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Gamma factors of Selberg zeta functions

Nobushige Kurokawa (Tokyo Institute of Technology)
Shin-ya Koyama (Keio University)

1 Introduction

Multiple sine functions are generalizations of the usual sine funtion

oo 2
Si(2z) = 2sin(nz) = 27z H (1 - %) . (1.1)
n=1
The double sine function Sz(z) was firstly studied by Holder [H] in 1886 from
82(2) =e°

1—2\"
() <)
n=1 +;

(1.2)
Here we construct multiple sine functions S.(z) for r > 3 also, and we study their basic

properties containing periodicity, special values, and algebraic differential equations. (Basic
results were reported in [Kul, Ku2, Ku3]; see also [Ma] for a survey.)

For example, the triple sine function is given by
2
22 i 22\" 22
83(2) €2 E((l—ﬁ) € )

(1.3)
exp ( /0 | 7rt2cot(7rt)dt) .

(1.4)
Then we have the following expression for the famous mysterious value ((3) =

3
2 ~1
¢(3) = 8—7,;—log (83 (%) 2%> .

(1.5)
We notice that this expression (1.5) originates from an attempt of Euler [E] in 1772.
After general study of multiple sine functions, this Part I presents an application to

the explicit calculation of the gamma factors of Selberg zeta functions in terms of multiple

I
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gamma functions I',(s) of Barnes [B]. In this process, normalized multiple sine functions
and the differential equations satisfied by the multiple sine functions and expressions like
(1.5) are used crucially. The result is as follows.

Let M = I'\G/K be a compact localy symmetric space of rank one. We denote by
Zm(s,0) the Selberg zeta function with a unitary representation o of I':

Zu(s,0)= J[  [ldet —eo@)N(E)~™™),

pEPrim(M) A>0

where Prim(M) is the set of prime geodesics of M with their norm N(p) = exp(length(p)) and
) runs over a certain semi-lattice [G]. It is known that Zps{s, o) has an analytic continuation
to all s € C as a meromorphic function of order dim M and has the following functional
equation [Se, G, W]:

Zn(2p0 — 8,0) = Zp(s,0) exp (vol(M) dim(o) Ahpo /,LM(it)dt) (1.6)

with pg > 0 and pps(¢) being the Plancherel measure.
We determine the gamma factor of Zas(s,0) and obtain the functional equation of sym-

metric type:

Theorem 1.1 Let M = I'\G/K be an even dimensional compact locally symmetric space
of rank one. Put

vol(M) dim(a)(_l)dim M/2
Ta(s,0) = det (\/m_‘_ 5 — Po)

where det means the reqularized determinant, and M' = G'/ K 1is the compact dual symmetric
space with App its Laplacian. Then

)(dim M) /2—1

(P2n(8)T2n(s + 1))VO1(M) dim(e)(=1 G = S50(1,2n)

n 2\ volM) dim(g)(—1)(dim M)/2—1
(H an(s‘{*k’)(") ) ] G =SU(1,n)

k=0

FM(S, 0‘) = 2m—1 n . —vol(M) dim(c) (17)

( Lan(s + k)2 () (e ) G = Sp(1,n)

k=0
(Fw(s)Fls(s + 1)10F16(5 + 2)28F16(S -+ 3)28

XFls(S + 4)10F16(S + 5))—vol(M)dim(o) G = F4

The completed zeta function ZM(S,J) = Tm(s,0)Zp(s, o) satisfies the symmetric functional
equation: Zy(s,0) = Zp(2p0 — s, 0).
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Remark 1.2 If M is odd dimensional, the gamma factor is trivial (see Section 4). In the
case of a Riemann surface (G = SO(1,2) = SU(1,1)), this result was proved by Vigneras
[Vi] and Cartier-Voros [CV]. In the general case by using the Selberg trace formula we
moreover have the following determinant expression similar to [Sa, Vo, Ko]:

Zna(s, o) = e9C=7) det(Apy — s(2p0 — 8)),

where @ is a polynomial with deg @ < dim M/2.

The next Part II will treat special values of zeta functions generalizing (1.5) with variations.

2 Multiple Sine Functions

In this section we intoroduce multiple sine functions, which will play the central role through-
out this paper. We first introduce the multiple Hurwitz zeta function (see Barnes [B]). For
wiy-ywy >0 and z € C we put w = (wy, ...,w,) and

G(s,z,w) =) (n-w+2)7, (2.1)

n>0

where n = (ny,...,n,) > 0 means n; > 0 and n; € Zforl1 <i<r,and n-w = nyw; +
.-+ + nuwy. The series (2.1) absolutely converges for Re(s) > r. It is analytically continued
to s € C as a meromorphic function by the usual method (Barnes [B]) and holomorphic at
s e C—-{1,2,...,r}. We define the multiple gamma function by

s:O) ’

which was originally studied by Barnes [B]. We note that {;(s, z,w) = w™*((s, £) with {(s, 2)
the usual Hurwitz zeta function. Hence I'y(z,w) = (271')‘%I‘(f;)w5'% by Lerch’s formula. We
define the r-ple sine functions S,(z,w) and S,(z) by

[ (z,w) = exp(L(0, z,w) = exp (%Q(s,z,g)

Se(z,w) =T (z,w) T, (Ju] — z,g)(—l)r (2.2)

with |w| = wy + - + w, and for r > 2

G I(CICETC
- e () I () .

-1
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with P.(u) := (1 — u)exp(u + 1‘21 +++- 4+ %). For example,

sio-<1((555) ),

n=1
2

(¢-5)

Si(z) = zmﬁl (1 - ;—Z) = 2sin(n2).

Taking r = 1 gives the usual sine function:

3 I

3In

22

Si(z) =e7

o

n=1

We put

2m

$i29) = FERT - 2

= ZSin(%).
We set
§:(2) = Sn(2i (L, 1))

for simplicity. Thus
Si1(2) = Si(z,1) = S1(2) = 2sin(wz).

The double sine function S;(z) was firstly studied by Holder [H]. Later Shintani [Sh] used
Sy(z, (w1, ws)) to construct class fields over real quadratic fields. (Unfortunately they did
not name the functions.) To distinguish multiple sine functions, we call S,(z) the primitive
multiple sine function and S,(z,w) the normalized multiple sine function. The intimate
relation between these two kinds of multiple sine functions is the main theme of this paper.

Theorem 2.1 The multiple sine functions S,(z,w) satisfies the following identities:
(a) For w = (wi,...,w,) € R, put w(i) = (w1, ..., Wi—1,Wit1, .-, Wr) € R, then we have
Sp(z 4+ wi,w) = Se(z,w)Sro1(z,w(1)) 7, (2.4)
where we put So(z,') = —1.

b) For a positive integer N, we have
p

S.(Nzw)= ] S (z-&-l—(N—gg) (2.5)

0<ki<N—-1

where the product is taken over the vectors k = (ky, ..., k).
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(c)

(d)
5.(0,w) = 0.

(e) We have for any c > 0 the homogeneity
Sr(ez,aw) = Sy(z,w).

Proof. Since

Cr('saz + wiaé‘i) = Z (nlwl + -+ nwe + 25)_‘9

ny,...,nr20
n;>1

Cr(‘S?zv.‘ﬁJ_) - {r—l(sv 2, Q(Z)))
T, (z + wi,w) = [y (2,w)Tr_1(z,w(3)) 1. Hence by |w| — (2 + wi) = |w(7)| — 2, we have

Il

So(z +wiw) = Doz +wi,w) ' Tr(lw] — (2 +wi), @)Y
= (Do(z@)lro1(z@() ™) 7 (Tollel — 2,0) T (lw()] — 2,w(i))
= S’,(z,g)S’r_l(z,_@(i))'l,
which leads to (a).

Next we put
61‘(5727‘;‘1) = ;Cr(sa z,g) + (—l)rC,.(S, |£'_'-"_| - Zvﬂ)v

then
8r(z,w) = exp(£/(0, z,w)).

Since we need the details of the behavior of €,(s, z,w) around s = 0, we describe the integral

representation given by Riemann’s method:
I'l—s -
(s, m0) = —m g [ el nw)(—0

where R
—e  + (—1)el
t =
<p( ,Z,ﬂ) (1 — e—wﬂf) C. (1 — e“‘"t)

and C is the union of Cy : +00 — +€ >0, Cy: g€ (0 <0 < 27) and C3 : +¢ — +o00. Thus

&.(s, z,w) is meromorphic in s € C. Put the coefficients a,,(z,w) € Cto be

et z,w) = Z am (2, w)t™

m>—r

5
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around ¢t = 0. We compute &.(—n,z,w) = (——%an(z,u_)) and in particular £,.(0,z,w) =

ao(z,w).
To prove (b) we first compute that

¢G(s, Nz,w) = Z(nlwl—f—u-—!—n,wr-l-Nz)"

ni >0

N—¢ (nlwl + ot npwr + Z) -
n; >0

il

N

NS (3,z+k'TQ w).

0<ki<N—-1

I
[

Thus

o Naw) = ~Glo Nz + (176 (8 (H-2) )
k

i
=
/'|\
o
N
"CI)
N
+
2|
1€
N

N—s Z £, <s,z+ EN——Q,Q> .

0<ki<N—1

So we have

EO,Nzw) = Y 51(0,z+k—1'\,g,£)

~(log N) £, (o,z + ﬂ,g .
0<k;i<N~1 N

Therefore it suffices to show &,.(0, z,w) = 0. More generally we can show {.(—n,z,w) = 0
for any even integer n > 0. Indeed we see the function ¢(¢, z,w) is an odd function in ¢.

Then (c) is deduced from

with z = 0 substituted.
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The assertion (d) follows from the following calculation:

Cr(*S’ Z7‘£) = z7 + Z(nlwl + 4w + Z)—s

n; >0
n#0
., TI(1-s) 1 —t B
= L —1 2t(_ 4\s
? 2 /; ((]_ — e—Wli) .. .(1 — e—w,-t) ) ¢ ( t) dt
= 274 0(1)

as z = 0. Thus ((s,z,w) = —z *logz 4+ O(1) and so (/(0,z,w) = —logz + O(1), which
leads to
1
e (w)z
as z — 0 with some constant ¢,(w). We reach the result by substituting z = 0 to (2.2), since

we have I, (Jw],w) # 0, c0.
Lastly (e) follows from &.(s, ¢z, cw) = ¢™°6:(s, 2,w) and &.(0,z,w) = 0.4

[ (z,w) ~

Remark 2.2 The relation (c) indicates algebraicity of values at “division points”. For
example let € = §1‘32@ be the fundamental unit of (+/21) and take r = 2, w = (1,¢€), N = 3.

Then (c) is: ‘
T s (’“—zﬁf,u,e)) =3

ki=0,1,2

In [Sh] Shintani proved a deep result on a similar product:

1 € 2+26 3 1+221_ 3 221
52 (57(176)) 82 (1 + '3")(176)) S2( 3 ,(1,6)> = \J ‘—7*2—“_

We will deal with values at division points such as

P (%7(“’1"")2)) = 5 (u—;z"a(wl’w'z)) =2

in Part II.

Remark 2.3 The above properties of the multiple sine functions S,(z,w) generalizes the
well-known formulas of the usual sine function S)(z,w) = 2sin Z£:

gy kn = km
2sin(N0) = kl;lo 2sin (9 + W) and kI:]1: 2sin N = N. (2.8)
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Proposition 2.4 We have an erpression:

n>0

with @, (2) a polynomial with deg@Q, <r and 1:= (1,---,1).
Proof. We first compute

L
ozm

s, ) = (C1)s(s 4 1) (s tm = 1) Y0

n>0

It is absolutely convergent for Re(s) > r—m. In particular it converges at s = 0if m > r+1.
We further compute that

am—i—l

m—1 1
S Cr(5:5@) = (=) (ms +---+(m~1)!):;m

m log(z + n - w)
—(-D)™s(s+1)-- s+m—1)z(zi_n Sy

Therefore if m > r + 1, we have

6m+1 .
m S:Dgr(sazvu_)) ( 1) Z: Z +n- E‘J_)m
and
a'rn+1 1
- = —1)!
9zm8s szocr(57 el =) o 1)',; (lw| =z +n - w)™
1
= (=1)™(m — 1)! .
So we have for m > r + 1,
dm o
——log S;(z,w) = 77| &(s25w
dz 0zm0s|,_, ( )
1 (_1)r—1
= (=1)y"*(m —1)!

which is absolutely convergent for z ¢ {-n-w,(n +1)-w|n>0}. &
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Next we deduce some properties of S,(z). We recall that

r—1 r—1

S.(2) = exp (:_ 1) ﬁ P, (%) . (r22)

n=—od

where the product is taken over all nonzero integers n. We also defined

oo [o'e] 2
z) =2z H’ P, (i> = 27rzH (l — ——5) = 2sin 2.
n n

n=

Theorem 2.5 Forr > 2, we have 5,(0) = 1 and

g—r(z) = 12" cot(mz).

Consequently it holds that

S.(z) = exp (/Oz m ! cot(wt)dt) , (2.9)

where the contour lies in C\ {£1,+2,...}.
Proof. We compute

Sf,' r— ~ r— 1 1 i 1 - k—l -
g-(z) = # 2+Zn 1(z—n z-gn + ( ) (1+(—1)k+r 1))
r n=1 k 1
1 & 2z
-2 - -
<z+;zz-—n2>

= 2" 'rcot(mz)a

il

Theorem 2.6 For r > 2, the multiple sine function S,(z) satisfies the following second
order algebraic differential equation:

S"(2) = (1 = 2'")8U2)*S () + (r = 1)2718,(2) — 7°2" 718, (2) (2.10)

1 (r=2)

with S,(0) = 1 and S5/(0) = { 0 (r>3) "

Proof. By the previous theorem we have

L L%m) = =
dz \ 72718, # T sin’wz

—m(cot?(mz) + 1)

—n ((mlr s (z)> ).-

Il
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Remark 2.7 Wesee (2.10) is analogous to Painlevé’s differential equation of type I11. More-
over the multiple cosine function

Gl = ,._Hf (( )

n :odd

nyr—1

2

= 5,(22)% 7 8:(2)
satisfies

C/

Ei(z) = —mz" ! tan(mrz)

and the algebraic differential equation (2.10).
The polylogarithm function Lix(z) is defined by

: Zw z"
le(Z’) = -n—k
n=1

Theorem 2.8 Forr > 2, the following representations hold:

Sr(z) = exp (_ ((;W:)rl_)l Z—: (271']:'2) e ﬂzr ((2 )r)1C( ))
(Im(z) < 0) (2.11)

S,(z) = exp ( ( 7‘2;1;)'1 Z ( 27”2) k(e27riz) _ z:_,t'zr 4 _(_—(;"2_;%21_14(1,)> ,
(Im(z) > 0) (2.12)

i _ s (r—1)! (— 1) z (27rz SN cos(2mnz)
S.(z) = (2sinmz)’ Yexp [ (—1)F 30—~
o 2 2
“k:o0dd
L (r = 1) (—1)5(27&)’“ >, sin(27nz)
—(=1)7 o=y ’

(2<re2Z, 0<z<1) (213)

10
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) ot r=1 (r — 1)! —1)5(912)F & cos(2mnz
§.() = (2sinmz) ™ exp (—H) =D SLCL e
0<k<r—3 : n=1
k:even

= (r = 1)! (—1)%(27%)’“ > sin(2mnz)
—(-1)7 (2m )1 1<;—2 ] ; r—F
“k:odd -

0P ).
(3<rel1+2Z 0<z<1) (2.14)

Proof. When Im(z) < 0, by taking the contour ¢ = uz (0 < u < 1) in (2.9) and taking into
account that

1 + 872”“ —2mimt
cot(mt) = i———— =i |1+2 Z (Im(t) < 0),

1—e" —2int

S.(z) = exp (z/ A (1 +2 Z e——zﬂm) dt) .
0

we see

m=1

We reach the conclusion by calculating each term by integrating by parts:

1 r—1
r—1_a _ r—1 —
/t eXdt = (=1)"(r—1) (E A oF—e )
k=0

0

This completes the proof of (2.11). When Im(z) > 0, we deduce {2.12) similarly. For proving
(2.13) and (2.14), it suffices to look at the logarithmic derivatives of the both sides since it
is easy to see that the both sides equal 1 at z = 0. The direct calculation shows that the
logarithmic derivatives of the right hand sides of (2.13) and (2.14) are equal to 72"~ cot(7z)
by trivial cancellations and the identity

> 2
log(2sinmz) = — 3 cos(2mnz)
n
n=1

Alternatively we can show that

. — r— 1) 2 (2miz)k o
5.(2) = @sinnz) ™ exp (—((M,_)l > k,) Liv-s(e72"%)
k=0 :

7L -1 (r—1)!
+—r z5 —miz" + 2 + —————(2m,)r_l ((r)) .
(0<z<1) (2.15)

11
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We will look at the logarithmic derivative of (2.15), since the both sides of (2.15) equal 1 at
z = 0. By (2.9), the left hand side turns to

87" r—1

g,—(z) = 72" cot(mz). (2.16)

We will show that the logarithmic derivative of the right hand side of (2.15) equals to (2.16).
We have

éi log(right hand side of (2.15))
z

d

27rzz)
- r—1 —2miz
= ( log(2sin(rz)) — 27rz)' T E Li,_x(e )

T

R S ﬁ r—1
+7'Z 7rzz+2z ) (2.17)
The first term in the right hand side of (2.17) is equal to

(r —1)z""?log(2sin(mz)) + m2" " cot(mrz)

whose second term agrees to (2.16). So it suffices to show

d (T’ - 1)' = (QWZZ) —2miz ™ r—1
= (*(Qm)r 12 e

= —(r — 1)z""%log(2sin(rz)). (2.18)

By the formula
. 1.
Liy(e) = ~Lisa(e)  (k22),

the former part in the left hand side of (2.18) is equal to

U DES by - sk 1) = O

G “L(r —1), (2.19)

where we put
(2mi)kE . i
L(k): mzk 1Ll.,«_k(e 2 ) (1 SkST‘—‘l)
0 (k = 0).
Then (2.19) is equal to
(r — 1)2’_2Li1(e“2"i2) —(r—1)2""%log(1 — e™2mi%)
— ——(7‘ . l)zr—2 log(e—-wzz( miz —mz))

— (r—1)e? <log(231n(7rz)) + (% - z) m') .

12

i
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The term —(r — 1)z""%(% — z)m1 cancells with the latter part of the left hand side of (2.18).
This completes the proof of (2.15) and we obtain (2.13) and (2.14) by taking the absolute
value. 1

Examples 2.9 (a) For r =2

Sy(2) = (2sin7z)* exp (él— Z

T n?
n=1

sin(27rnz)> .

In particular

Il
[\
-
0]
>
he]
TN
=y
=
D
7
&
N’

where x_4 is the nontrivial Dirichlet character mod 4. Hence

L(2, x-4) = 27 log (32 G) 2‘%) .
(b) Forr =3

' . 22 1 < cos(2mnz z = sin(27nz 1
S3(2) = (2sinmz)* exp (gZ%—l«k;z——(;ﬁ———)— WC(“S)) .
n=1 n=}%

In particular

I
o
NI
o
o]
o

|92}

w
N
[N
N—
Il
(%)

NN
)
k]
o)
TN TN
3|~
[ V]
gt
|
=
Bw 3
|
—_
N——

Hence

(
¢(3) = §Z/flog (53 (%)_12%) .
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Theorem 2.10 The following identities hold:

(¢) o
S(z+1) = §2_(7r1.). Su(z)D)
k=1
(b)
S.(Nz)= A, <$r(z) LS, <Z+ _]\%V—__l)>N'—l ﬁ]ﬁSk (z N %) (~1)7 =k (52h)ar—k k-
k=1 a=1
with

.— 1 N ~1 Nr—1r—-1N-1 (-—l)r_k(r:l)a'_kN"—l
ArI:(Sr<N)"'Sr< N )) HHS’C(%) k-1 |

k=1 a=1

Proof. The logarithmic derivatives of the both sides of (a) coincide by Theorem 2.5, since

r—1

A T

k=1
Calculating the both sides (divided by z) at z = 0 leads to (a).
For proving (b) we first appeal to (2.9) to obtain

-;—Z log S,(Nz) = Nm(Nz)"' cot(nNz).

By the well-known formula (2.8), we see that

1d 14 a = a
N cot(rNz) = ;Elogsl(l\fz) = Z ;Elog«sl (z + ;) = Zcotﬂ' (z + ;) .
a=0 a=0

Therefore we have

N-1

%logST(Nz) = N lgzt ZO cot (z + -X—r) .

Here we note that
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Thus
diz log S,(Nz)
1 N-1 a1 r-t r—1 aNT—k a\ k-1 a
= NTn), (:+ %) +k:1(k-1) (%) G+y) o)
= d a cfT—=1\ faNT*k a

— r—1 —_ r- — _

= N ;dz logS,(z+ )-{-; -1) ( >(N) logSk(z+N) ,
which leads to the result. 1
Remark 2.11 The constant S/(1) appearing in (a) is completely determined in Lemma 3.1.

Examples 2.12

Sy(1) = =27 ; Sa(z 4 1) = —=Sa(2)S1(2),

Si(1) = =27 ; S3(z + 1) = =83(2)52(2)*S1(2),

SH(1) = —2mexp(=6¢'(~2) ; Si(z +1) = — exp(—60/(~2)8a()Sa(2)°S:()°S1 (),

SI(1) = —2mexp(—12¢'(—2)) ; Ss(z + 1) = —exp(—12('(—2))S5(2)S1(2)" S3(2)°S2(2)*S1(2)-

Lemma 2.13 Let ¢(r,k) € Z be defined by

S ()

(o)t =3 elr, k) (m +k— i )

k=1

c(r,k) =

=

Then ¢(r, k) satisfies that

for an indeterminate . In particular c(r,r) = (=1)""(r — 1)L.

Proof. Let S(n,k) be the Stirling number of the second kind [A] (13.3.16), which is the

coefficient in the expansion
n
" = Z S(n,k)(z),
k=0

where (z)x = z(z —1)--- (z —k+1). We will compute e** in two ways. First we deduce that

(1+e-—1 i%e—l

k=0

15
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Secondly we calculate that

t - - tn
&t = Z (Z S(n,k)(:c)k) ==

n=0 \k=0

(Z Sep) k)t") ()

n>k

oo
k:

Then we have

Snk), (=1 1 & e alB) 1 K < ()"
2 D k!) :Hg(_l) ¢ (1)2‘;52(*1)k (z)Z(TJ-

n!

n>k 1=0 n=0
Therefore .
Lyt (R el R (=1
S(n,k) = 4 > (-1 (z)l =G
=0
Thus . -
 ¢(n, k)(=1)F~
o= T ),
— (k—1)!
hence N
el -+ k-1
z —Zc(n,k)( b1 )

k=0
Now, the fact ¢(n,n) = (—=1)""}(n — 1)! is seen from comparing the coefficients of z"~'.n
We recall that

Su(2) = Su(z, (1, ;1)) = D(2) 7T (r — )V (2.20)

Its relation to S.(z) is given by the following theorem (the constant C, will be determined
in Theorem 3.5):

Theorem 2.14 Forr =1,2,3, ..., there exists a constant C, such that
8:(2) = C, [ [ Se(z)tH). (2.21)
k=1

Proof. We remark that r = 1 case holds with C} =1 since
Si(z) = S1(z) = 2sin(nz)

and ¢(1,1) = 1. Hereafter we assume r > 2. We first deduce that
S:(2) = " Si(z)» (2.22)
k=1

16
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for some polynomial P(z) such that deg P < r. It suffices to show that

dr+1 r
a8 52 = g lo (H Sk(::)c("k)) : (2.23)
k=1

The left hand side is equal to

Lovos (¢ I 2 (2))

- (:t‘lg;w (o= 2)+ 45 G) 1 6))
= (=1)"r! Z . :;;Hl (2.24)

n=-—0oo

Then as in the proof of Proposition 2.4, we have

dr+t o 1 (__l)r—l
i = (—1)r!
dzr+1 log S,(2) = (1) T'é rHy <(z Fn)rtl + (z—n— r)r+1) )

where , H, ("+' 1) Therefore

r A gy 1
Zc(r k)d —r IOgSk(Z) ( 1! (Z (k C(T’k) an) (z + n)rtt

k=1 n=0 =1
(e o] r 1
+ e(r, k) pH,(—1)1
The first sum over k is equal to (—n)"™! = (=1)""'n""! by the previous lemma. In the

second sum we replace n by n — k to get
oo T 1
C(T‘,k‘) angk(—l)k_l —_—.
(5 D

Here the sum over k is equal to n"~!, because

afn—1 =1 (n—k+1

(-=n+k—-1)---(=n+1) (-n+k-1\
(k —1)! '( k—1 )"’“H""’

(—l)k—l an——k

17
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Hence

r

Zc(r k‘) — log Sik(z)

k=1

lrlrl S nrtL
(=1)r! (Z( P gm)

by (2.24), and we reach (2.23). Thus we obtain (2.22).
Next we prove by induction on r that the polynomial P(z) is a constant. It holds by
(2.22) that

Si(z+1) = PED ] Se(z + 1) (2.25)
k=1

The left hand side is computed by Theorem 2.10 (a) as
¢S (2)S,_1(z) - Sk(z)(;:i) - 84(2)
for some constant ¢, which equals by (2.22) and by the assumption of induction for $;(2), ..., Sy-1(2)
" (eP(z)Sr(Z)c(r,r) . Sl(z)c(r,l)) (Sr‘l(z)c(r—l,r-—l) .8, (Z)c(r—l,l))r-l L Sl (Z)c(l,l)
. C/reP(z Sr(z)a(r)sr_l(z)a(r—l) . Sl(z>a(l)

with

a(k) = Z (’l": ll)c(l,k).

I=k
The right hand side of (2.25) is by (2.4) equal to

Fl=+1) H (Sk(z)sk_l(z)_l)dr.k) - _eP(z+l)Sr(z)c(r,r)Sr_l(z)c(r,r—l)—c(r,r) . Sl(z)c(r,l)—c(r,Z)

k=1

since ¢(r,r) = 1 and Sp(z,-) = —1# Thus we have by comparing the both sides of (2.25)
CI’CP(Z)Sr(Z)a(r) . Sl(z)a(l) — _eP(z+1)Sr(Z)c(r,r)Sr_l(Z)c(r,r—l)—c(r,r) . Sl(z)c(r,l)-—c(r,z).

So there exist b(k) € Zsuch that

__c/IeP(z)—P(z+1) — H Sk(z)b(k). (226)
We can compare the order of zeros at z = —n (n = 1,2,3,...) of both sides of (2.26) by using

the identity .
Fk(z)' . er(z) HPIc (__)an

n=1

18
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with some Q4(z) € (2] such that deg @, < k, which can be proved in exactly the same way
as in the proof of Proposition 2.4 (see the proof of Theorem 3.7 below).
Thus we have for n = 1,2, 3, ... that

r

S b(k) kHa = Y b(k) (" :f'l" 1) = 0. (2.27)

k=1

The left hand side of (2.27) is a polynomial in n whose degree is less than r. Therefore we
have b(k) = 0 for k = 1,2,...,7. Thus 'eP(H=P(+1) = 1 and it is necessary that

P(z)=a+bz (2.28)

for some constants a and b with b € 2m/—17Z
It remains to show that b = 0, we consider the identity

S.(22) = PG (22)7) ... 5 (22 e(r1) 2.29
)

The left hand side of (2.29) is equal to by Theorem 2.10 (b) (N = 2)

S.(22) = " (sr(z)s, (z + %))2

1 -(rz3)r 1 ((z3)2r— 1 (~1)7"!
X Sr_q <Z+§) Sro2 (Z+§) S (Z+§) .

So, by the assumption of the induction

-1

. r d(k)
S.(22) = c;mezr—x(P(z)+P(z+§)) H Sk(z)c(k)Sk (z + %) (2.30)

k=1

for some c(k),d(k) € Z On the other hand the right hand side of (2.29) is equal to
- e(ryr)
1\ ® (D)
P(22) t . -}
e (S,(z)s, (z + 2) S (+ 2)
r— 1 (:::) C(r’r—l) 1 c(r,l)
X Sr_l(Z)"'S,«_; (Z+ 9 ) et (SI(Z)SI <Z+§>)

r , 1 d’(k)
= "I ] Si(2)" WSk (z + 5) (2.31)

k=1

for some ¢'(k),d'(k) € Z, where we used the formulas (2.4) and (2.5) for w = (1, ..., 1):
S (z41) = S (2)Sr-1(2)?
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and o
r k k
Sr(22) = H S, (z + —2—) .
k=0

By comparing the order of zeros at z = —n and z = —n - 3 of (2.30) and (2.31) for
n=1,2,3,.., we have c(k) = ¢(k) and d(k) = d'(k) for k =1,2,...,7. Hence

cll/lezr‘l (P(z)+P(z+%)) — F22)
Taking (2.28) into account, it follows that M bA a2 — gdhata for )l z € C. Hence

b=0byr>2. 1
The following differential equation is crucial for later use.

Theorem 2.15 g )
Pr _(_1y—1 z =
5 (z) = (-1) (7‘ B l)wcot(ﬂz) (2.32)

Proof. The logarithmic derivative of (2.21) shows

S . S
S o)=Y elr ).
r =1 k
So by inverting it holds for some ¢(r, k) € Q that
S/ . Y
F(2) = > e, k)S—’“(z).
r k=1 k
Hence by Proposition 2.5 it follows that
S, —~ k-1
—57(2) = Zc (r,k)z w cot(mz).
4 k=1

Thus it suffices to prove that

r

d(r,k)zEt = (=1) (i B i) (2.33)

k=1

By inverting (2.21) we have for some constant C; that

S.(z)=C, H Si(2)° P,
k=1
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Let N be the least common multiple of the denominators of ¢/(r,k). We will compare the
order of zeros of the both sides of

5.2 = CV T Su(z)Veh
k=1

at z = —m for m = 1,2,3,.... For the left hand side it is equal to the order of poles of
T, (2)N at 2 = —m, which is N ,H,.. On the other hand for the right hand side it is equal

to N Xr: d(r,k)(—m)*1. Hence
k=1

> (k) (—m)* = Hp = (mtr—1).(m+1)
(r = 1)!
k=1
for m = 1,2,3,.... Therefore as a polynomial in z, it holds that
g _ (mztr—D)e(et ) (<) Me—1) (e —r+1)
ZC(T,k)-T B (r—1)! B (r—1)!

k=1

il

(-1)’*(1" - D.

3 Calculations of Constants and Special Values

In this section we determine the constants C, for r > 2. As its application we obtain an
expression of ((3) in terms of triple sine functions.

S!(1) = —2mexp <42 3 (;:11)5’(1 —1)) .

Lemma 3.1

1<i<r
odd

Proof. The case r = 1 is easily seen from Sj(1) = —2x. Suppose that r > 2. Then by the
expressions (2.13) and (2.14) we have

—27 exp (-—%;r—ir—l_): lsg_s @%—((r - k)) (r € 27)

odd
)

si(1) = .
—2m exp (—%;T_);_)—I‘ z Qﬂ)k(—__i).;_c(r_k)) (rel+27Z r>3)
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since the function f(z) = (2sin mz)* " satisfies f(1) =0 and

r-1_p2sinmz

()= i]_il’{(Q sinmz) i = —2m.

Putting r — k = I, we see the both cases equal

—27 exp ( (r—1)! Z _;_, 1((”)

S(1)

odd

= —2mexp (—(1‘ - 1;r Fﬁhcl(l - l))

odd

= _zﬂexp(—:zl;r( )gu ))

odd
where we used

_@n(-1)T
)= S

coming from the functional equation for ¢{(s).

¢a-=0

Lemma 3.2 Let a(r,k) € Q satisfy
X -9 r—1
(207) = St
k=1

Then we have

S.(1) = exp (_2 > a(r,k)g'(—k)) = exp (—2 > a(r,l - 1)¢"(1 - z)) . (3.1)

2<k<r—1 3<i<r
even odd

Proof. Since

Go(s,2) = Go(s,2,(1,..,1)) = Z (ni+ne+--+n.+2)°= Z Ho(n+2)7°,

----- n=0

we see

¢r(s,1) = Z Hin+ 1) = Z H,_in~? :}:( S a(r,k)nk) n”

%3
- o
3
|
—

a(r,k)((s — k).

k=1

I
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r—1

Hence ('(s,1) = 3 a(r,k)¢'(s — k) and

k=1
I (1) = exp(((0,2))],—; = exp <i a(r,k)('(—k)) . (3.2)
k=1

On the other hand

¢(s,r—1) = Z Hyn+r—1)7° = Z cHy ppin™%.
n=1

Since ,H,_r31 = ’”‘"l(ri——)—_g’;——,——rﬁl = (=1 ,H_n_1, we have
Gls,r=1) = (1)) (Hopun™ = =1y (Z a(r,k)(——n)k) n=*
n=1 n=1 k=1
= (=171 a(r k) (=1)*¢(s = k).

k=1

Therefore oy
[ (r—1)=-exp ((—1)’"1 Z a(r, k)(~1)k{’(——k)) . (3.3)
k=1

The lemma follows from (3.2), (3.3) and S,(1) = T,(1)7'T(r — )=

Remark 3.3 The number a(r, k) is a shifted version of the Stirling number of the first kind
s(r,k) [A] (13.3.15):

(X)r =Y s(r,k) X"
k=0
Lemma 3.4 .
1fr—1
> etratri -0 = (-1 (2)):

k=1

Proof. We have
Zr X+k—-2
( 1)r_l( 1)"—1 C(T’ k)( k - 1 )

k=1
r k
= Z C(T', k’) <Z a(k’l _ 1)Xl—1>
k=1 =1
=1 k=1
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Comparing the coefficients of X'~ for the both sides leads to the result.n

Theorem 3.5 The constant C, in Theorem 2.14 is given by

(r € 27)

C = 1
r e2C'(l—7‘) (r cl+ ZZ r > 3) .
Proof. Since S;(1) = 0 and Sj(1) = —2m, we have from (2.21) that
81(1) = —2xC, [ [ Se(1)*P.
k=2

We will compute

_ Sr"(l) . —c(r,k)
Cr =5 klz]zsk(u .

It equals
exp (_2 Z (:: 11) CQ-0+2 Z; (; e(r, k)a(r,l — 1)) ¢'(1 - z)> , (3.4)

since Lemma 3.2 gives that

Sk(1) = exp (—2 > a(k,l-1) g(1—z))

1<i<k
odd

The sum over k in (3.4) is computed as (;:i) by Lemma 3.4 since { are odd. The theorem

follows.a

Examples 3.6 We have
Si(2) = Si(z)
Sa(z) = Sa(2) 7154 (2)
S3(z) = e¥'("D 55(2)25,(2) 351 (2)
Si(z) = S4(2)78S3(2)2 Sa(2)” "51(2)
and thus
Si(z) = S1(2)
Sy(z) = S3(2)7'Si(2)
Sa(z) = e ¢ DS,(2)185(2) 2 81(2)
Su(z) = e X' D8, (2)585(2)Sa(2) "% Su(2).
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Theorem 3.7 It holds that
r r (“l)r—l
§:(2) = G [ Tule) ™" (H Fk(~z)-°‘*7k>) :
k=1 k=1
Proof. By substituting (2.20) to (2.21), we have
S5:(2) = G, [ Tr(z) =0 T Tk — 2) 5, (3.5)
k=1 k=1
The formula (k — z) = Ti(k — 1 — 2)[ea(k — 1 — 2)7" gives that
—z) = H I;(—2)*®9)
with a(k,j) = (—l)k“j(f) € Z. We note a(k,0) = (—1)*. Thus we can put b(r,k) € Zso

that
r r (—=1)r—?
Tk - Z2) VR = (H Fk(—z)_b(”k)) .
k=1 k=1

Therefore (3.5) becomes

r r (_l)r_l
S:(2) = C [ Te(z) =0 (H rk(—zrb(f*k)) . (3.6)
k=1 k=1

To show that b(r,k) = ¢(r, k), we compute the order of zeros at z = n (n =1,2,3,..) for
the both sides of (3.6). Some direct calculations show that

lo P _—
s=0 ak+1 g( HI;[O k( nwy + - nkwk)>)

where n > 0 means the same as in (2.1). Thus we have

Fk("v’;‘_‘i)—l = () Hl Py (—n:zw)

n>0

ak+2

gakvigs (o5

with some polynomial Q) whose degree in z is not greater than k. When w = (1, .., 1) it
becomes
H,
1_ Qk(z) P (—_)k n
Ti(2)” =€ H T
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with deg Q) < k. Hence the order of zeros at z =n (n =1,2,3, ...y of (3.6) is

nTt = (1) b(r, k) pHo

k=1
As this is valid for n = 1,2, 3, ..., we deduce that b(r, k) = c(r, k)1

¢(3) = §77fi10g (33 (%)‘1 2%> . | (3.7)
¢@3) = 163”2 log (53 (%)_1 :ﬁ) . (3.8)

¢(3) = 47?log(Ss3(1)) (3.9)

Proof. The assertion (a) is already proved in Example 2.9(b). For proving (b) we take
r = 2 in (2.21) with Theorem 3.5 and have S3(z) = S3(2) 7' S1(2), from which it follows that
Sy(2) = Sy(2)'S1(z). Putting r = 3 in (2.21) with Theorem 3.5 we have

Ss(2) = X0 83(2)82(2) 51 (2),
or S3(z) = e =2S3(2)58,(2) 58, (2). Substituting z = % gives

1
1 iy 1\
S (5) = e_“ 2)53 (5) 2; R

where we used S3(3) = v/2 in Example 2.9(a), which follows from

Theorem 3.8 (a)

(b)

(c)

S2(z) = (2sinz)* exp (21—“ Z W)
n=1

for 0 < z < 1. So using —('(~2) = 75¢(3) we have (3.8) from (3.7). Finally (c) follows from
(3.1) for r = 3, which turns to S3(1) = exp(—('(—-2)) = exp(z¢(3))s

Expectation 3.9 We expect S,(Q) C QU {0} and S.(Q) c QU {oo}. These would imply
that C—(%) ¢ Wby (3.7), (3.8) or (3.9). Such topics on special values would be treated in

T

Part II. Here we notice only that Sy(1) = v/2 as in Example 2.9(a) and Sa(1) = v2 by
S2(3) = 8:(3)718(3) = V2. Similarly 8;(%) = (—=1)I"12% and Sp(2) = (-1)[F12'-% for
odd integers m: the former follows from 8,(3) = V2 using Sy(z + 1) = —82(2)S1(z) listed
in Examples 2.12, and the latter is obtained by S3(%2) = S2(%)7*Si(%). (See Remark 2.2
also.)
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4 Plancherel Measures

The Plancherel measure par(t) and the constant pg > 0 in the functional equation (1.6) are
calculated by Miatello[Mi] as follows:

(0) G = SO(1,2n —1) (¢ dim M : odd)

Po =1 — 17
pnr(it) : polynomial

(1) G = SO(1,2n)

dim M = 2n,
1
pPo=n— _2'7

(i) = (— 1)"PM( ) tan(mt),

Puy(t) = 1)'t H (ﬂ (k - —) 2)

dimM =4n — 2,
1
=n— —
Po 27

pm(it) = — Pap(t)m tan(rt),

2 =, 1\?
Put) = G =1y —2)1tg (t - (’“‘ 5) )

@) G = SU(1,2n — 1)

(3) G = SU(1,2n)

dim M = 4n,
Po =",
um(it) = — Py (t)m cot(mt),
2 n—1
p _ 3 2 72y2
M) = Gz = g(t )
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(4) G=5p(l,n)

Po =N 2’
dim M = 4n,
pm(it) = Py(t)m tan(nt),

Pull) = o 1)!2(2n — <t2 = (n - %>2> : <t2 - (k - %)2>2

1
Po = 2)
dim M = 16,

pn(it) = Pp(t)m tan(mt),

2 s N/ N/ 25\ [. 19\ /.
PM(t)“11!4-5.6-7t<t“4> (t'4> e\ )\ 7

)

In this section we will give a new expression of the Plancherel measures, which suggests the
Betti type interpretation for the coefficients. In what follows we omit the case (0) since the
gamma factor is “trivial” corresponding to the nonexistence of discrete series. We use the

following combinatorial results:

Lemma 4.1 For integers n and m we have:

2n—1 1) -- _
onHm +on Hpn1 = (Zm t+2n )(m + ) (m + 2n 2)
(2n —1)!

= mult(m(m + n), Agzn)

"\’ Im+n)m+1)2--(m+n-—1)>°
(1) st = ztedn )

= mult(m(m +n), Apz)

S (D) e
(2m +2n + 1)(m +1)((m +2)- - (m + 2n — 1))*(m + 2n)

- (n + 1)!(2n — 1)!
= mult(m(m +2n +1),App)

]

=
1l
o

28
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wHn + 10 6Hpm1 +28 16Hm-2+28 16Hm_3+ 10 16Hm_4s +16 Hm_s

(2m+1)(m+1)(m+2)(m+3)(m+4)?(m+5)2(m+6)?(m+7)2(m+8)(m-+9)(m+10) (4 7)
1114-5-6-7 .

= mult(m(m + 11), Apz ) (4.8)

Proof. The identities (4.2), (4.4) are due to Cartan [C]. More generally the results of Cahn-
Wolf [CW] gives (4.2), (4.4), (4.6), (4.8). These are considered as real analytic analogs of
the “Hirzebruch proportionality principle”.

It is easy to see (4.1). We compute (4.3) as follows:

B0 e - SO
- ’; <Z)2 (m —271:2 +»k>
S OGN

where we used the Vandermond convolution 3", (7)(,”,) = (™T"). By changing the order
of the sums it equals -

HAZ00)

ST E0)

- SEIOCT)

- S ECIE) - C)
- —<<> f’”){ Nz

Here we reached the right hand side of (4.3).

il
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The identity (4.5) is proved as follows:

2n—1
1 (211)( 2n )
Z a 4nHm—k
pours 2n k kE+1
’ 2n—1

_ Zi 2n 2n dn+m—-—k—-1
- —om\k/J\k+1 4n —1

_ 2§1L 2n 2n\ (2n+m + k
- pors 2n\k +1 k 4n —1

2 0)(

) ()

_ 2(2n+m)\ (m+2n 1
T om\2n+1 2n—1 m
This is equal to the right hand side of (4.5).
We can verify (4.7) by direct calculations.

Theorem 4.2

amHe+ o H;

> (1) e

k=0

Pu(t+p) =< 21 1 /2n 2n
2 55( k) (k+ 1) wnH-s

k=0

16Hy +10 16H;q + 28 16H; s

' 30

2n+m n\ (4n — 3
dn—-1—-3/\ 7/ \2n+1
4_n 2n+m m
m\2n+1/\2n—-1—7

_2_n 2n+m
m\2n+1

2n+m

+28 16Hi—3+ 10 16Hiy +16 Hi—s

(k—2n—-1-k)

2n — 3
2n—k

)(7-))
el

G = 50(1,2n)
G = SU(1,n)
G = Sp(1,n)

G=F,
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Proof. Since we see Pp(m+po) = mult(m(m+2pp)}, Apsr), the theorem holds as polynomials

int.H
The following result represents that Plancherel measures are sums of logarithmic deriva-

tives of multiple sine functions.

Theorem 4.3
s—ro (—1)dim M) /2
exp (/ ,uM(it)dt>
)
S2n(8)San(s+ 1) G =S50(1,2n)
IT Son(s + k)3) G = SU(1,n)
= Izc:i)l 1L (2n\[ 2n

1T Sl + =) G = Sp(1,n)

S16(8)S16(s + 1)10S16(s + 2)%S16(s + 3)2S16(s + 4)%S16(s +5) G = F, ,
(4.9)

Proof. We first prove for the caes of SO(1,2n). When s = pg = n — 1, the left hand side
clearly equals to 1. The right hand side is computed as

1 1
Son <n—%) San (n'i'l) S (n+2) o (n 2) =1.

2) Tam(n=3)Twm(+3)

So it suffices to compare the logarithmic derivative for the both sides of (4.9). For the right
hand side we have

%f—;l(s) + %(s F1) = ((2‘;__11) + (Qn““'_ 1)) 7 cot(ms).

On the other hand the logarithmic derivative of the left hand side of (4.9) is equal to
Parr(s—n+3)m cot(ms). Therefore all we have to prove is that Py(s—n+3) = (2‘;'_11) + (,_,ns_l).
We compute

ru(smnrd) = gt (s DT (e 2) - (-2))

(s—1)(s—2)---(s—2n+2)

|

= (2s—2n+1) @n 1)
5(5—1)--~(s—2n+2)+(s—1)(s—2)---(s—2n+1)
(2n —1)! (2n — 1)!

(on"0) + (27)
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G K G’ M’
SO0(1,n) SO(n) SO(l+n) S
SU(Q,n) SU(n) SU(+n) Pg
Sp(1,m)  Sp(n) Sp(l+n) P

Fy Spin(9) F; Py

Table 1: Compact Duals

s desired. The other cases are similarly proved by our using Lemma 4.1 and Theorem 4.2.1
Let M’ = G'/K is the compact dual symmetric space which are given in Table 1.

We put
¢ (s, 2,4/ Ay + pg> = Z(/\ +{z—=po))”° (4.10)

A

where the sum is taken over all eigenvalues of \/Ap + pg with App being the Laplacian on

M.
Theorem 4.4
¢ (57Z — Pos Y/ Apm ”FP(%)
C?ﬂ(5>z)+c2n(saz+l) G= SO(l,2n)
n 2
> (Z) Con(s, 2 + k) G = SU(1,n)
= e 1 (2n n
Cie(s, 2) + 10C16(s, 2 + 1) + 28Ci6(s, z + 2)
+28C16(S,Z + 3) -+ 10(16(3,2 -+ 4) + Qle(s,z -+ 5) G = F4

Proof. By expressiong A in terms of an eigenvalue p of App, we have

(s ) =3 (Vi o)

Now we carry out an explicit calculation for the case G = SU(1,n) by using Lemma 4.1. All
other cases can be treated similarly. Since g = m(m + 2po) for m =0, 1,2, ..., it holds that

¢ (s, z,4/ Ame + p?,) = Z mult(m(m + 2po), Ape)(m + 2)7°.

m=0
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Since we have po = % and M’ = Pg,

m=0 m=0 k=0

Zmult(m(m-{-2,00),Ap3)(m+z)_s = ZZ(Z) onHm—g(m +2)~°

= <:) > wnHu(m+k+2)7
k=0 m=0

= (Z) Con(s, 2 + k)
k=0

In particular (4.10) is regular at s = 0.
Let A be an operator whose eigenvalues are 0 < a; < a3 < a3 < ---. We define the
regularized determinant by

(oo}

det(4) = [ an := exp (~C4(0)),

n=1

when the spectral zeta function (4(s) := > a;* is regular at s = 0. (cf. Deninger [D] and
n=1

Manin [Ma]) For example, the multiple gamma functions have the following determinant

expressions:
L\(z,w) = det(D,, +2)™"
and
[, (z) = det(D, + z)7!,
where 9 F:)
Dg=w15§+-'f+wr52 Aty ] — g, 48]

and D, := % 44 %. Consequently the multiple sine functions can also be expressed by
some regularized determinants.
The regularity of (4.10) at s = 0 allows us to define

det <1/AM: +p2 + z) = exp <—C' (O,Z,\/AMr —|-p§)) .
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Corollary 4.5

-1
det <\/AM/ +p3+s —po>

Lan(8)Taon(s + 1) G = S0O(1,2n)

[ Cans + B & G = SU(1,n)
k=0
— 2n—1 L f2m\( 2n
- H F4n(3+k)ﬁ(k)(k+l) G = Sp(l,n) (4.11)
k=0
)P+ 1)y 4 29T + 3
xT16(s +4)'°T16(s + 5) G = F,

Corollary 4.6

(_l)dim M/2

o= (=1)(dim ) /2 det (1 [Dpp + p2 + s — Po)
exp (/ yM(it)dt) = . (4.12)
) det (\/AMI +p8~(s— Po))

Proof. This is an immediate consequence from (4.9) and (4.11).1

Proof of Theorem 1.1 The identities (1.7) are obtained from (4.11). The symmetric func-
tional equation is deduced by (4.12).
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