβ(p, z) = (p, tαβ(p)z).
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Set tαβ(p) = e2πiλαβ(p), λαβ(p) ∈ C , where λαβ = −λβα , λαα = 0.

For Uα ∩ Uβ ∩ Uγ 6= Ø, we set `αβγ = (δλ)αβγ so that tαβtβγtγα = e2πi`αβγ .
Then, ` = {`αβγ} is a Čech 2-cocycle over 1

m
Z . Two such systems {U , {tαβ}} ,

{U , {t̃αβ}} are said to be equivalent, if {`αβγ} and {˜̀αβγ} defines the same coho-
mology class in H2(S2, 1

m
Z). We call this equivalence class a blurred C∗ -bundle

over S2 and denote this by M( 1
m

)

S2 . This notion seems a simple example of gerbe
of Giraud (cf. [Br] §4 and §7).

Proposition 24. If {U , {tαβ}}, {U , {t̃αβ}} are equivalent, then {tmαβ} and

{t̃mαβ} define the same C∗ -bundle.

Proof. Suppose there is a 1-cochain {ξαβ} ⊂ 1
m
Z such that

˜̀
αβγ − `αβγ = ξαβ + ξβγ + ξγα.

Setting λαβ−λ̃αβ−ξαβ = Mαβ so that t̃−1
αβtαβe

−2πiξαβ = e2πiMαβ , we see that {Mαβ}
is a Čech 1-cocycle over holomorphic functions O . Note that H1(S2,O) = {0} .
Thus, we set Mαβ = ηα − ηβ , where ηα, ηβ are holomorphic functions on Uα, Uβ

respectively. The replacing t̃αβ by e2πiηα t̃αβe
−2πiηβ is a gauge transformation. Since

λαβ − ξαβ = ηα + λ̃αβ − ηβ,

and e2πmξαβ = 1, {t̃mαβ} and {tmαβ} define the same C∗ -bundle over S2 . 2

Thus, if H2(N ; 1
m
Z) = {0} , then the restriction M( 1

m
)

N on a subset N of S2

gives a genuine C∗ -bundle over N . We see that restrictions M( 1
m

)

S2

∣∣
C and M( 1

m
)

S2

∣∣
C′

are trivial C∗ -bundles. We denote also by M(1)

S2 the C∗ -bundle defined by using

{tmαβ} as transition functions. The projections π : M( 1
m

)

S2 → S2 , π̃ : M(1)

S2 → S2

are well defined. M( 1
m

)

S2 is naturally viewed as a m-covering space of M(1)

S2 . We

call M( 1
m

)

S2 the blurred m-covering space of M(1)

S2 .

Now, we define the blurred C∗ -bundle M( 1
2
)

S2 such that M(1)

S2 is the tauto-
logical C∗ -bundle of C2 − {0} , and consider the desired glued object as the pull

back of M( 1
2
)

S2 . Consider the pull-back ∆∗M( 1
2
)

S2 of M( 1
2
)

S2 via the map ∆ : B̃3 → S2

given by (55). We remark that blurred bundles over B3 are always considered
as pull-back bundles. That is, we use only coverings of B3 obtained by the pull
back ∆′−1U by ∆′ which is homotopically equivalent with ∆. Hence, this will be

denoted by ∆∗M( 1
2
)

S2 .

7.2. Involutive distributions.

Let ∆∗M( 1
2
)

S2 be a blurred C∗ -bundle over a manifold B3 . Though this
forms neither a manifold nor has an underlying point set, several notions defined
on manifolds work under the condition that these are invariant under the 2-to-2
local coordinate transformations.

The projection ∆∗M( 1
2
)

S2 → B3 is welldefined. The notion of distributions

is also welldefined on ∆∗M( 1
2
)

S2 , and a notion of involutive distribution can be
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given. An involutive distribution is understood as a horizontal distribution of a
flat connection on an object of gerbe.

If an involutive distribution is restricted on an open subset N where

∆∗M( 1
m

)

S2

∣∣
N

is a genuine C∗ -bundle, then we can take an integral submanifold

as a point set. By viewing S2 as the riemann sphere C∪C′ glued by z ↔ z′ = 1
z
,

restricted bundles ∆∗M( 1
m

)

S2

∣∣
∆−1C , ∆∗M( 1

m
)

S2

∣∣
∆−1C′ , form genuine C∗ -bundles re-

spectively.

Distributions Dµ and Dν are glued together by T̃µν , and gives a distribution

on ∆∗M( 1
2
)

S2 . If one understands this distribution as a horizontal distribution of a
connection, then the curvature of this connection is identically 0. In spite of this,
integral submanifolds M3 and N3 given in §3.1, §3.2 can not be glued together as
a manifold. How the union M3

∗∪N3
∗ should be considered ? Apparently we have no

way to explain such object directly in the set theoretical term. The only possible
way is to give the whole collection of usage, or axioms of total applications. The
notion of gerbes is the one of this direction.

¿From this point of view, we prefer the following explanation, because this
is simple and intuitive: M3

∗ ∪ N3
∗ is the maximal “blurred integral submanifold”

of Dµ ∪ Dν , glued together by a 2-to-2 local diffeomorphism. This looks like a
non-trivial double cover of SLC(2).

7.3. ∗-exponential mapping.

In §4, we showed in that the ∗-exponential mapping exp∗ is a holomorphic
mapping of C3 − Πµ into M3 ⊂ (C3 − Vµ)×C∗ . Let Πν be the subset where

e
1
~ (au2+bv2+2cuv)
∗ is singular in the normal ordering w.r.t. (u, v). Then, exp∗ :
C3−Πν → (C3 − Vν)×C∗ is a holomorphic mapping, and exp∗(C3−Πν) ⊂ N3

∗ .
Since Πµ∩Πν = Ø, the ∗-exponential mapping is defined from C3 into the “space”

∆∗M( 1
2
)

S2 .

8. Concluding remarks

We saw that Dµ ∪Dν is viewed as a horizontal distribution of a connection

defined on ∆∗M( 1
2
)

S2 . Since this is involutive, the curvature of this connection

vanishes identically on B̃3 . However, it is natural for physicists to say that the
curvature tensor is supported only on equilibrium states (cf. Corollary 7).

The maximal integral submanifold M3
∗ ∪ (ε00 ∗M3

∗ ) contains the double
covering group of SLR(2) = Sp(2;R), which may be regarded as the metaplectic
group Mp(2;R). Thus, M3

∗ ∪ (ε00 ∗M3
∗ ) may be viewed as a complexification

of Mp(2;R). It is obvious that there is no such Lie group in the genuine group
theory. Moreover, M3

∗ ∪ (ε00∗M3
∗ ) contains the double covering group of SU(1, 1)

as another real form than Mp(2;R).

As a matter of cause, M3 ∪ (ε00∗M3) can not be recognized as a genuine
object of mathematics based on the point set theory, since it is not a point set. In
spite of this, we want to claim that such objects should be involved appropriately
in the rigorous mathematics after relaxing the definition of manifolds.

Strange elements such as ε00 are not recognized as members of the set
theory. However, for physicists such elements are easily acceptable, because they
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are computable. Physicists may have already used such elements heuristically in
the calculus of Feynmann diagram. We might think that the connection between
mathematics and physics is not so straight within the set theoretical mathematics.
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tion of Fréchet-Poisson algebras –Convergence of the Moyal product–,
Math. Phys. Studies. 22 (2000), 233-246.

[OMMY2] H.Omori, Y.Maeda, N. Miyazaki, A.Yoshioka, Deformation quantiza-
tions of the Poisson algebra of Laurent polynomials, Lett. Math. Phys.
46 (1998), 171-180.

[OMMY3] H.Omori, Y.Maeda, N. Miyazaki, A.Yoshioka, Deformation quantiza-
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