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Abstract

Let (M,g) be a pseudo-Riemannian manifold. We propose a new approach for
the conformal Schwarzian derivatives. These derivatives are l-cocycles on the group
of diffeomorphisms of M related to the modules of linear differential operators. As
operators, these derivatives depend only on the conformal class of the metric g. In
particular if the manifold (M, g) is conformally flat, these derivatives vanish on the
conformal group O(p + 1, ¢ + 1), where dim(M) = p + ¢. This work is a continuation
of [1, 3] where the Schwarzian derivative was defined on a manifold endowed with a
projective connection.

1 Introduction

Let S! be the circle identified with the projective line RP*. For any diffeomorphism f of
S1, the following expression

_ @) 3 (@)
s = -3 (5) (1)

where z is an affine parameter on S, is called Schwarzian derivative (see [5]).
The Schwarzian derivative has the following properties

(i) Tt defines a 1-cocycle on the group of diffeomorphisms Diff(S1) with value in dif-
ferential quadratics (cf. [12, 19]).

(i) Its kernel is the group of projective transformations PSL2(R).
The aim of this paper is to propose a new approach for the multi-dimensional conformal
Schwarzian derivative. This approach has recently been used in [1, 3] to introduce the
multi-dimensional “projective” Schwarzian derivative. The standpoint of our approach is
the relation between the Schwarzian derivative (1.1) and the space of Sturm-Liouville
operators (see e.g. [20]). The space of Sturm-Liouville operators is not isomorphic as
Diff(S!) —module to the space of differential quadratics. More precisely, the space of Sturm-
Liouville operators is a non-trivial deformation of the space of differential quadratics in
the sense of Neijenhuis & Richardson’s theory of deformation (see [17]), generating by the
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1-cocycle (1.1) (see [11] for more details). From this point of view, we believe that the
multi-dimensional Schwarzian derivative is closely related to the modules of linear differ-
ential operators. To explicate our approach, let us introduce some notations.

Let M be a smooth manifold. We consider the space of linear differential operators with
arguments are A—densities on M and values are p—densities on M. We have, therefore,
a two parameter family of Diff (M)~modules noted D, ,(M). The corresponding space
of symbols is the space of fiberwise polynomials on T*M with values in d—densities,
where § = u — A. Denote this space by Ss(M). The space Dy (M) is not isomorphic as
Diff(M)—module to the space Ss(M) (cf. [9, 15]). One can distinguishes two cases:

(i) f M = R” is endowed with a flat projective structure (i.e. local action of the
group SL,+1(R) by linear fractional transformations) there exits an isomorphism between
Dy,.(R") and 85(R™), for § generic, intertwining the action of SLyy1(R) (cf. {15]). The
multi-dimensional “projective” Schwarzian derivative was defined in {1, 3] as an obstruc-
tion to extend this isomorphism to the full group Diff (R").

(ii) If M := R™ is endowed with a flat conformal structure (i.e. local action of the con-
formal group O(p + 1,¢ + 1), where p 4 ¢ = n), there exists an isomorphism between
D, ,(R™) and S5(R™), for & generic, intertwining the action of O(p+1, ¢+ 1) (cf. [8, 9]). Ir
this paper we introduce the multi-dimensional “conformal” Schwarzian derivative in this
context. Recall that in the one dimensional case these two notions coincide in the sense
that the conformal Lie algebra o(2,1) is isomorphic to the projective Lie algebra sly(R).

2 Differential operators and symbols

Let (M,g) be a pseudo-Riemannian manifold of dimension n. We denote by T' the Levi-
Civita connection associated to the metric g.
2.1 Space of linear differential operators as a module

Let F\(M), or F) for simplify, be the space of tensor densities on M. This space is
nothing but the space of sections of the line bundle (/\"T*M)®’\. One can define naturally
a Diff(M)-module structure on it as follows: let f € Diff(M) and ¢ € Fy. In a local
coordinates (z?), the action is given by

fré=d¢of (), 2.1)

where J; = |Df/Dz| is the Jacobian of f.
Differentiate the action above one can obtain the action of the Lie algebra of vector fields
Vect(M).

Example 2.1 Fy = C®(M), F; = Q*(M) (space of differential n—forms).

Let us recall the definition of a covariant derivative on densities. If ¢ € F), then V¢ €
QY (M) ® F) given, in a local coordinates, by

Vi¢ = 0;¢ — AL,

with I'; = T'%.. (Here and bellow summation is understood over repeated indices).
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Consider now D) , (M) the space of linear differential operators acting on tensor den-
sities
A: f)\ — .7‘-”. (2.2)
The action of Diff (M) on D, ,(M) depends on two parameters A and p. This action is
given by the equation
Pruld) = fro Ao f, 2.3)

where f* is the action (2.1) of Diff (M) on F).
Differentiate the action above one can obtain the action of the Lie algebra Vect(M).
The formulze (2.1) and (2.3) do not depend on the choice of a system of coordinates.
Denote by 'D?\,“(M ) the space of second-order linear differential operators with the
Diff(M)-module structure given by (2.3). The space D?\’M(M) is in fact a Diff(M)-
submodule of D, ,(M). :

Example 2.2 The space of Sturm-Liouville operators on S!: 3‘-1;27 +u(z) s Foyjo = Fajas
where u(z) € F, is the potential, is a submodule of D%, ;(S?) (see [20]).

%

3
2

D

2.2 The module of symbols

The space of symbols, Pol(T*M), is the space of functions on the cotangent bundle 7"M
polynomial on the fibers. This space is naturally isomorphic to the space S(M) of symmet-
ric contravariant tensor fields on M. In a local coordinates (zi, &;), one can write P € S(M)
in the form

P=) Prrtg, gy,

1>0
with Pt (g) € C®(M).
One defines a one parameter family of Diff (M)—module on the space of symbols by
Ss(M) :=S(M) @ Fs.

Let us explicate this action.
Take f € Diff (M) and P € Ss(M). Then, in a local coordinates (z*), one has

5P = FP-(), (2.4)

where J; = |Df/Duz| is the Jacobian of f, and f* is the natural action of Diff (M) on
S(M).
We have then a filtration of Diff (M)—module given by

Ss(M) = P S§(M),
k=0

where S¥(M) is the space of contravariant tensor fields of degree k endowed with the
Diff(M)—module structure (2.4).
We are interested to study the space of contravariant tensor fields of degree less than

two noted Ss2(M) (i.e. Ss2(M) := SF(M) & S§ (M) & §3(M)).

3
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2.3 Conformally equivariant quantization

The quantization procedure explained in this paper was first introduced in [9, 14]. By an
equivariant quantization we mean an identification between the space of linear differential
operators and the corresponding space of symbols, equivariant with respect to the action of
a (finite) sub-group G C Diff(R"™). Recall that in the one-dimensional case the equivariant
quantization process was carried out for G = SLy(R) in [7] (see also [11]).

Following [9], there exists, for n > 2, a quantization map

Q : Ss2({M) — D?\YH(M),

given: for all 5#] nt2 ntl —+— , and for each P = P‘szf + PPy e Ss.2(M), one

'm? 20 0 0
associates a linear differential operator given by

Q(P) = PYV,V;
+(ay ViPY 4y g7 gy Vi PR 4 PV (2.5)
+a3ViViPY + asg° gi; V.V PY + a5 ViP' + agRij P + a7 Rgi; P + B,

where R;; (resp. R) are the Ricci tensor components (resp. the scalar curvature) of the

metric g, the constants ¢y, ..., a7 are given by
o = 2(nA+1) o — A
YT 24 n(1-4) PTIIY
n(A+p—1) n2A(p — 1)
Qg = ’ Qg = )
(24 n(1-46))(2— nd) (n—2)(14+n(1-14))
nA(nA+ 1) (né - 2)
3 = a7 =

L+n(-0)2+n(1-20) T 12+ n(1-20)"®
nA(MIp(2 — A — p) + 2(nA + 1)2 — n(n+ 1))

(1+n(1—8)(2+ n(l —8))(2+n(1 — 26))(2 — né)

Gg =

The quantization map (2.5) has the following properties

(i) 1t depends only on the conformal class of the metric g.

(ii) If M = R" is endowed with a flat conformal structure the map (2.5) is unique, equiv-
ariant with respect to the action of the group O(p + 1, ¢+ 1) C Diff (R™).

Before to give the formula of the conformal equivariant map in the case of surfaces,
let us recall an interesting approach for the multi-dimensional Schwarzian derivative for
conformal mapping (see [6, 18]). First, recall that all surfaces are conformally flat. This
means that every metric can be express (locally) as

g=F'¢’go,

where 9 is a conformal diffeomorphism of M, and F is a non-zero positive function, go is
a metric of constant curvature. The Schwarzian derivative of ¢ is defined in [6, 18] as the
following tensors fields

S(y) = Q—FVdF ~ 5 AF @dF + é—g‘l(dF dF)g (2.6)
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Now we are in position to give the quantization map for the case of surfaces.
For § # 1,2,2,2, and for each P = PY§E; + P'&; 4+ Py € S52(M) one associates a
linear differential operator given by

QP) = PYV,V;
+( Vi P 4 g7 gV PH + PV (2.7)
+03V5V]'Pij + oy g“ gijVthPij + asViPi

4x(p—1) . 1 .
AT ;i PY 4 —— R, P
+ 26 3 S(T//)J + 8(6_1)3&313 + Fo,
where S(3) is the tensor (2.6), R is the scalar curvature, the coefficients ay, ..., as are

given as above.

Remark 2.3 The projectively equivariant quantization map was given in [1, 15]. The
multi-dimensional projective Schwarzian derivative is defined as an obstruction to extend
this isomorphism to the full group Diff (M). We will show in section 4 that the confor-
mal Schwarzian derivatives defined in this paper appear as obstructions to extend the
isomorphism (2.5), (2.7) to the full group Diff(M).

2.4 Remark on the cohomology of Vect(M)

The space D} (M) can be viewed as a non-trivial deformation of the module Sz s(M)
in the sense of Neijenhuis & Richardson’s theory of deformation (cf. [9, 14]). According
to the theory of deformation, the problem of “infinitesimal” deformation is related to the

cohomology group
H!(Vect(M), End(Sa s(M))- (2.8)

To compute the cohomology group (2.8) we restrict coefficients to the space of linear differ-
ential operators on Sy 5(M), noted D(S; 5(M)). This space is decomposed, as a Vect{M)-
module, into direct sum

D(S:5(M)) = @) DSEM),SP(M)),

k,m=0

where D(SE(M), SJ*(M)) C Hom(SF(M), SP(M)).

The relation between the Schwarzian derivative (1.1) and the cohomology group above
is as follows: recall that in the one dimensional case the space S¥(S') is nothing but Fs_.
In this case, the problem of deformation with respect to the Lie algebra slz(R) is related
to the cohomology group

H! (Vect(S?), sla(R); D(Fs—k, Fs-1))s (2.9)

where k,[ = 0, 1,2. The cohomology group (2.9) was calculated in [4], it is one dimension
for k = 2,1 = 0, and zero otherwise. The (unique) non-trivial class, for £ = 2, { = 0, can
be integrated to the group of diffeomorphisms Diff (S!); it is a zero-order operator given
as a multiplication by the Schwarzian derivative (1.1) (see [4] for more details).
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In the multi-dimensional case, and for & = 0, the first group of differential cohomology
of Vect(M), with coefficients in the space D(S*(M), S™(M)) of linear differential operators
from S*(M) to S™(M) was calculated in [15]. For n > 2 the result is as follows

R& Hhp(M), k—m=0,

R k-m=1m#0
1 k m — ’ ) )
H'(Vect(M), D(S"(M), 8™ (M))) = R, k—m=2 (2.10)
0, otherwise.

We believe that the infinitesimal multi-dimensional Schwarzian derivative is a cohomology
class in the cohomology group (2.10).

3 Conformal Schwarzian derivatives

Let (M,g) be a pseudo-Riemannian manifold. Denote by I' the Levi-Civita connection
associated to the metric g.

3.1 Explicit formulae for 1-cocycles on Diff(M)

It is well known that the difference between two connections is a well defined tensor fields
of type (2,1). It follows, therefore, that the difference

0f) = fT-T, (3.1)

is a well defined (2, 1)—tensor fields on M.

It is easy to see that the map f — £(f~!) defines a non-trivial 1-cocycle on Diff (M)
with value in tensor fields on M of type (2,1).

For the sake of brevity, let us denote § := f*"'g.

The expression

ANE = (8%8; - gSkgij) Vs + (2 —0n) (f(f)fj - %Symi,j sF @(f)j)

+ 8™ (Symi&si £(0)5: — 68 €(F):) (3.2)
where f(f)fj are the components of the tensor (3.1), is a linear differential operator from
S2(M) to S}(M).

Theorem 3.1 (i) For all § # 2/n, the map f — .Afj(f‘l) defines a non-trivial 1-cocycle
on Diff (M) with value in D(SE(M),S}(M)).

(ii) The operator (3.2) depends only on the conformal class of the metric g. In particular,
if M := R" is endowed with a flat conformel structure of signature p — q, this operator
vanishes on the conformal group O(p+1,¢+ 1).

Proof. To prove (i) we have to check the 1-cocycle condition

A(f o h) = K A(f) + A(R),
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for all f, h € Diff(M), and h* is the natural action on D(S}(M), S}HM)).
This condition can be checked using the following formula

Vi f3PH = [;9PH = Symi (0OAS PY) 4 00T Y (33)

for all f € Diff (M), and for all P*¥ € SZ(M).
Let us proof that, for § # 2/n, this 1- cocycle is not trivial. Suppose that there is a first-
order differential operator A = 'uSkV + v - such that

Af)="14-A (3.4)

From (3.4), it is easy to see that f*'lv,'?j —vk = (2-4n) (é’(f) k. — L Sym, ; 6F E(f)]-). The
right side of the formula above depends on the second jet of the dlﬂeomorphlsm f while
the left side depends on the first jet of f which is absurd.

For § = 2/n, the 1-cocycle (3.2) turns out to be trivial. Indeed, A(f) = 1A - 4,
where A := gs’“ gi;Vs.

To prove (i) suppose that there is a metric § conformally equivalent to g. Denote by
A(f) the operator (3.2) written with the metric §. We have to prove that A(f) = A(f).
Since the metrics g and g are conformally equivalent, there exists a non-zero positive
function F such that § = F -g. The Levi-Civita connections associated to the previous

metrics are related by
Tk =Tk + ﬁ- (Res + Fist - 1 g*gi) (3.5)

where F; = O; F.
Now the proof is a simple computation. |

The explicit formula for the 1-cocycle integrating to the group, for k = 2, m = 0, the
cchomology class of (2.10) depends on the dimension of the manifold M. Let us start with
n > 2.

For all f € Diff(M), the following

B(f)ij = (88~ 8"8i) VaVet (2+n(1—26)) (f(f) = ~Symu5’ €(f); )Vs

~26 8i; 8 6(f)eVs — 8i; 8 €)%V + 2 Symi; 8ui 7)YV

+(2 4+ n(1 - 26)) ((5 o) 6(f); - (%;% Sym, ;Vil;(f)
22Dy gy, ¢ 2R g gy O Dy pasy, )

2 Symi (&r (L5 — DRSS = 2L F)):) + BV at(1)})

88 By (C(S)5(F)u + OL(F)o(F)e = VSL(S)e) + 28 B €N 5N

n(é — 1)(né - 2)

1) (f “(Rgij) - Rgz;) (3.6)
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where £(f) is the tensor (3.1), R is the scalar curvature of the metric g, is a differential
operator from SZ(M) to SJ(M).

Theorem 3.2 (i) For all § # %2, the map f +— B(f') defines a non-trivial 1-cocycle

on Diff (M) with values in D(S2(M), SI(M)).
(ii) The operator (3.6) depends only on the conformal class of the metric g. In the flat
case, this operator vanishes on the conformal group O(p+1,¢+ 1).

Proof. To prove that the map f ~ B(f~!) is a 1-cocycle one has to check the 1-cocycle
condition

B(f o b) = W*B(f) + B(h), (3.7)
for all f,h € Diff(M), and h* is the natural action on D(SZ(M),SP(M)). To check the
formula (3.7) we use the following formulee
VSR = 3TV, PR Symu (TIPS ) + STV PR

+5 (£ PR (), - Syma (9,605 57 P) (3.8)

+SV8(); £ TP — Symi (€(NEV; £ PY) + 86(£)i V57 PH

Vb U(f)ss = BVul()S — KO Lo + B E(F) (Y + BE(F)5 LA

for all f,h € Diff(M), and for all P* € SZ(M).
Let us prove that this l-cocycle is not trivial. Suppose that there exists an operator
B :=uflV,V, + v}V, + tij such that

B(f)=f"'B-B. (3.9)

It is easy to see that f*'lvfj —vf; = (2+n(1-26)) (((f)f‘]- — 1 Sym;;6? f(f)j) . The right
side of the formula above depends on the second jet of f while the the left side depends
on the first jet which is absurd.

For § = %, the 1-cocycle (3.6) turns out to be trivial. Indeed, B(f) = f*B - B,

where B := gst g,-]-Vth - %ﬁln:_?iﬁRgi]’.

To proof (il) we use the formula (3.5).

3.2 Comparison with the projective case

Let M be a manifold of dimension n. Fix a symmetric affine connection I' on M (here I’
is any connection not necessarily a Levi-Civita one). Let us recall the notion of projective
connection (see [13]).

A projective connection is an equivalent class of symmetric affine connections giving
the same unparameterized geodesics.

Following [13], the symbol of the projective connection is given by the expression

1
k __ 1k Y P 6.
W =T-2"7 (01' Lj+9; Fz) ; (3.10)

8
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where I‘fj are the Christoffel symbols of the connection I' and I'; = F{j.

Two affine connection I' and I" are projectively equivalent if the corresponding symbols
(3.10) coincide.
A projective connection on M is called flat if in a neighborhood of each point there exists a

local coordinate system (z!,...,2™) such that the symbols Hfj are identically zero (see [13]
for a geometric definition). Every flat projective connection defines a projective structure
on M.

Let 1 and IT be two projective connections on M. Then the difference I — Mis a well-
defined (2, 1)~tensor flelds. Therefore, it is clear that a projective connection on M leads
to the following 1-cocycle on Diff (M):

C(f Y= ((f—l)*nfj — Hf;.) de' @da! ® a_i? (3.11)
This formula is independent on the choice of the coordinate system.

By definition, the tensor fields (3.11) depends only on the projective class of the con-
nection M. In particular if I1 = 0, this tensor flelds vanishes on the projective group
PSL,.+1(R).

One can define a 1-cocycle on Diff (M) with value in D(SZ(M), S}(M)) by contracting
any symmetric contravariant tensor fields with the tensor (3.11). Therefore, the operator
(3.2) can be viewed as the conformal analogue of the tensor fields (3.11). In the same
spirit, the operator (3.6) can be viewed as the conformal analogue of the “projective”
multi-dimensional Schwarzian derivative introduced in [1, 3].

4 Relation to the modules of differential operators

The goal of this section is to explicate the relation between the 1-cocycles (3.2}, (3. 6) and
the space of second-order linear differential operators D3} 4(M). Since the space D/\ (M)
is a non-trivial deformation of the space of the correspondmg space of symbols S5 ‘2(M),
where § = pu — ], it is interesting to give explicitly this deformation in term of the 1-
cocycles (3.2), (3.6). Namely, we are looking for the operator fs = Qo fr,0Q such that
the diagram below is commutative

Ssa(M) T Ssa(M)
Ql lcz‘ (4.1)
2 (M) 22 D2 ()

Proposition 4.1 If dim M > 2, for all § # 2 o, ntd —j”— —j'— the deformation of the
space of symbols Ss5,(M) by the space D2Y#(M) as lef( ) module is given as follows:

for all P = PUg&E; + P& + Py € S52(M), we have

s - (PU&&; + P&+ P°) = TYEE + T'6 + T°,
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where
TV = (fép)ijr
Ti - (fJP)i + (2_}_::’%‘;"-_{-(?))_(21)_ n6) il(f—l)(fts P)klv (42)
_ nA(p — 1) -
T = Pl =~ Gram=am s s an—e) 0 R,

and f5 is the action (2.4).
Proof. The proof is a simple computation using (3.3), (3.8) and the following formula
Vif'¢ = fVip+ M) f9
ViVif*¢ = [fViVip+ ()5 Vb + ASymi i €(f7); f*Vi¢
+ AL+ A2 007 )) 179
FRix— R = Vi€(f ™) = Vil(f™ie + 6550 im — 6 m €U,

for all ¢ € Fy, and for all f € Diff (M), where R;; are the Ricci tensor components.
]

5 Appendix

We will give a formula for the Schwarzian derivative for the case of surfaces. As explained .
in section (2.3), all surfaces are conformally flat. That means that every metric can be
express (locally) as

g = F~1Y"go,
where 1 is a conformal diffeomorphism of M, and F is a non-zero positive function, go is

a metric of constant curvature.
The explicit formula of the Schwarzian derivative in the case of surfaces is as follows:

the following
Ast A P 1 s
By(f)i; = (8%8i; —&”gi) VsVi+4(1-19) (f(f)?j = 5 Symi; i f(f)j) Vs
+8° (=268 £(f)eV s — 8i; €(F) 5V + 2 Symi ; 8ui (/)1 Vs)

+401-9) (5260 - 257 ums V600 + 1= DU+ V.40 )

8% Symi; (e (6D5L) L = LRENS; = 206(1)56():) + £V L))

+6 87 8ij (L)%l + SE(H)b(f)e = Vb(f)e) +28% &at €(F)EE(N)5
1

+(6-1) (f—l*(5(¢),,-) - S(fﬁ)ij) +3 (f‘”(Rgz-j) - Rgu‘) ;

10
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where S(%) is the derivative (2.6), £(f) is the tensor (3.1), R is the scalar curvature of the
metric g, is a differential operator from from SZ(M) to S§(M).
Theorem (3.2) remains true for this operator.
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