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Abstract

We consider an incomplete market model whose stock price fluctuation is
given by a solution of a one-dimensional stochastic differential equation with
Poisson jumps. For this model, we calculate the density process of the min-
imal martingale measure and minimal entropy martingale measure compre-
hensively by using the exponential martingale and martingale representation
theorem. Also, we state relations to locally risk minimizing strategy or the
Esscher transforms.

1 Introduction

We consider an incomplete market whose stock price fluctuation is given by a so-
lution of a one-dimensional stochastic differential equation with Poisson jumps.
Throughout this paper, we call such a model Poisson jump type model. Our aim
is to calculate the density processes of various equivalent martingale measures (ab-
breviated as EMM) for Poisson jump type model. There are two similar research
papers. One is Chan (1999), another is Fujiwara and Miyahara (2001). However,
they treated only special cases. Thus, we purpose to lead to various equivalent
martingale measures comprehensively and give a simplified proof. Moreover, we
mention relations between various equivalent martingale measures and locally risk
minimizing strategy or the Esscher transforms, comprehensively.

In Section 3, we study the density process of the minimal martingale measure
(abbreviated as MMM) which was introduced in Follmer and Schweizer (1991). As
for jump type models, Chan (1999) considered a special case of Poisson jump type
model. Hereafter, we call this special model Chan’s model. In Chan’s model, the
coefficients of stochastic differential equation describing the stock price process are
deterministic. He obtained the density process of the MMM for his model. We
calculate the density process of the MMM for general Poisson jump type model.
The density process of the MMM is given by the exponential martingale form.
However, since the stock price process of Poisson jump type model is a jump process,
the density process of the MMM is not necessarily positive. Hence we need to
consider a necessary and sufficient condition which assures the positivity of the
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density process of the MMM. We call, throughout this paper, this necessary and
sufficient condition the positivity condition for the MMM. Moreover, the MMM
relate closely to the locally risk minimizing strategy defined by Schweizer (1991). In
Section 4, we investigate some properties of the MMM. Also, we lead to locally risk
minimizing strategy for Poisson jump type model.

Moreover, we calculate the general form of density processes under some condi-
tions in Section 5. Ansel and Stricker (1992) obtained the general form of density
processes for a continuous semimartingale model. Furthermore, Schweizer (1995)
extended it to the general RCLL case. According to the results of these papers, the
general form of density processes is given by the exponential martingale form. By
using Tang-Li’s martingale representation theorem, we show that the general form
of density processes for Poisson jump type model also is given by the exponential
martingale form under the positivity condition.

In Section 6, we study the minimal entropy martingale measure (abbreviated as
MEMM) by using the results in Section 5. We obtain the density process of the
MEMM for Poisson jump type model under the positivity condition. The MEMM
was introduced in Miyahara (1996a) and Frittelli (2000). They considered only
continuous case. As for jump type models, Miyahara (1999) obtained the density
process of the MEMM for a geometric Lévy process model being a special case of
Poisson jump type model. In particular, Miyahara (1999) treated a model which
stochastic integrals of Brownian motion is not contained. Note that the geometric
Lévy process model is called the log-Lévy process model in Miyahara (1999). Also,
Chan (1999) considered the density process of the MEMM for Chan’s model. On
the other hand, Fujiwara and Miyahara (2001) treated the general geometric Lévy
process model and stated the condition for the existence of the MEMM for geometric
Lévy process model. Moreover, they obtained the density process of the MEMM.

Chan (1999) and Fujiwara and Miyahara (2001) mentioned that the MEMM has
closely connected to the Esscher transform for Chan’s model and geometric Lévy
process model. Recently, many people research relations to the option pricing theory
and the insurance mathematics. Above all, the Esscher transform is well-known as
an important tool. In Section 7, we treat the Esscher transforms for more general
Poisson jump type model than Chan’s model and geometric L’evy process model.
Moreover, we consider relations between the Esscher transform and the MEMM.

Furthermore, we consider three examples in Section 8. We treat Chan’s model,
the geometric Lévy process model and Chan’s model with random coefficients. Un-
der the positivity condition, by using the result in Section 5, we lead to the density
processes of the MEMM for these three models. On the other hand, Miyahara
(1996b) and Arai (2001) proved that, if the stock price process is given by a solution
of a general continuous stochastic differential equation, then the MMM coincides
with the MEMM. Now, we have a natural question, “Does this fact hold for the
Poisson jump type model?” The answer is “No”. However, in Section 9, we mention
an interesting relationship between the MMM and the MEMM. In addition to this,
in Section 9, we also remark some important facts.
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2 Preliminaries.

We consider a Poisson jump type model whose maturity is 7 > 0. Suppose that
there exist one riskless asset and only one risky asset in our market. Without loss
of generality, we assume that the price of the riskless asset is 1.

Let (Q, F, P) be a probability space with a right continuous complete filtration
F = {FiJocicr satisfying that Fo is trivial and contains all null sets of F, and
Fr=7F.

Let a process S = {S;}oci<r be a semimartingale and suppose that the fluctu-
ation of the risky asset is given by S. The process S is said to be the stock price
process. An R-valued process Z is called the density process for S if Z is a P-local
martingale with Zo = 1 and the product SZ is a P-local martingale. If a signed
measure P*, which is equivalent to P, satisfies (1) P*(Q) =1, (2) P* = P on Fy,
(3) P* < P on F, and (4) the stock price process S is a P*-local martingale in the
dP*
dP
signed local martingale measure. In particular, if a signed local martingale measure
P* is a probability measure, then we call P* an equivalent local martingale measure
(abbreviated as ELMM). We denote by M the set of all ELMM’s. Moreover, for
every P* € M, the R-valued martingale G* defined by

) dp-
G;:=F [dP |ft]

is called the density process of P*.

Now, let a process W = {W;}o<i<7 be a one-dimensional standard Brownian
motion. Next, we denote by N(dt,dz) a counting measure of a stationary Poisson
point process on [0, T] x Ro, where Ry = R\{0}. Suppose that N(dt,dz) is inde-
pendent of W and the compensator of N(dt, dz) is v(dz)dt, where the measure v/(-)
is a Lévy measure, that is, v(-) satisfies v({0}) = 0 and

sense that the process { is a density process, then P~ is said to be a
Fr ) o<i<T

/ (1 A |z]*)v(dz) < oo.
Ro
Moreover, we set N(dt, dz) := N(dt,dz) — v(dz)dt. Let the filtration F be given by
s+
.7‘}::0'[/ /N(du,dz);sgt,AeB(RO)]VU[WS;SSt]VN,
0o Ja

where N is all null sets in F. Suppose that Fr = F. Remark that, by Lemma
A.1 of Tang and Li (1994), the filtration F is right continuous and, by Lemma A.2
of Tang and Li (1994), F has the quasi-left continuous property, that is, for any
increasing sequence {7,} of F-stopping times, we have

\/Frnsz,

where 7 = lim, o -
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We define three spaces of F-predictable processes:

F, = {f(t,:c,w); f is an F-predictable process and, for all t € [0,T],
t
E [/ / lf(37$,‘)|V(dx)ds} < oo},
0 Ro
F, = {f(t,m,w); f is an F-predictable process and, for all t € [0, 77,
t
g [/ Ly <S’xa~)12u(dz)d5} ) °°}7
0] Ro
and
F,:= le, N FZ.

Throughout this paper, we fix one F-predictable process f € F,. This fixed F-
predictable process f is a function of ¢, z and w, while we assume that we can
regarded f as a function of ¢, x and S. Hereafter, we treat this fixed F-predictable
process f as a function of ¢,  and S. Let us define the stock price process by using
this fixed f € F,. The stock price process S = {S;}o<:<r is given by a solution
of the following stochastic differential equation (abbreviated as SDE) with Poisson
jumps:

t t t+ _
S = 5’0—}-/ u(s,Ss_)d5+/ U(S,Ss_)dWs—{—/ f(s,z,S,_)N(ds,dz), (2.1)
0 0 o JR,

where S; is a positive constant. Throughout this paper, we denote u; 1= pu(t, S;_),
o, = o(t,5,.) and f(t.z) := f(t,z,S5;-), for notational simplicity. Moreover, we
assume that the SDE (2.1) has a unique strong solution. In other words, we assume
the following:

Assumption A 1. In order to ensure the existence and uniqueness of the strong
solution of SDE (2.1), we assume that SDE (2.1) satisfies the conditions of
Theorems 13 or 14 or 17 of Situ (1985).

2. In addition to this, we assume the following:
el >0 ae. in (¢,w), (2.2)

lo:] >0 a.e. in (¢,w), (2.3)
If(t,z)] >0 ae in (¢ 2,w),
o, € L*(P) forallt e [0,T],

t
/ |puslds < oo a.e. in (t,w).
0
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Since the process S is a semimartingale, we can decompose of S into a local
“martingale M = {M,}o<i<7 and a finite variation process A = {At}o<i<T, where M
and A have the following expressions:

t t+ -
M, :/ o dW, —}—/ / f(s,z)N(ds,dz),
0 0 Ro

t
At = / usds.
0

Remark that the local martingale part M is a square integrable P-martingale with
My = 0, and the stock price process S is a special semimartingale. Moreover, for any
P* € M, the process S is not only a local martingale, but a martingale under P*.
Hereafter, we call any P* € M an equivalent martingale measure (EMM) replacing

with an ELMM.
Generally, for a process X, we denote by [X] the quadratic variation process for
X and by (X) the compensator of the quadratic process [X]. Then, we have

(M), = /O {aj + /R f2(s,x)u(dx)} ds.

Therefore, by Assumption A, we have A < (M) and are able to write as follows:

¢
fhs
Ay = d{M).. 2.4
1 /0 0,3 + ng fQ(S,Z')I/(d.Z‘) < >s ( )
Hence, by Corollary 3 of Schweizer (1995), the stock price process S has a positive
density process. For simplicity, we write

ol == [ f(t,z)v(dz).
Ro
Let us denote by a = {a;}oct<7 the integrand of (2.4), namely, define a predictable

process a by
Ht

of +vf

6 T

Finally, we define one more predictable process. An F-predictable process K =
{K:}o<i<t is called the mean-variance trade-off process if

t 2
I(t 2/ __/:l’_s_fds
0 0'? + Us

which is assumed to be uniformly bounded throughout this paper. Consequently,
we assume that the process S satisfies the structure condition (SC).
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3 The minimal martingale measure.

In this section, we calculate the density process of the MMM. We define a local
martingale GM = {GM}o<i<r by

GM=¢ (—/ ades> ,
0 t

where, for a semimartingale X, £(X) = {€(X):}o<i<r is a solution of SDE

¢
EX)y =1 +/ E(X)s-dXs,
0
and we call £(X) the exponential martingale for X. If a signed martingale measure
dpM

PM gsatisfies
dP ]:t:| L]

then PM is called the signed minimal martingale measure (MMM). Moreover, if
the singed MMM PM is a probability measure, then we call PM the MMM. Remark
that, since the process M is not continuous, generally, GM is not necessarily positive.
Namely, even if the signed MMM PM exists, then it is not necessarily the MMM.

From now on, we assume that the existence of the signed MMM. Firstly, we
give a necessary and sufficient condition for the positivity of GM, namely, for the
existence of PM as a probability measure. We call this necessary and sufficient
condition the positivity condition for the MMM. The following proposition was
proved by Schweizer (1995). However, we give here an alternative proof by using
the exponential martingale.

GM = E[

Proposition 3.1 (The positivity condition) The density process GM is positive
if and only if we have

o f(t,z) <1  ae in(tz,w). (3.1)

Proof. By Theorem 36 of Chap. II of Protter (1990), if we set

t
X = —/ a,dM,,
0

then the exponential martingale for X is represented as

£(X) = exp (xt - lms) ] 0+AX)ep(-AX), (32

2 0<s<t

where [X]° means the continuous part of [X]. Also, we have

HAX_ /t+Loafsx)Ndsdx)

6
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Hence, we see that the right hand side of (3.2) is positive if and only if we have
af(t,z) <1 ae. in(t,z,w).
This completes the proof. o
We need some assumptions in order to calculate the density process of the MMM.

Assumption B In the rest of this section, we assume that the fixed f satisfies
(3.1), that is, the MMM PM € M exists.

We calculate the density process of the MMM.

Theorem 3.2 Under Assumption B, the density process GM of the MMM PM s
given by

GM = exp{ ~ /0 t a,0,dW, — % /0 t(asas)za’s
+/Ot+ /R gf(s,x)N(ds,da:)Jr/Ot/RO Otsf(S,:c)V(d:c)ds}, (3.3)

where g/(t,2,5,) = ¢/(t, @) = log(1 — o f(t, 7).

To show this theorem, we need the following lemma.

Lemma 3.3 Suppose F-predictable process g(t,z,w) = g(t,z) € F, satisfies that
1—e9t?) ¢ F,I,. Then, we have

& (/ / (eg(”) -1) N(ds,da:)) =expY;,
0 JRo t

where the process Y is defined by

Y, = /OH /R g(s,z)N(ds,dw)—f—/(;t /R (1 - e#=2)) y(dz)ds.

Proof of Lemma 3.3 By Ito’s formula, we have
dlexpY;) = eprtf (1 — e/t2)) u(da)dt
Ry
+ [exp(Y; + g(t. z)) — exp Y;] N(dt,dzx)
Ro

= eprtL (eg(t"") — 1) (N(dt,dz) — v(dz)dt).

This completes the proof of Lemma 3.3. m]
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Proof of Theorem 3.2 Since g/ (t,z) = log(1 — o, f(t, 7)) € F;,, we can apply
Lemma 3.3, and have

o - o(- o)
= (= [a(nams [ feofa))

= exp{ - /0 aod W, — 3 /0 (uo.)ds
+/Ot+/ﬁ gf(s,w)N(ds,da:)-F/:/Ro o f (s, 2)u(de)ds .

0

This completes the proof. a

Let us consider the following two examples.

Example 3.4 (Chan’s model) Let the stock price process S be given by

t t t+ -
S; = S+ / by S,_ds + c/ 0:5s_dW, —}—/ / 05S,-xN(ds,dz), (3.4)
0 0 o JRo

where o, and b, are deterministic, ¢ is a constant and Sy is a positive constant.
This model is corresponding to the case of f(¢,x,S:-) = 0:5;—x. We assume that
0:Si—z € F,. Moreover, we assume that the support of v is bounded, that is, there
exist two constants 0 < ¢, ¢; < oo such that

supp(v) = [~c1, ¢a]-

)ds+/0t+ /R aSN(ds,dx)}

The solution of (3.4) is represented as

t t
Sy = Spexp {/ cosdW, +/ (bs —
0 0

<[] 1+ 0.AX,) exp(-0.AX,),

0<s<t

2 _2
co;
2

t+ 5
where X, := / / zN(ds,dz). In order to ensure the positivity of S, we need to
o JRe

assume that )
—— <o, <— forallte|0,T]

Under Assumption B, let us calculate the density process GM of the MMM. We
denote
vy 1= / 22 (dr).
Ro

by 1
Q= o —.

o}(c? + va) Si-

Then, we have

8
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Assumption B means that, for —¢; < z < ¢y,

btx
S = ———— < L.
T oi(c? + vy)

By (3.3), we have

t 1 t t+
GM = exp { / ey dWs — —/ yids + / / log (1 + v,2) N(ds, dx)
0 2 Jo 0 JRe

- /Ot /Ro *ysxu(dm)ds}, (3.5)

where we denote

by

Yt = ——;t—(m.

Example 3.5 In Example 3.4, replace z by ¢* — 1. Namely, the stock price process
is given by

¢ ¢ o+ _
S, = So +/ b,S,_ds + c/ 0,S,_dW, + / / 0,5,_(e° —1)N(ds,dz).
o 0 0o JRe
We assume that 0:5;—_(e* — 1) € F,,. Denote
vy 1= / (¥ — 1) v(dz).
Ro

In order to assure the positivity of S, we assume that

1

1 —e2

<

— et

Then, under Assumption B, the density process GM of the MMM is given by the
same form as in (3.5), that is, if we define v, as above, then we have

t 17t t+
GM = exp { / ey dWs — = / c*ylids + / log (1 4 vs(e® — 1)) N(ds, dx)
4] 2 0 4] Ro

_ /Ot /R Yo(€® — 1)y(dx)ds}. (3.6)

4 Locally risk minimizing strategy.

In this section, we lead to locally risk minimizing strategy for Poisson jump type
model. Firstly, we investigate some properties of the MMM obtained by Theorem
3.2. We obtain the following proposition.

Proposition 4.1 1. The density process GM of the MMM is a square integrable
martingale.
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2. Let L = {Li}o<i<t be a square integrable martingale starting at zero, which is
strongly orthogonal to M under P. Then, L remains a martingale under the
MMM PM,

Proof. 1. We set
t
X = -—/ a,dM,.
0

Namely, we have GM = £(X),. Since E[[X]7] = E[Kr] < oo, by Lemma of Theorem
28 of Chapter IV of Protter (1990), X is a square integrable martingale. Hence, by
Théoréme I1.2 of Lepingle and Mémin (1978), GM is a square integrable martingale.

2. It is enough to show that the product GML is a martingale under P. Remark
that GM is a solution of

dGM = —a,GY dM,.

By assumption, [GM, L] is a martingale. On the other hand, we have
d(GML), = GMdL, + L.dGM + [GM, L]..
This completes the proof. a

Now, we consider locally risk minimizing strategy. Risk minimizing approach
was undertaken by Follmer and Sondermann (1986). However, they studied only
model whose stock price process is a local martingale. Thus, Schweizer (1991)
undertaken locally risk minimizing approach extending risk minimizing. We owe it
to this extension that we can treat semimartingale case. We do not mention the
definition of locally risk minimizing in this paper. For instance, see Schweizer (1991)
and Schweizer (2000). We compute locally risk minimizing strategy for Poisson jump
type model. Firstly, we need to prepare some definitions.

Definition 4.2 1. For a martingale M, a predictable process 8 belongs to L?(M)
if the process [ 6?d(M) is integrable.

2. For a finite variation process A, a predictable process # belongs to L*(A) if
the process [ |fdA| is square integrable.

3. @ := L3(M)n L*(A).

4. For an F-adapted process V such that Vr € L%(P) and 6 € ©, we call the pair
¢ = (V,0) a portfolio.

. The cost process of a portfolio ¢ = (V,8) is defined by

[$31

t
Cilp) =V, -/ 0,dS,.
0

6. A portfolio is called self-financing if its cost process is constant P-a.s.

7. A portfolio is called mean-self-financing if its cost process is a martingale under

P.

10



KSTS/RR-01/004
July 26, 2001

Let H € L*(Fr, P) be a contingent claim. Hereafter, we call / an L* contingent
claim. Monat and Stricker (1995) proved that, if the mean-variance trade-off process
K is uniformly bounded, then every L%-contingent claim admits a unique Follemr-
Schweizer decomposition. In other words, we can decompose H into

T
H = H, +/ 07dS, + L%, (4.1)
0
where Ho € R, 87 € O, L¥ = {LH}o<i<7 is a square integrable martingale strongly
orthogonal to M. We have the following theorem.

Theorem 4.3 For L*-contingent claim H, there exists a unique locally risk mini-
mizing strategy ©* = (V*,0) given by:

Vi = EM[H|F], (4.2)
9* — 6H,

where EM means ezpectation under PM and 0% is the integrand in the Follmer-
Schweizer decomposition (4.1).

Proof.  Since H € L*(P) and GM ¢ L*(P), we have H € L'(P™). Hence, V"
of (4.2) is well-defined. Remark that [6dS is a PM_martingale. By Proposition
4.1, L¥ in (4.1) is a PM-martingale. Therefore, by (4.1), we have

t
1A Hg+/ o7ds, + LY.
0
The cost process C (™) of the strategy ¢* = (V*,8*) is represented as
t
Cle) = V- [ oas,
0

Thus, C(¢*) is strongly orthogonal to M and ¢~ is mean-self-financing. By Assump-
tion A and continuity of A, we can apply Theorem 3.3 of Schweizer (2000), from
which ¢~ is locally risk minimizing. a

5 The general form of density processes.

The aim of this section is to lead to the general form of density processes for a
Poisson jump type model. We can apply Theorem 1 of Schweizer (1995), because M
is a square integrable P-martingale with My = 0, S is a special semimartingale and
satisfies the structure condition. By this theorem, we can say that, if the density
process of an EMM P*, denoted by G* = {G}}o<i<T, is square integrable, then we

can write ‘
G;=¢ (—/ a.dM, + L*) , (5.1)
0 t

11
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where a process L* is a square integrable P-local martingale being strongly orthog-
onal to M with L} = 0. We call L* the reference local martingale of P*. In order
to lead to the general form of density processes, we need to assume the following.

Assumption C Throughout this section, we only consider a square integrable mar-
tingale density process whose reference local martingale is a square integrable P-
martingale.

Hereafter, let M be the set of EMM’s whose density processes satisfy Assumption
C. Throughout this section, let us fix one P* € M. Now, we need the following
theorem which is said to be Tang-Li’s representation theorem.

Theorem 5.1 (Lemma 2.3 of Tang and Li (1994)) Let {m,}o<:<7 be an R-valued
F-adapted square integrable martingale. Then, there exist an F-predictable process
re F;‘; and an R-valued square integrable F-predictable process q such that

t t+ -
m; = mo + / g dWs + / / r(s,z)N(ds,dz).
JOo 0 Ro

By this theorem, for the reference local martingale L* of P*, there exist an f*(¢,z,w) =
f*(t,z) € F2 and a square integrable F-predictable process H* such that

t t+ —
L::/ Hs*dWs+/ F*(s,2)N(ds, de),
0 0 Re

since the process L* is a square integrable P-martingale. On the other hand, since
the process L™ is strongly orthogonal to the process M, we have, for all ¢t € [0, T,

w4 [ Fta)f(taida) = 0.
Ro
Therefore, by Assumption A, we can write
« 1 "
Ht = f(ta :L')f (t,:c)l/(dl‘)

Oy Ro

Consequently, the F-predictable process H* depends only on f*. Hence, the function
f* is one-to-one corresponding to the reference local martingale L*. We call f* the
reference function of P*.

We now start to calculate the density process G*. By (5.1), we have

G: = E(—/ asd1M3+L*>
0 t

c ( ~ / pslosdW, + fo f(s;x)ﬁ(ds,d:c)]
0 o+ v;

_ / fRo f(‘s’w)fx(s,-l)l/(dx

Il

s

)dws+/0' 5 f*(s,x)f\?(ds,dx)> L (5.2)

t

12
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Moreover, we denote

o; = —auo; + HY, (5.3)
Plt,z,w) = F(te) = —af(t,2) + (¢t 2). (5.4)

In addition, we assume the following.
Assumption D (The positivity condition) e F, and

Ft,z)> -1 ae in (t,2,w). (5.5)
By (5.2)-(5.4), we have
a=c([saw,+ [ [ F(s,2)N(ds,dz)) . 5.
; (/o o, W—|—/0 Rof(s $)N(de)>t (5.6)

Moreover, by Assumption D and Lemma 3.3, the density process G~ is a positive
process and is represented as

¢ ¢
G; = exp{/ ordW, — l/(/a\;‘)zds
0 2 Jo
t+ ¢ R
+/ / ?(s,x)N(ds,dz)—/ f*(s,w)z/(dz)ds}, (5.7)
0 Ro 0 Ro

where §*(, z,w) = §*(t,z) := log{1 + f~(t,z)}. Remark that §*(t,z) = log{l +
f*(t,z)} € F}. So the conclusion is:

Theorem 5.2 Let P* be an EMM whose density process has square integrability.
Under Assumption D, the density process of P*, denoted G*, is given by

¢ ¢
6i = ew{ [[Gaw.— [(@res
0 2 Jo
t t
+/ / @\*(va)N(dS;dm)—/ f"(s,x)u(dw)ds}.
0 JRo 0 JRo

Remark 1 Let us denote by M the contents of £ of (5.1). If we assume AM > -1,
then we have 8(1\7) > 0. By Proposition 1.5 of Lepingle and Mémin (1978), the
quadratic variation process [ﬁ] is integrable. Since M is a local martingale, Misa
square integrable martingale, that is, the reference local martingale L* is a square
integrable martingale. Namely, we can omit the description with respect to the
reference local martingale in Assumption C. Therefore, we can replace Assumption

C by the following:

Assumption C’ We only consider a square integrable martingale as a density pro-
cess.

13
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6 The minimal entropy martingale measure.

In this section, we focus on calculating the density process of the minimal entropy
martingale measure (MEMM) under the positivity condition. Firstly, we define the
relative entropy. For two probability measures P and () on a measurable space

(Q,F), the relative entropy H(Q|P) of @ with respect to P is defined by

d@Q .
H(QIP) = /ln EFdQ’ if Q <« P,

+o00, otherwise.
For a set of measures P on (2, F), we define
H =] .
(PIP) := inf H(Q|P)

Now, let us define the MEMM. A probability measure P¥ € M is called the minimal
entropy martingale measure (MEMM) if

H(PF|P) = HM|P).
Similarly to the previous section, we assume the following.
Assumption E Throughout this section, we assume that
1. there exists the MEMM uniquely,
2. we only consider EMM’s whose relative entropy with respect to P are finite
and whose density process is square integrable.
Hereafter, let M be the set of EMM’s satisfying 2 of Assumption E. In addition to

this, we assume the following.

Assumption F (The positivity condition) 1. For a fixed f, there exists a
unique F-predictable process fZ(¢,z,w) = f¥(t,z) € F,, satisfying the follow-

ing:
, t,y)fE(t,y)v(d
fb(t7 m) = atf(trT) + exp {"atf(tvw) - fRO f( y){'?( y) ( y)f(t>1)} -1

(6.1)
2. There exists an EMM P¥ € M whose reference function is fE.

We prepare some notation.

Definition 6.1 1.

FEtz,w) = fB(t,a) = —auf(t,z) + fE(t,2)
~E
= exp {——-————at fa(t,x)} -1
> —1.
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)

2. §8(t,z,w) = gt z) :=
¢

Remark 2 1. We can replace 1 of Assumption F by the following:
There exists a unique F-predictable process 7 such that

o+ 0 GF | i) (exp {M} - 1) v(dz) =0

Ot
and an F-predictable process fZ is defined by
fR ft,z) fE(t, 2)v(dz)

Ot

O’tE = -0t —

2. By their definition, we have fE € F, and g€ € F,.

3. Since we are assuming that f and F; belong to F,, the integrability of the
above equation is ensured.

We denote by GF = {GF}o<s<1 the density process of PZ. Under Assumption F,
let us calculate the density process GF. By (5.7), we have

GF = exp{Atﬁdes—%At(Ef)2ds
+/Ot+ /R ZiE(s,x)N(ds,d:v)—/Ot RofE(s,x)y(dw)ds}. (63)

In the following, we prove that this PZ is the MEMM under some conditions.
Let us calculate log GE. We have

t+ &F N
log GE = /"EdW ——/(Ab ds+/ / 2 1(52) § 4, do)
Ro

// [ _——-—"sf(s’m)] v(dz)ds i

‘3, aw, +/t+/ 51 (s, % 1($2) 5 o) N(ds, dz) + /t ififg(ig”—)usds
Ro 0

0o Os Os s

—E/t( )ds—/o ;—f’ds
[ o )

t ’\E
= / 2 dS —Jt,
o Os

say. Let us make sure that the process J is a negative process. We denote

af f(t,z)

gt

h(t,z) :=

15
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Then, we have

J = 1/t( )ds+/tA§fsd
/fﬁ[ (s,2) — g—sEvf;(;s’—w—)]u(dx)ds

_ _5/ (5)’ ds—// lexp{h(s, 2)}(h(s,z) — 1) + 1] v(dz)ds. (6.4)

Since the function e*(x — 1) + 1 is positive, the process J is non-positive. Now, we
have the following theorem.

Theorem 6.2 Under Assumptions E and F, if the process J is deterministic, then
PE | defined in 2 of Assumption F, is the MEMM. Hence, the density process of the
MEMM is given by (6.3).

Proof. For any P* € M, the relative entropy with respect to P is represented
as

H(P*|P) H(P*|PE) + E” [log GF]

H(P"|P¥) — E""{Jq),

Il

where EF" denotes expectation under P*. Then, we have
H(P*|P) + E*"[Jg] = H(P"|PF) > 0.

In particular, we have that H(P*|PF) = 0 if and only if P* = PE. This completes
the proof of Theorem 6.2. O

Corollary 6.3 Under Assumptions E and F, if the mean-variance trade-off process
K, the process v{/of and fP(t,z), defined in 1 of Assumption F, are deterministic,
then the EMM PF is the MEMM.

Proof. It is enough to show that the process J is deterministic. Hence, by
(6.4), the proof would be complete if we could show that &% is deterministic. Firstly,
by the condition (2.3), we can write

dK; _ 2 / o?
dt 1+ vl jo?
By the condition of this Corollary, we see that p?/o? is deterministic. Next, we

prove that 72, defined by (6.2), is deterministic. The second term of the right hand
side of (6.2) is easily seen to be deterministic. On the other hand, by (2.2), we can

write )
oy Hy Oy
o +vl o2 4o pe
Consequently, 37 is deterministic. ]
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7 The Esscher transforms.

In this section, we investigate the Esscher transforms for Poisson jump type model.
Also, we state relations between the Esscher transforms and the MEMM. Through-
out this section, we assume that the stock price process is given by the solution of

the following SDE:

t t 1+ .
S: = So + / psSs—ds + / 05, dW, + / / f(s,2)Ss-N(ds,dz).
0 0 o JRo

We define dR, = dS;/S; and call the process R = {R;}o<i<T the return process
of S. For a deterministic function ¢ = {(;}o<i<T, we define

eSeRe
U= ———.
Feom]

Then, we call the process U = {U,}o<i<T the Esscher transform of the return process
R with parameter function (. Remark that U is a martingale starting at 1. We
assume that three predictables y, o and f(t,z) are deterministic. Then, let us make
sure that the Esscher transform of the return process coincides with the MEMM.
Fujiwara and Miyahara (2001) obtained a part of this relation for only case of
f(t,z) = ¢ — 1. Chan (1999) also stated a part of this relation for only case of
f(t,z) = z, but he did not represent this result explicitly. Indeed, we can extend
these results to general deterministic function f(t,z).
If we denote C, = ¥t we have

1
dCy = (GpuiCedt + (o CrdWy + 54}20?@(#

+C, [ (4902 — 1) N(dt, dz)
Ro

+C’t/ (/=) — 1 — ¢, f(t,x)) v(dz)dt.
Ro
Moreover, if we denote C; = F [eC‘R'], we have
1
dCy = (uCydt + —Q-QZU;"Ct'dt

+Ct'/ﬂ (4/2) _ 1 — ¢, f(t,2)) v(da)dt.

Thus, we obtain
Cy
e
dcC, N 1
- G +od(g)

= D}Clo'gdm + Ut/ (eth(t,l') _ 1) ]’\vf(dt’ d.T).

Ro
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This can be restated that

th = g (/ Cso'deS +/ / (egsf(s,l‘) — 1) N(ds,d:l;)) .
0 0 JYRo t

This implies that, if we take ( = ¥ /o, then all conditions of Corollary 6.3 is satisfied
and we have U = GF| that is, the Esscher transform of the return process coincides
the MEMM.
Next, we consider the Esscher transform of log S. We define a process X =
{Xt}ogth by
Sy = SOSXta
that is, we have dlog S = dX. Now, we define the Esscher transform of X with

parameter ( by
L Xe
Vi = =——.
FT B [esXe)
We assume that ( # 1 and three predictable processes y, o and f(t,z) are deter-
ministic. Let us show that the Esscher transform of X does not coincides with the
MEMM. Notice that a part of this relation was obtained by Chan (1999) for only
cases f(t,z) = €% —1 and = rz, where r € R. In this paper, we make sure that his
result hold for general deterministic function f(¢,z), too.
Firstly, we have

dXt = Utth + I.Ltdt b %’Utzdt
+ [ log(1+ (e, N(at, da)
Ro

+/ {log(1 + f(t,z)) — f(s,z)}v(dz)dt
Ro
If we denote D, = %, we have

dD; = d(5%)

C,LttDtdt -+ CUtDtth + U?Dtdt

I

¢(¢—-1)
2
+D, / (1 + f(t,2))¢ — 1) N(dt, da)
Ro

#0 [ (4 (62 =1 = (f(t ) oy

Moreover, if we denote D} = E [e¢**], we have
D,
= d| —
= 4(5)
dD, 1
- 5+ ()

= (Vio:dW; + Vt/ (14 f(t,z)) —1) ]V(dt,da:).

Ro
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Consequently, we have

(/CadeJr//Ro (1 + f(s,2))* = 1) (d.‘:.d.’l?)).

From this, we can conclude that the Esscher transform of X does not coincides with
the MEMM.

8 Examples.

In this section, we calculate the density processes of the MEMM’s for three Poisson
jump type models. The first one is Chan’s model in Example 3.1. The second
is the geometric Lévy process model. The third one is an extension case of Chan’
model such that coefficients have randomness. We call it Chan’s model with random
coeflicients.

Example 8.1 (Chan’s model) Let the stock price process be given by (3.4). We
assume all assumptions in Example 3.4. In addition, we assume the following:

Assumption There exists a unique deterministic function 3, satisfying

b, + 0 3,¢* + at/ z (e?* = 1) v(dz) = 0.

Ro
We denote v, := / z?v(dz). Remark that we have v, < 0o, €% —1 € F, and
Ro

/ z (%" —1)v(dz) < oo forall t € [0,T],
Ro

because 0,5;_z € F, and v is bounded. Now, we compute the mean-variance trade-
off process K and ¥ defined by (6.2) are given by

t u‘z
K, = Sl S
. / 2 vy

SE_ b.c B fRo xfE(t,x)u(dx)'
i oi(c? + vy) c
We denote ‘
bgiE

fE(t,fl?) = (eﬁ‘x - 1) + m (81)

Then, we have fZ € F2 Hence, f¥ € F,. Moreover, we assume that there exists
an EMM, denoted P¥, whose reference func‘mon is fE.
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If the deterministic function f¥, defined by (8.1), satisfies Assumption F, then
Chan’s model satisfies all conditions of Corollary 6.3. We calculate the right hand
side of (6.1).

R.H.S. of (6.1)

I

b x 5
+ exp {—(——2— - /RO yf (t,y)f/(dy)}

. 1 btx
T o(et +vy) —ltexp { - a(c® + vy)

oz (,yem - __thyz_)) I/(dy)}

Ut(02 + vy

= fE(t7 1')

Hence, (6.1) holds. In consequence of this, Chan’s model satisfies Assumption F.
Namely, we can apply Corollary 6.3. Hence, PE, defined by 2 of Assumption F, is
the MEMM for Chan’s model.

We calculate the density process GF of the MEMM PE. Firstly, we have

bic 1 1 b,x?
gF — Ber _ 1\u(d __/_’___ d
i ai(c? +vy) ¢ /Ro z(e Jv(de) ¢ Jr, o:(2 + vz)y( z)
b
= —— - l/ z(? — 1)v(dx)
g € JRy
= b

Furthermore, we have

E btl' btéE Bex
t’ = — — 1 t
UG o¢(c® + v2) * oi(c? + vy) te

_ eﬁtl’_l

and g¥(t,z) = ;2. We end up with

t t
Gf = exp{/ cﬁdeSAE/ A B3ds
0 2 Jo

+/Ot+ 5 ,Bsa:N(ds,d:v)—/Oi /R (eﬁsf_1)y(dx)ds}. (8.2)

Example 8.2 (The geometric Lévy process model) Let the stock price pro-
cess S be the solution of the following SDE:

t t t+
Se = So + p/ Ss_ds + o‘/ Ss—dW, + / / Ss—(e* — 1)N(ds,dz), (8.3)
0 0 0 Ro
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where Sg is a positive constant, and ¢ and o are constants. The solution of (8.3) is
represented as

t+
S = Spexp {O'Wt + <,u - -;—(72> t+ / / :zN(ds,d:c)}.
o JRg

We call the process S a geometric Lévy process. Remark that the process S is
positive. We denote p’ := ,u—}-fRo(eI—l)z/(da:). In addition, we assume the following:

Assumption 1. S;—(e* —1) € F,.

2. / Yy (dz) < oo.
{z>log 2}

3. There exists a unique constant 3 such that

p+ Bo? +/ (e* —1)e” Yy (dz) = 0.
Ry

We denote v, := / (¢ — 1)*v(dz). Remark that we have v, < 0o, #""1 — 1 ¢ F,

Ro
and

/ (€2 —1)eP""Vy(dz) < oo.
Rq

Moreover, the mean-variance trade-off process for this model is deterministic, and

5F is represented as

SE po fRo(ex —1)fE(t, z)v(dz)

t_— e .
02 4+ vy o

Now, we denote

we —1)

Bt ) = fB(a) = P 1 4 02 )
0% + g

We assume that there exists an EMM, denoted by P?, whose reference function is
fE. We make sure that this f¥(z) satisfies Assumption F. Firstly, we calculate the
right hand side of (6.1) as follows.

R.HS. of (6.1) = %—_Wﬂ + eXP{ - %:?‘_—_;;)
e —1
- Ro(ey - l)fE(y)V(dy)} -1
- ﬁ—(%_—-l—) +exp{B(e” = 1)} -1
ag (%]
= fP(a).
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Therefore, (6.1) holds. Next, we show that f£ € Fz. By Assumption above, we
have only to show that
/{rsloaﬂ}

for 8 > 0. For 0 < # <1 and a constant ¢ > 0, we have

0(e¢—1)>e¢9—1,

2
A1 1‘ v(dz) < oo,

and hence
log 2 2 log 2
/ %"= _ 1|2y (dz) < (eﬁ —1) / le* — 1|*v(dz) < oo.
0 0

On the other hand, for —1 < # < 0 and a constant ¢ > 0, we have
—0(1 —e?) > 1 — €%,

and thus
0

/_ €= — 112p(dz) < (1~ 6_5)2/ le? — 1v(dr) < oo.

[ee] — 00

Hence, we have that f¥ ¢ Fi, namely, f€ € F,. Consequently, the present model
satisfies all conditions of Corollary 6.3. Namely, P¥ being as in 2 of Assumption F
is the MEMM. We have

5 _ Mo _fRo(ez—l)fE(t,ZL')V(d(E)
= o 4 vy o
1
= ——(u+t # — 1)’ =y (d )
(ot [ e = nerer sy
= fo.

Furthermore, we have fF(t, z) = Pg(m) = exp{f(e*—1)} =1 and §&(t,z) = g¥(z) =
B(e* —1). Finally,

GE = exp {ﬁam ~ 5(Bo)%t

t+4 t
T __ I(ds. dz) — ePle™=1) _
+/0 . B(e” — 1)N(ds,dz) /0 /Ro( l)l/(dx)ds}.

Example 8.3 (Chan’s model with random coefficients) Let the stock price
process S be given by

t t t+ _
St:50+/ usSs_der/ asSs_dWs+/ / A, S,_zN(ds, dz),
0 0 0 Ro

where u,;, o, and A; are continuous bounded F-predictable processes and Sp is a
positive constant. This model is corresponding to the case f(t,z,S5:-) = ASi-z.
We assume the following:
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Assumption 1. X¢Si-z € F,.

2. The support of v is bounded, that is, there exist two constants 0 < ¢;,¢; < 00
such that
supp(v) = [—c1, ¢z

3. The predictable processes y;, o, and A, are mutually absolutely continuous.
Furthermore, the quotients u;/o; and p:/A; are deterministic.

4. There exists a unique F-predictable process §; satisfying

pe + Giog + )\t/ z (eﬁt)‘tx - 1) v(dz) =0
Ro

and the product 3;A; is deterministic.

We denote vy := / z*v(dz) and

Ry
FE(t,z) = (PN —1) + _phz
O'tz + /\?’Uz
Then, f¥ is deterministic and belongs to F,. We assume that there exists an EMM,
denoted PE, whose reference function is fZ. It is easily to show that the present
model satisfies all conditions of Corollary 6.3. Hence, we can calculate the density

process of MEMM PZ| denoted G®. We obtain

¢ ¢
GEF = exp{/ ﬁsades—l/ B2olds
0 2 Jo

+/0t+ /R AsBsz N (ds, dz) —/Ot /R (eMFes — 1) z/(da:)ds}.

9 Concluding remarks.

1. Even if we replace W by a d-dimensional Brownian motion (d > 2), Tang-Li’s
representation theorem (Theorem 5.1) remains true. Hence, for a d-dimensional
Brownian motion, we can obtain the same result as Theorem 5.2.

Moreover, we can extend our results to the general RCLL semimartingale model
holding martingale representation theorem under some adequate conditions. Namely,
if let S be the stock price process which is a RCLL special semimartingale, M the
local martingale part of S which is a square integrable martingale, and F the fil-
tration generated by M, then any square integrable F-adapted P-martingales are
represented as a stochastic integral of M. In this case, under Assumption C or C,
the reference local martingale is represented as a stochastic integral of M. By the
results of Examples 3.4 and 8.1, we may show that the MMM does not coincide with
the MEMM in general RCLL semimartingale case.

23



KSTS/RR-01/004
July 26, 2001

2. We have defined the MEMM as an EMM which minimizes the relative entropy,
‘that is, the MEMM is an EMM defined by mathematical motivation. However, we
have not known yet the financial meaning of the MEMM. In order to consider this
problem, it is important to investigate the relationship to the MMM having financial
meaning. In the continuous case, Arai (2001) studied the relationship between the
MMM and the MEMM by using the concept of the base of filtration. In particular,
if the stock price process is given by the solution of a SDE, then the MMM coincides
with the MEMM.

Contrary to this, the results of Examples 3.4 and 8.1 mean that the MMM does
not coincide with the MEMM in Chan’s model. Namely, we can say that the MMM
does not coincide with the MEMM in general jump type model. The reason is as
follows. For two continuous semimartingales X and Y, if X is strongly orthogonal

to Y, then we have
EX+Y)=EX)EY). (9.1)

For general RCLL semimartingales, (9.1) does not hold, since [X,Y] # (X,Y).
However, we can see an interesting connection between the MMM and the MEMM.
In Examples 3.5 and 8.1, let coefficient functions b; and o} be constants. Now, let
us set v = 1 in Example 3.5 and 3; = 1 in Example 8.1. Then, the density process
GM being as in (3.6) is equivalent to the density process G¥ being as in (8.2). Very
roughly speaking, the MMM with respect to ¢ — 1 is corresponding to the MEMM
with respect to z. Whereas, we can regard Chan’s model as the Black-Scholes
model with Poisson jumps. Hence, the MMM for the geometric Lévy process model
is corresponding to the MEMM for the Black-Scholes model with Poisson jumps.
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