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Abstract We discuss on the convergence problem of the star product for
the linear Poisson algebra associated with the Heisenberg Lie algebra in a
certain class of entire functions. The critical exponent of entire functions to
extend the star product is obtained. We also study collapsing phenomena for
convergence of the star product and give a way to extend the algebra keeping
associativity via breaking symmetry.

Keywords: deformation quantization, Poisson algebra, Heisenberg Lie al-
gebra.

Mathematics Subject Classification(2000): Primary 53D55, Secondary
53D17, 53D10

1 Introduction
The 3-dimensional Heisenberg Lie algebra g over Cis the Lie algebra gener-

ated by z,y, z with the relation [z,y] = z. Viewing these generators as linear
functions on the dual space g*, we have a linear Poisson structure on g* = C
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with the Poisson bracket {z,y}g = z. The Poisson algebra we discuss in this
paper is as follows: On the complex 3-space C, set

—~

—

_ - - -
for functions f=f(z,r,y) and g=g¢(z, z,y), where 0, - 9, — 9, - 0, stands for
a bidifferential operator:

- = —~
(1.2) f(Op -0y — 0y - 0p)g = Opf - Oyg — Oy f - Org.

We have

(]‘3) {Z’ x}H = 07 {Za y}H = 07 {‘T? y}H =2z,

which gives a linear Poisson structure on (& associated with the Heisenberg
Lie algebra.

The purpose of this paper is to give concrete examples of deformation
quantizations of the Poisson algebra (1.1) endowed with a linear Fréchet
structure.

A commutative associative Fréchet algebra F over Cis called a Fréchet-
Poisson algebra if F has a continuous Poisson bracket operation { , } :
F x F — F, that is, skew symmetric biderivation satisfying the Jacobi
identity.

Let £(C) be the space of all holomorphic functions on 3. Then, together
with the Poisson structure {, }g, £(C) is a Fréchet-Poisson algebra under
a suitable Fréchet topology.

Viewing the deformation parameter k as a formal parameter, we have a
deformation quantization of the Fréchet-Poisson algebra (£(C), -, {, }x) by
the Moyal product formula:

— =

2. (1hz)? - =
(1-4) fHng= Z (2pp3 (f(0s - ay - ay ) ar)pg)a

p=0
P - =
where (0, - 8y — 0, - 0;)” denotes the p-th power of the bidifferential operator
(1.2), and E(C)[[A)] is a Fréchet space under a suitable topology.

We now view A as a non-zero parameter, for simplicity, set A = 1. Then,
the Moyal product formula (1.4) is not defined over £(C®) in general. How-
ever, it satisfies the following:

(a) fxgis defined if either f or g is a polynomial.
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(b) The associativity f * (g * h) = (f * g) * h holds, if two of f,g,h are
polynomials.

Remark that the properties (a) and (b) hold even if the function space
E(C) is replaced by any Hol(U); the space of all holomorphic functions on
any open subset U of C.

If U = C, x @ where C, = C— {0}, then we see that z is invertible and

1 2 2i
z° = —(1 — e——;zy), o i—(]_ — 6?“’) € HOZ(U),
i

and it is easy to see by (1.4) with i = 1 that
(1.5) z*xz=1l=z*z", zxz"=1 —-26_27%@, 2wz =1—2e3,

This means the coordinate function z has both a left inverse and a right
inverse. Since z* # z°, the associativity fails:

(1.6) (z*xx)*z° # z° % (z +z°).

On the other hand, in [9], we have proposed the notion of the deformation
quantization of a Fréchet-Poisson algebra, which is meant the convergence
star product for the Poisson algebras in Fréchet categories. Similar notion
has been studied in the C* framework by Natsume [3], Natsume-Nest [4]
and Rieffel [11]. We discuss how the associativity breaking (1.6) affects the
deformation quantization of a Fréchet-Poisson algebras.

Let us recall a notion of deformation quantization of Fréchet-Poisson al-

gebra (F,-, {,}) (cf. [9]-[10]):

Definition 1.1 Let h € Rand (F,-,{,}) a Fréchet-Poisson algebra. (F,x*s)
is called a deformation quantization of (F,-,{,}) if it satisfies the following:

e For each h, (F,*p) is an associative Fréchet algebra.

e f x5 g is continuous in h, and moreover f ¥y 9 — f-g as h — 0 for
every f,g € F.

% ng—1-9) = 3{fg} ash =0 for cvery fog € F.

Introducing a system of seminorms on £(C), we define classes of Fréchet
algebras &,(C?) of entire functions on C, where the label p=(po,p1,p1) is
assigned by the system of seminorms. Briefly speaking, the Fréchet algebra
&,(C) is the subset of entire functions on G with the growth order less than
Po, p1, p1 for z,z,y-variables (see §2). We define for every po > 0,p; > 0 a

3
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linear Poisson bracket {, }g on &,(C) associated with the Heisenberg Lie
algebra structure (see (2.4)) so that (E,(C),-,{, }#) is a Fréchet-Poisson
algebra. The case py = oo is read that f(z,z,y) is only holomorphic with
respect to the variable z without any growth condition, and it is denoted by
Hol instead of pq.

In §4, we show that (&,(CP),.,x) is a deformation quantization of
(E(C), . {, }u), if and only if 0 < p; < —p;zﬁ"—l, or po = Hol and 0 < p; < 2
(Theorem 2.1), and these are isomorphic to quotient algebras of completions
of free tensor algebras Tié and T2 . by the closure of the ideal gener-
ated by the relation of thgofiféiimensional Heisenberg Lie algebra, respectively
(Theorem 4.1, Theorem 4.2, Theorem 4.3). In both cases, p; is restricted in
the interval 0 < p; < 2.

We find that the class of Fréchet algebras obtained above is not so large.
Through computations of star exponential function (see in the proof of The-
orem 5.1), we show that the star exponential functions of quadratics are not
included.

;L
'p

The growth condition to be a deformation quantization relates to the
associativity breaking (1.6). We have showed in [9] that the Moyal product
made sense as a convergent product on the space of entire functions on C of
order less than 2, but it failed the associative properties for entire functions
of order > 2. The techniques in [9] proceeds to find a similar phenomena to
[9] even in this paper. Rough idea is as follows: Even in the case p; > 2,
the *-product has the properties (a) and (b), and 2z commutes with any
other elements. Thus, we can consider the restriction of our system to the
“submanifold” z = @ # 0. However, this procedure causes the associativity

breaking (1.6).

Since the completion 73, | of the free tensor algebra in §3 is a topological

1
P
associative algebra for any p; > 0, the quotient algebra .A‘:ilol 4 of T}?l . by

’ b oy
the closure of the ideal generated by the relation of the 3-dimensional Heisen-
berg Lie algebra is also an associative algebra. The associativity breaking
(1.6) in the case 2 < p; affects the degeneracy of the quotient algebra.

In §5, we study the case p; > 2. In this case, the quotient algebra A3

Hol, -1

P1
has the property similar to the formal deformation quantization {1]. Namely,
if one substitute the central element to z a non-zero number, then the algebra
collapses to the trivial one {0} (cf. in §.5).

Through this argument, we realize that restriction of our system should
not be taken carelessly. It may cause another difficulty of divergence. If we
restricts the complex variable z to the real line, then z —ia, a € R;, should
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be invertible, but z — ia has a left inverse (z — ia)* in a suitably extended
system. Since there is no reason to set (z — ta)~! = (z — 7a)*, this makes
another breakdown of the associativity. Thus, the restriction of the domain
seems a crucial problem in treating non-commutative variables. Confiding
a notion of non-commutative submanifolds seems to need a various strange
phenomena.

In order to keep associativity, we have to break SL(2,C)-symmetry of our
system discussed above. In §6, we impose for functions f(z,y,z) € Hol(C?)
the condition that f is rapidly decreasing in (z,y) € R2.

We show that a certain space, type S space, given by Gel’fand-Shilov [2]
is closed under the *-product.

2 Fréchet-Poisson algebras

Let @ 1 be a complex n+1 -space with the complex coordinates
p
(IO,‘LA 1," " 71'71)7

and P(C*1) the set of all polynomials on C**1. The usual pointwise multi-
plication

(f-9)(z) = f(z)-9(z)
for polynomial functions f,g on C*t! gives a commutative associative struc-

ture on P(Cr1).

2.1 Fréchet algebras of (V+1.

Tracing mainly the book of Gel’fand Shilov [2], we first introduce a system
of seminorms on the set of polynomials to obtain Fréchet algebras by taking
completions.

To define a system of seminorms, we use the following notations: # and b,
etc. denotes (n + 1)-tuples p = (po,p1,--- ,pn) and b = (bg, by, - - - ,bn) with
pi > 0 and b; > 0 for 0 < i < n. By forgetting py and by, p, and b, denote
Pe=(p1, -+ ,pn) and b, = (by, - -- ,b,,) respectively.

Definition 2.1 Let rq and Ny be positive real numbers and non negative

integers, respectively. We define seminorms ||-||; 5,11 |15, 5. o and |- 115, 5.5,
on P(C**1) as follows:

2.1 _r = - bilai|P),

) Wlhs= s |flexp(= 3 bleip)

(WO,"‘yl‘n)ECn i=Q
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(2.2) W55 = sup  sup  [flexp(— } bifz;|™),
PRPT0 aol<ro (1, son)ECH ;
No
(23) 1 oo = D Fe(@n, 2l 5.
k=0
where we expand f as f(To, 1, Tn) = Y opeo Je(T1s* ,20)TE as @ power

series of xg variable.

We denote the completions of P(C*+!) under systems of seminorms
- ”;3,13}67 {It- Hf).,?}',ro}g‘,ro and {||- [5.,5.,No }5*,N0 respectively by

(El) 55(@+1), (E2) gHol,ﬁ.(@+1)y (E3) 800,13*(@4-1).

The notation Eq(C**1) stands for one of &), Epis, (Crt!) and
o 5. (CF1).

Lemma 2.1 &(C*) is a commutative associalive Fréchet algebra.

Remark that £;(C* 1) and Egy 5, (CH+1) are subalgebras of all entire func-
tions £(Ct1) on C'+1, and &, 5,(C+1) is the space &, (C*)[[z0]] of all formal
power series of o with coefficients in &, (C*) with the z¢-adic direct product
topology.

In this paper, we are mainly concerned with the case of n = 2 and p; = p,.
Reminding this, we denote by p = (po, p1,p1) and p. = (p1,p1), respectively.

Lemma 2.2 Let £o(CP) be one of (E.1)~(E.3). Then (£o(C),-,{, }x) is a

Fréchet-Poisson algebra.

2.2 Deformation quantization of (£o(C), . {, }x)

Let £(C) be a Fréchet-Poisson algebra given by Lemma 2.2. We con-
sider a noncommutative product which gives deformation quantization of
(Ea(C), -, {, }u): Setting h = 1, we define a product fxg for f,g € P(C)
by the product formula, called also the Moyal product formula:

(2.4 reg=Y SEir6.-8,- 4, 8y,

As for f,g € P(C), the product (2.4) gives an associative product.

6
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Moreover, if we replace z by hz, then (1.4) gives a deformation quantiza-
tion of (C*(C),-,{,}u) (cf. [1], etc.). We focus to the question how (2.4)
extends to Fréchet-Poisson algebra (£o(C),-,{, }x). In this section, we are
concentrated with the case of the weight p = (po, p1,21), (p1 = p2).

One of goals in this paper is the following:
Theorem 2.1 Let (£o(C3), -, {,}n) be a Fréchet-Poisson algebra given by
Lemma 2.2. Assume that p is given by p = (po,p1,p1). Then the following
holds:

(1) (Ea(CP), %) is an associative Fréchet algebra if and only if ) satisfies one
of the following:

2po
po+1’

(A2) For Q2 = (Hol,p.), p« = (p1,p1), 0 < p1 <2,
(A3) For Q = (00, px), P« = (p1,p1), 0 < p1.
(2) For any case (A1)~(A3), (Ea(C),*) has the following properties:

(A1) For Q =p = (po,p1,p1), 0 < p1 <

(i) [2,E(C)] =0, i.e. 2 is a central element.
(i) [Ea(C),E(C)] C 24E(C).
(i) Ea(C) = &,.(C)® 2xE(C)  (topological direct sum).

(iv) z*, and *z are continuous linear isomorphisms of Eq(C) onto

(v) There is an an involutive anti-automorphism a — & of (Eq(C), %)
given by setting 2 =z, t = u and © = v, but 1 = —1.

(Vi) Mpo 2™ * £a(C) = {0}.

An algebra with the properties (i)—(vi) is a particular regulated algebra
which is given in [8]:

Definition Replace (i) by the property
(l’) [Z, gg(@)] C zx* gg(@) * Z.
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An associative (Fréchet) algebra A with the properties (i’)-(v) in Theorem
2.1 is called a z-regulated (Fréchet) algebra. If A satisfies (i), then A is called
z-central, and if A satisfies (vi), then A is called analytic. If A is a formal
power series of z, then A is called formal.

Replacing z by Az in (2.4), we have a product *y.
For £q(C), we have the following typical deformation quantization of
Fréchet-Poisson algebras:

Corollary 2.1 Assume (E,(C),-, {, }x) satisfies (A.1) of Theorem 2.1. Then,
(E(C), #r) is a deformation gquantization of the Fréchet-Poisson algebra

(gp(@)’ ) {’ }H) 4

Set z = 1in (1.1) and denote it by {, };. Then we have a Fréchet Poisson
algebra (gp:((cz)’ K {7 }1)

Note that &, (C?) is viewed as the closed subset of E,,. (CP) whose
elements are independent of z. We consider the product defined by (1.4) by
setting z = h. We denote its product by .

Corollary 2.2 ([9]) Assume p. = (p1,p1), 0 < p1 < 2. Then (&,,(C), ;)
is a deformation quantization of a Fréchet Poisson algebra (€,,(C?),-, {, }1).

The case (A.3) of Theorem 2.1 implies the formal deformation quantiza-
tion:

Corollary 2.3 For every p, = (p1,p1), 0 < p1, (E,.(C)[[A]], *1) is a formal
deformation quantization of (&,,(C2),-, {,}1).

3 Free tensor algebra

Let 7*! be the free tensor algebra of (n 4 1)-vector space V:
(3.1) T =D a7,
k=0

where Tyt = C 7! = Ve ..oV (k times). Fix a basis Xo, X1, -+, X,

of V. Then the monomials X, = X,,¢---eX,, form a basis for 7,**! where

a = (011,"' 7ak)1 0 Sala"' s O S'I’Z
An element T € Tt is written as
(3.2) T = Z taXy (finite sum), ¢, € C
|| >0
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3.1 Completion of Free tensor algebra

We introduce a topology, called the word topology on the space 7"+! to make
a completion.
We use similar notations as in §2.1: 7 denotes (n+1)-tuples ¥ = (70,71, -+ , 7))

and § = (so,S1,S2, " ,8n) respectively, where 7, > 0, and s; > 0 for
0 <1 < n. By forgetting 7o and so, 7x and 8. denote . = (7, -+ ,7,)
and & = (81,52, "+ ,8n)-

Given o = (ay,--- , ), we consider a monomial X, = X,,8---0X,,.
Let m;(o) denote the number of X; in X, and set m(a) = (mg(a), - ,m,(a)).
For 7 = (19,71, -- ,7n) and a = (ay, - , o), we set

m(a) = (romo(a), mmu(a), -+, Tama(a)).

Using these notations, we set for a monomial X, = X, e---eX,, as
follows:

(3.3) | Xalss = (Fm(a)) ™@spmel) . grma(e)
(34)  abos = (a7 e,

where (7m(a))™™) = (romo(a))?mo®) (rymy (@)™ - (Tymp (a) ) (E)
and ﬁm*(a*) = (Tlml(a))ﬂml(a) N, (Tnmn(a))'mmn(a).

Definition 3.1 Let 7,7,,3,5, be as above. Let t and Ny be a positive real
number and a nonnegative integer, respectively. ForT =Y t,X, € T+
we set T =3 T;, T; € Tt where T; is the component of T which contains
Xo g times in the term X,. We define seminorms as follows:

(3.5) T75 = z [tal - [ Xalz,5,
(3.6) NT||5 50, = Z |55 5.1,
=0

.]'7

No
(3.7) Tl 0500 = 3 T -
=0
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The completion of 7"*! by the system of seminorms {||T||5,5}s, {I|T|]5..5. Y5005
{IT115..50.N0 } 5,8, Will be denoted respectively by

(T.1) : T+ (T.2) = Tith., (T.3) : T 4!

00, Tx*

Corresponding to §2, we denote by 72?“ one of the notation T;H’ I?Jl%*
and T;‘,J%f according to O =7, (Hol,7.), (o0, 7).

The conjugation X; = X1, X, = X,---, X, = X, and ¢ = —i on 7"+

is extended to T2t! and gives an involutive anti-automorphism.
Q g p

Lemma 3.1 (731!, ®) is a noncommutative associative Fréchet algebra with
the conjugation.

In the proof of Lemma3.l, we use the first inequality of the following
Lemma:

Lemma 3.2 Let u,v > 0. Then, we have
(3.8) wv? < (u4 o)t < ettrute?

The second inequality is useful in the later computation.

As in the previous section, we mainly restrict our concern to the cases of
n = 2 and the weights 7 = (79,7, 71), 70,71 > 0 and 7. = (71, 71), 71 > 0 .

3.2 Subspace of symmetric elements
We first introduce a symmetric product
1
FoG= §(F®G’ + Gof)

in 7! and set

(3.9) (Fo) - H Fo(Fo(---(FoH)---)),
(3.10) (Fo)* . (Go)'-H = Fo(Fo---(Fo(Go)-H) ).

(cf. [4]). Using these notations, we define a linear subspace S™*! of 7™*! as

(3.11) S ={FPeT™|F= 3 c(Xo0)™ - (X,0)™ -1},
a=(ag, " ,an)

Setting a commutative product e for monomials:

((Xo0)™ - -+ (Xp0)™™ - 1)o((Xo0)™ -+ (Xp0) - 1)

3.12
( ) :(Xgo)“”ﬁo L (Xno)an+ﬁn 1

3

10
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we extend @ on S™*!. Thus, (5™, 0) is a commutative associative algebra.
Denote by Si*! the closure of S™*! in T3t
For Q = p, (Hol,p.), (00, p.) respectively we consider the following cor-
respondence U = p~!, (Hol, p.™"), (c0,p.™") where 5! = (pg', p7", -+ ,pi")
and p.~t = (p ', ,p;)-

Proposition 3.1 With the correspondence as above, (Sit!, @) is isomorphic
to Eq(C**1) as commutative topological algebras.

Proof. Although it seems well-known facts (cf.[2],[10]), we repeat the proof.
Identifications between these spaces are constructed naturally by putting the
generators X; — z,, and the operation © — -. In the following, we view these
as the same ones, and using the same character we delete the notations of
products o, -

We show the case 2 = p and for the case of 1-variable z, which yields easily
the multi-variable cases. Let @ = pand U =7 =1/p. Let f = > a,z" € S,.
For every s > 0 there exists C' = C(s) > 0 such that \an| < C(rn)™™"s™™,

n=1,2,--- . By the inequality (rn)~"™" < n], for n > , we have
Ay < 1 1, \™
| Z anz"| < C Z i (1217 /5)

Note that (|2]7/s)™ = (Jz|7/s)")(|z|7 /s)™ "1™ < ([z]7 /s)l™ exp(|z]+ /).

Thus, we have

(3.13) 1= 3 Janllel + Cexp (21el7 /)

nlT™

The first term of the right hand side is a polynomial and hence bounded from
the above by the exponential function exp(2|z|7/s). Then by putting p = 2
we have:

(3.14) 1 < CK exp (212P/s),

for certain positive constant K depending only on 7. Then for every b > 0,
we have an inequality ||f|l,» < K|\ fl||+s where f = 3 a,z" and s = 2/b.
Thus, we have f = 3 a,z" € £,(C).

Conversely, assume f € &(0), i.e., sup,cc|f(2)]exp(—b|z|P) < oo for
every b > 0. Put f(z) = > a,2z". Using the Cauchy estimate that |a,| <
M (exp br?)/r" for any r > 0, and taking the minimal value, we have

(3.15) 0] < ML
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By choosing s such that epbs < 1, we have the following which gives the
converse

(3.16) Z lan|(n/p)"/?s™/P < Mz(epbs)"/”.

Thus, the case ! = p is obtained by extending the above arguments to
multi-variable functions.

To show the case 2 = (Hol, p.), we remind estimate of the seminorms for
Xo in S;, and for z¢ in &,,is same. Thus, the above argument also yields for
this case @ = (Hol, p.).

The case 0 = (oo, p.) seems rather trivial. Remark S = 5% [[zo]]
and €., (C+1) = &, (C)[[o]] with the direct product topology Us1ng the
above observation for & ‘(@l) and 5'::1, we have the case ) = (co,p,). O

3.3 x-product on S}

In this subsection, we work in S§. For convenience, we write as X, = Z,
X; = X, X; =Y. We introduce an (commutative) associative product,
denoted by © on S C T, where U is one of 7, (Hol,7.), (00, 7).

For F =Y agma(Z0)F(X0)™(Yo)" - 1 € S§, we set

IxF = Z Akmnm(Z0) (X o)™ 1 (Yo)" - 1
Oy F = Z Aemn(Z0)F(Xo)™(Yo)" 1. 1.

Simple estimation of (3 1() yields that, dXF Oy F € S3. Similarly, we
define higher derivatives 9% 912 F' as usual, and OVORZF € S}. For Fy, Fy € 53,

we set
(3.18) {F, 1} = Fy (20 (Bx0By — Byl ) ) .

Then, by Proposition 3.1, (S3,¢,{, }) is a Fréchet-Poisson algebra, isomor-
phiC to (EQ(@), *y {, }H)

The formula (1.4) will be read as on S° and on S3, i.e. for Fy, I} € S5,
we set

(3.17)

(3.19) Fi# Fy = Z o Ch (2e(9x 0 0y = by 0 03)) P,

(3.19) is well-defined and gives an associative product on S3.

By Proposition 3.1, in order to obtain Theorem 2.1 it suffices to show

12
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Theorem 3.1 Let (S5,0,{,}) be as above. Then, (S3,*) is a Z-centrdl,
Z-regulated analytic Fréchet algebra, if and only if U satisfies one of the

following:
(A1) 0<7mo<2 =1 for U=(r,7,71)
(A.2) % <7 for U=(Hol,7,),7 = (711,71).

(A’3)0 <7 for U=(00,7), Tu=(T1,71).

4 Convergence of the product

In this section, we prove Theorem 2.1.

4.1 Case T3, 7= (r9,7,71), 0 <79 <21 — 1

We first prove the sufficiency part in Theorem 2.1.
Let 7.3 and S2 be as in §3. To show Theorem 2.1, we consider the following
product on S3:

\/'_P

(4.1) FyxFy= > oy 'oa;(( Ay ) Fyod, &, Fy,

i+j=p

for Iy = 37 apymyns (Z20)9 (X0)™1 (YO)™, Fy = 37 bryman, (Z0)%2 (X0)™2 (Yo)"2
€S2

In this subsection, we show the following:

Theorem 4.1 Assume 7 = (19,71,71),0 < 79 < 21y — 1. Then, (S2,%) is a
Z-central, Z-requlated analytic Fréchet algebra.

Proof. Let £}, F, be as in (4.1). Compute

V-1
(42) Fl * Fg = Z Z ak]mlnlbkgmgnz

2p! i+j=p
pt ( 1y m,! nq! mo! 7o)
! (m1 =)l (ny — 7)) (ma2 — J)! (n — 1)!

@ \Ptkitke ( y o ymitma—p ) o it —p
x(Ze) (X¢) (Ye) ~

13
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'
7

By using the definition of seminorms and Wm—_)' < m', we have the following

estimate:
~ 1 Pl
HFI * FQHT,S _<_ 2 |ak1m1n1 kugmgn2| ‘ Z 5‘;‘7 lenlmzng
p>0 Pas v
X (1o(p + Ky + ky))PHEIHE)
X(’Tl(Tn] +ny — p))ﬂ(m1+m—l’)(ﬁ(m2 +ng — p))Tl(m2+n2—p)
ngo(p+k1+k2)3n (m1+ma+ni1+n2—2p)
1 .
Remark

(ri(my + ny — p))-r1(m1+m--P)(,rl(Tn2 +ny — p))’l’l(mz+n2—p)
< (m(my +me +ny +ng — QP))Tl(ml+m2+m+n2_2p)a

DR S 2
mimining < (m; + mq + ny + ny)*P.

utv,,u, v

Using the inequality (u 4+ v)**" < e*™y“y? in Lemma 3.2 to the term
(1o(p + k1 + ky))olPHhi+kz) we have

1
HFl * F2HTv5 < z |ak1mlnl kuzﬂ‘nnzl ’ E 'Z')"(ml +ny +mg + ng)z”
p>0
Xero(P+k1+k2)(TO(k1 + kz))‘r()(k1+k2)(7_0p)7'op
X(Tl(ml +mo 4+ 1+ ng — 2p))71 (m1+ma+ni+nz—2p)
S(T)o(p+k1+kz

)S

1(my+matni+nz—2p)
X 1 .

Plugging u*v” < (u 4 v)** into the term involving (7op)™?, we have

1
”Fl * FZHT,.S S Z lalnmlnl ”bkzmgnzl ) Z ;(ml + ny + my =+ n2)2p

p20 ©
(4.3) Xcm(ﬁ+k1+k2)(7.0(k.l +k2))70(k1+k2)
X((To - 27 )p + 7i(my + ma+ny + nQ))((TU_271)P+Tl(m1+m2+n1+n2))

x 360 (p+F1 +k2)SII (m14ma+n1+n2—2p) )

14
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Using the assumption mq < 27, — 1, we get

1
HFl * F2HT,s < Z Iak1m1n1 ku2m2n2| . Z —-‘-(ml +n; +my+ le)p
>0 p:
pz
xemo(PHivtke) (2o (f 4 ky))Tolkitke)
XTITI (m1+m+mz+n2)(m1 +mq+ng + nZ)((T0—2T1+1)p+7-1 (my+matni+n2))
(4 4) XSTO(P+Ic1+k2)Sn(m1+m2+n1+n2_2p)
\ M 0 1

S Z laklml'nl ”bkzmznzl ’ exp[em (ml +ny + my + ’12)38031_27‘]
670(k1+/‘12))(7.0(k1 + k2))7'0(k1+1€2)
x(r(my +mq 4+ ny + nz))TI(ml+m2+m+n2))

% S(’;o(k1+k2)3’]r1 (m1+ma+ni+n2) ‘

Using (u + v)*tV < e*tvu*p? again, we see that
g g

HFI * F?HT,S < Z |‘1k11m1n1 ”bkgmz’nz] : (To(kl + k2))7'0(k1+k2)

(4-5) X(Tl(ml + "7/2))71(m1+7n2))(71(n1 + nz))ﬂ(m+n2))

% (eso)fo(k1+k2)e‘l'1(m1+m2+n1 +n2))

XSIl(m‘+m2+nl+n2)eXp[@To(ml +ny +m, + 77,2)3508;271].

By the definition of seminorms, we remind the following equality:

IF1eFallre =Y 1akimim |[Bromons [(To(Fy + kg))otr+52)
(4.6) X(Tl(ml + m2))T1(ml+m2)(Tl(n] + nz))n(n1+n2)
Xago(kl+k2)o_’lrl (mi14+m2+ny+n2)

Therefore, we have

(4.7) 1Fyr* Bl < (1 Fr0F2),,

where o = (spe, s1exp(1 + 77 (es0)®s72™)).

The properties (i)-(vi) in Theorem 2.1 are easily obtained (cf. Theorem
5.1 below).

If § = (Hol,7.) and 7 > %, then the system of seminorms is obtained
by neglecting (ok)™* part and setting s° = t. Minding this, we have the
following:

Theorem 4.2 Assume 7. = (n,71), 1 > % Then, (513-_101,7‘,*) s a Z-

central, Z-requlated Fréchet analytic algebra.
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Proof. By following the computations as in 4.1, we see Theorem 4.2. In
particular, we neglect (7o(ky + k2))™*1**2) and put 70 = 1 in (4.3). Then,
the same computations in (4.4) and (4.5) gives the following estimates:

(4.8) || F1 * Fallry sere < |[F10F,

where s, = (exp7,572%)s;.
In this case, there is no restriction of 7;. By the definition of (3.19), the
product * is well-defined for any Fi, 3 € 72 ... Then, we have

Theorem 4.3 Assume 7, = (11,71), 1 > 0. Then, (S5,
7 -regulated Fréchet formal algebra.

TwsS1%,70

*) is a Z-central,

4.2 Remarks on the star product.

We remark the assumption in Theorem 3.1 is best possible in the following
sense, which give the necessity part in Theorem 2.1.

Proposition 4.1 Assume 7 = (79, 71,71) with 79 > 0,74 > 0,70 > 27 — 1.
Then, * does not give a Fréchet algebra structure on S2.

Proof. We set

o~ (Zo)"(Xo)" ~ (Zo)"(Yo)"
4. if = D Z)Y)= .
(4.9) Us(Z,X) ; > Ue(2,Y) 22:0 o
If @ > 79+ 71, then Ue(Z, X),Us(Z,Y) € S2 and we have the product
Ua(Z,X)xUs(Z,Y)
min(n,m) .
(4.10) 11 MY L N fm
= . I(—)? VA n+m+p n=p(y )P
S e L7 () () zorsmxey v
Then, we get
11 el 3n
(4.11)  ||Ua(2,X) % Us(Z,Y)lrs 2 > (D Bmol)*sg ol
1=0

If we choose a = 179 + 1 + € for a sufficiently small € > 0, the right hand
member is a power series of s3° with no positive radius of convergence.

Thus, we have (4.10) diverges for any sq > 0. Similar computation gives
the following:

Corollary 4.1 Assume 7, = (11,71) satisfies 0 < 71 < 1. Then a*b diverges
for some elements in Sg, ..

Note that if U = (00, 7,), 71 > 0, there is no complementary case. Hence,
the argument in this section gives the “only if” part of Theorem 2.1.
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5 Quotient of T3

As in §4, let 73 and 72 be the free tensor algebras with generators X, =
Z, X, = X, X, =Y and with X; = X, X, =Y, respectively. Let 73 be the
completion of 73 via one of systems of seminorms given by Definition 3.1.
Let 73 be the two sided ideal of relations in 72 generated by

XeZ — ZeX, YeZ — ZeY, and XY —YeX —i7.

Let A% be the quotient algebra 7/Z. We denote by % the product of A®
Denote by Z3 the closure of Z in 7.

In spite of Proposition 4.1 and Corollary 4.1, we see that A3 = 75 /73 is
a Fréchet algebra.

5.1 Algebra structure of quotient

First, we observe the algebra structure of (A3, %). We remark first the fol-
lowing:

Theorem 5.1 Forany U, (A3, %) is a Z-central, Z-regulated, analytic Fréchet
algebra.

Proof. Let T = 3 t,X, € T3. We remark for every X, the following:
(i) If X, does not contain Z, then X, can be viewed as

(5.1) X4 = Qo+ P., where Q, € S5, P, € ZoT5 + Iy,

and moreover the seminorms of X, and S, are equal.
(i) If X, contains Z, then X, can be viewed as

(5.2) X, = P,, where P, € ZoT3 + 3.

Thus, T is written as

(5.3) T= taQa+ZeP' +R,

where @ € 73, R € T3. Repeat this computation for Q.
Reminding

(5.4) T [(ZeTs + I) = (85, °),

we have (iii) in Theorem2.1.
The other properties in Theorem 2.1 are obvious.
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5.2 Properties for A3

We study algebraic properties on A2 = 7?/I2 where T = (19, 71,71). We
denote by * the induced product from the closure of free tensor algebra 7°.
We first show the following:

Theorem 5.2 Assume for 7 = (19,71,71) and 0 < 79 < 277 — 1. Then, we
have

(5.3) T2 =53 I? (direct sum).
Moreover (S2, %) is isomorphic to (A2, %).

Proof. Tracing how the symmetric product o is defined on 7 by using @ in
(3.9), and how the o-product is defined on S® (3.12), we define the é-product
on the quotient algebra A* = 7°/Z° by using the #-product instead of e.
Since ao (boc) — (aob)oc = 1[b[a,c]], we see that if a,b, c are generators
then XY = YoX. Hence the d-product is a commutative product (see [5])

without any artificial definition. Remark that
(X, Y] = XY - YiX =7, [X,Z:;=[Y,Z): =0,

in A% and also X4Y = XoY + %Z. Then the quotient algebra A2 is naturally
isomorphic to S2 with the Moyal product * and the natural projection 73 —
T3/Z° is naturally translated to the mapping given by the replacement of
the e-product by the *-product.

Let 7 be the homomorphism 72 to S° defined by

(56) W(Xal(g"'@Xan):Xm *'”*Xan'
Notice S* C 73 and
XY =X oY = (XeY +YeX)/2.

Then we see

T(XeY)=(X*Y +Y % X)/2 = X6Y.

Similarly, it is easy to see that the replacement of ® by * gives the identity
on S3, i.e. |S? is the identity. Hence, we have T° = &% @ T°.

We now show that 7 extends continuously to the map from (772,¢) to

(S3,%). Let Y* and X* denote by Y #-+-xY and X #---* X. We first note
that
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m

(5.7) ymaxn =3 (Z‘) Ad(V)E(X) 5 Y7,

k=0
where ad(Y ).(X)" = [V, X"]. . Using ad(Y).(X)" = —inZ « X*~', we have

min{m,n}
m! n!

m n o 1y ] n—I m-—1
(5.8) YmreXr= Y 1)“(771_1)!(”_”!2*)( Y™

=0

Let o = (a1, - a,),8 = (51, -+, Bn) be n-tuples of nonnegative integers. By
(5.8), we have

(5.9) Y™ £ XP x Vo2 XP2 5o YOy X P
041! 61'

_ Z (_i)k1+.,.+kn kl!(al — kl)l (ﬂl_ kl)' X

k=(ky, " kn)

”.X(al+“'+an—(kl+"'+kn—l))! /671‘
w2 s X181 ylallbl

where [a| = ay + -+ an, Bl =B+ + B and k| =k + - + k.
Note that (a;”) is monotone decreasing in n. Using

(5.10) <al+a2“kl>...(al+'-~+an—(k1+-~+kn_1))

(63)) Cp
_(art-+ay)
T ol !

)

we have

! 61!
A Py gy
Ll kit k) B!
Ellon F -+ o — (k4 ko)) (B — )]
1 gl o] B! B!

kil kol (Ja] = [EDH(BL = k)L (B — k)
X(a1+a2—k1)“.(a1+---+an—(k1+~-+kn_1))

< 1 ]a|' ;31! ﬂn' "
S Rk (el R B — k)t (B — Rt
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Plugging (5.16) into (5.15) and using Theorem 4.1, we have
(5.12) [|[Y* # XP 4Y ™ 4 X2k kYO a X P,

1 |CY|' /31' 6ﬂ’
= (Z) Rl kol (ol = KDL (By = k)l (Ba — k!

X(Tolk'l)mm . (7-1(|a| + Iﬁ[ _ 2|k|))n(|a|+1ﬂ|—2|k;)
XSgo}kl(srl)n(]a|+|ﬁ|—2k)’

for some s’ = s'(70,71, 50,51). Similar as in the computations in Theorem
4.1, we have

(5.13) Y1 XP Y26 XP2h . x Yo e X,

< 2, (6) (e
k=(k1,+ kn)

x (rolk )™ - (71 (la + 18] — 2[k[))™ (et1A1=214D
XSSOVCI(Sll)rl(]al+lﬁl—2k).
Using 27, — 1 > 79, we have
lo|™ |k (Ja| + 8] — 2|k|)rUel+IEI-2K) < (|| 4 |B])(el+18D,
Plugging the above into (5.13), we have

”ym *Xﬁ‘ *Y‘”*Xm % .- *Ya"*X'BnHT,S
/Bl /371. |k|
< e
< = (M) ().
k=(k1, kn)
x (1) g 1() T (o] + 1)) (D s et D
< (14 753 (1)) (] + ) O,

Thus we have
(5.14) Y= s X P sY 2raXPr| [, < CTHIAD 1, (4],

for some constant C'.
For such an F' € T3, we consider the element F' = 3 45,0 Z%0Y 10 X 10 ... oY %o X fn
by pushing all Z’s to the left hand side in each term. Then, we have ||F||,., =
[|F]]s.s and 7(F) = 7(F). Since 7(F) = 3 a5 20 %Y 14 X P . kY g X On
we have ||7(F)||,s < ||F||-s for some § = 3(70, 71, S0, $1)-
Thus, 7 extends to a continuous homomorphism from (72, @) to (52, ).
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Taking its completion, we have the exact sequence
023 T2 55 -0

such that 7|S? = id. Hence 7> = S2 @ I2. It follows S? = 7?/Z2 and then
(A3, %) = (S2, %), which gives Theorem5.2. O

By the same procedure as above, we have the following:
Theorem 5.3 Assume 7, = 71,5 < 1. Then,
(5.15) Folyre = Stotire ® Lioi,r, (direct sum).
Moreover, (Sgoi 2, *) is isomorphic to (Agp 3, %,).

Let S3, be the completion of S? in 7F,. Reminding that 72 . coincides
with S2 [[Z]], we have easily

Theorem 5.4 Let 7, =7, > 0. Then, we have

(5.16) T, =S80, 0L .. (direct sum).

00, Tw 00, T«

Moreover, (A2, . ,*) is isomorphic to (S3, ).

6 Degeneration of algebraic structure

In §3, it is shown that, (S5, *) is a Fréchet algebra under certain assumptions
on the weights 7 and 7,. In this section, we study algebraic structure of
(S5, *) where the *-product diverges for some elements.

Recall the Fréchet algebra (A2, x) for 7 = (79, 71,71),70 > 211 — 1,79, 71 >
0. If 1y > %,7‘0 > 27, — 1, then we see easily that

1
At D Arm O Ary o where 70 =21 — 1,7] = —2—(7'0 +1).

~ 3 ~ 3
By Theorem 5.2 we have A, = STé,T;’ATO:T{ =

shows that A, . % S3 _, since S3 _ is not closed in * by Proposition 4.1.
It follows that 72 # S2 = & T3

70471 70,71 70,71 "

,, but Proposition4.1

Ty
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6.1 Collapsing of algebras

Next, we consider the case 3 > 7 > 0. In this case, the algebra A, ,,

collapses to an almost formal algebra in Z.

Theorem 6.1 Assume 7 = (79, 71,71),70 = 0,% >1 >0. (If o= 0, then
we read this as Hol or 00.) Then, for any a # 0, there exist R, € T2 and
H, € T2 such that

(6.1) 1 = (a— Z)oH, + R..
. . Zxoy ° =2 yoy
Proof. Set X* = $e(1 = ef ™), x* = ol = eF*%) where i1 -

oo (XeY), and + takes the factorization by X for the power series for
2 x0
1 —eg xer Computing the following identity which is the associativity in

the free tensor algebra
(6.2) (X®eX)eX® — X%e(XeX®) =0.

Since the computations modulo Z2 is that of the *-product (3.19), the Moyal
product formula gives

(63) X —X"—(1- §)®(65%X®Y®X° — X*ees ¥y e T2
Hence | zgey  =syoy
5oles”  —ee’ T ) E{Z-a)+ 17

where (Z — a) is the two sided ideal generated by Z — a. Thus, we have

Y(%(*x —exr ¥

= (F5 T e F ) g 2o ) e (-0 T,
Thus we have

s XY _ XY g BXY L Y ez —a) + T2,

Take the conjugation given by Lemma3.1 in the above computations. Note
that the above computations are only contained in terms of the symmetric
product. If we take the conjugation of the above relations, we only replace
a and 7 by @ and —i, respectively. Then, we have the same relation to the
above by replacing a by the complex conjugation a. We have
+2 oy
€o

€(Z —a)+ T2
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Since dx f, Oy f can be written by using commutator bracket, this shows that

,ixoy

(X™oY™)odk ), o(X™oY™) € (Z —a) + I2.

Hence, we have (XmGY")Ge;%XQY €(Z —a)+ I2. 1t follows

(Z ;.(22) (XeY) ) S ez —a)+ T

k=0

Taking m — oo, we have 1 € (Z — a) + I3 where (Z — a) + I3 is a closure

of the two sided ideal generated by Z — @ and Z2 in 7,. This means that

1 is contained in the closed two-sided ideal (Z — a) in A2. Since (Z —a) =

(Z — a) * A3, there is H, € A2 such that (Z —a) * H, = 1. This gives

Theorem. O
Theorem 6.1 gives the following:

Theorem 6.2 Under the same assumption as in Theorem 6.1, any ele-
ment a — Z for a # 0 in the Fréchet algebra (A2, *,) has an inverse, and

Miso 24042 = {0},
Proof. Theorem 2.1 gives that (5, Z*¢7;> = {0}. It follows [, Z*eA3 =
{0}. - h O

For a polynomial p(Z) of Z, we define a family of seminorms:

(6.4) 1P(Z)lIms = Y laxl(rok)™*s™,  p(Z) =) arZ".

Denote by Z, the completion of the polynomial ring by the system of
seminorms (6.4). Z. is a closed algebra of 732, 7 = (79, 7,7). We get
ZTO NZ? = {0} by Theoremb.1. However, Z, +ZI2 is not a closed subalgebra
in 7 as we see below.

Consider the algebra (A2, *,). We denote by 3 the closure of the algebra
generated by Z and 1 in A2. Then 3 is a commutative Fréchet algebra, and
a— 7, a# 0 is invertible. Now, we get

(6.5) 2o % 2, /(2,NT8) C 2 ¥ 15/T5,

where Z,, + I3 denotes the closure of Z, + I> . Thus, Z,, is contained in 3
and 3 is viewed as a completion of Z; by taking a weaker topology than the
previous one. Remark that Z — a, a # 0, is not invertible in Z, , but this is
invertible in 3. Hence we see that Z, + 72 is not a closed subalgebra in 7.

The following shows that A2 is almost formal.
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Proposition 6.1 3 is contained densely in the space of formal power series
ring U[Z]] and also contains the space of C((Z)) of convergent power series
in Z.

Proof. Since Z, does not clash, 3 is contained densely in (J[Z]]. Let D,
be the disk with the radius 1 with the boundary C, with the center at the
origin. Let f(8) be a continuous function on C,. By the completeness of 3,
we have

2 1 ,

(6.6) f= ——/ F(0)(0— Z)'do € 3.
2m Je, :

f is holomorphic on D, and extends continuously to C,. Conversely, such

function is written as the form. Moving n, we see that 3 contains every

function which converges on an appropriate disk with the center at the origin.

a

Remark Z is central in the algebra (A2, *). Hence, it seems possible to
insert any number to Z. However, if 7o > 0 and 7; < 3, the algebra (A2, )
collapses to {0}, if we insert to Z a non-zero number a.

7 Extensions by breaking symmetry

In previous sections, we saw that (Emo2(C); ) is an associative algebra,
but the *-product did not extend to (Egor,(C);*) for p > 2. Note that
exponential functions of quadratic form of z, y are not contained in £, o(C),
but in Epy,(C) for every p > 2. In this section we give a certain class of
entire functions on © which contains the function e~@*+¥") and is closed
under the *-product. Remark first that Egy,(C) has the following SL(2; C)-

symmetry: The transformation

(7.1) [‘B:} =P H , 2=z PeSLZ0

Y )

leaves the space EHOZ',,(@) invariant for every p > 0 and gives an isomorphism

@p in the sense that op(f)*pp(g) is defined and pp(f*g) = wp(f) *epr(g),
whenever f x ¢ is well-defined.

Our class of functions constructed in this section has not the SL(2;C)-
symmetry, but SL(2;R)-symmetry.
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7.1 Functions of S’-type

We introduce a class of entire functions on C originally given by Gel’fand-
Shilov [2] with a slight modification.

For0 <a,b<1 and A, B > 0, an entire function f(z,z,y) on C is called
a function of type Sa ar i the varlables z, 2,y are restricted in the real, then f
satisfies the followmg inequality for every fixed z € Rand for all non-negative
integers k = (k1,k2),£ = (£1,4,), where |k| = ky + ko, [¢| = £, + ¢; :

(7.2) My (800 f)(z,2,y)| < CAMBMIR[H|M, - (z,2,y) € R,

We denote by S B((Ca) the space of all functions of Sa a-type. szz(@)
is invariant only if the matrix P in (7.1) is restricted in SL(Q R). Thus the
space Sa’A(@) looses the symmetry of SL(2,C).

It is obvious that if A < A’, B < B’, then

SeR(C) C SPR(C).
5213(@) is a Fréchet space defined by a system of countable seminorms. We
define
b,B
U Sa,A (@
A,B>0

with the direct limit topology, and also

N s:A2c

A,B>0

with the projective limit topology. T°(C®) is a Fréchet space defined by a
system of countable seminorms.

THC) C SPE(C) c SHC) c TH(C)

for every € > 0.
We denote
T2H(C) = (I22(C).
e>0

The following is not hard by tracing Ch.IV, 2.3 of [2]:

Proposition 7.1 If 0 < b < 1, every function f € S.(C) is an entire
function on © having the following estimate, if (z,z,y) is restricted in the
real line:

|f(z,2 + &y +in)| < C exp(—al(z,y)|V* + BI(&,m)[/")
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Jor some «, 3 > 0. Conversely, if f(z,z,y) defined on Cx IR? is holomorphic
in 2 € C and for every fized 2 € C, f satisfies the inequality (7.2) for
0 <b< 1, then such f can be extended uniquely as an entire function having
the estimate given above.

Since the following estimate
exp (= al(z,y)[* + BI(&,7)[/0~") <Cexp Bl(z + i€,y + i)/
<Cexps|(z + i,y + )|

holds for every p > &5 and every s > 0, we have S}(C) C SHOIYI_}EJF(@) and
the inclusion is continuous.
It is also known

Proposition 7.2 ([2] p.227) Ifa+ b < 1, then S2(C) = {0}
Remark that e=(#*+*) ¢ Sll//s(@), and € &4 (C).

Let F denote the Fourier transform:

(FNerst) = [ F ettty
It is known in [2] p.205
Lemma 7.1 For0 < a,b <1 and a+ b > 1, the Fourier transform has the
property FSPE(C) = Sp5(C).
7.2 x-product

Lemma?7.1 shows that S?(C) is invariant under the Fourier transform, and
Proposition7.2 shows only the case % < a is nontrivial. By Proposition?7.1
we treat the case a < 1, where

S:(C) ¢ gHol,%(@)'

It is easy to see by (3.8) that f € S2((3), if and only if there are A(z),C;(2) >
0 such that if z, y are restricted in R the estimate

|eF1y* (07 02 f) (2,2, )| < C A MHA(k| 401D

holds for any non-negative integers k = (ky, k;),€ = (€1, £;). Similarly, f €
T2(C), if and only if for every € > 0 there is a constant C.(z) > 0 such that
if z,y are restricted in IR the estimate

(28 (0808 1) 2, ,0)] < C. M| |2 0H41

holds for any non-negative integers k = (k1, k2), € = (£1,£2).
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Theorem 7.1 If 1 < a < 1, THC) and S¢(C) are closed under the -

product, and form topological associative algebras.

Proof. Using Fourier transform, we write as follows:
(z,2,7) / Flz, s, 1)t W) st

9(z,z,y) = / §(z, 8 1) g dt!

Since
ci(sz+ty) * ei(s'r-{»-t’y) - e%(st’—ts')6i(s+s’)x+i(t+t')y’
we have
J(z,2,y) * g(z,2,y)
" // F(z,8,0)(z, &', 1) 3 080 ot Net il Oy syt

Changing variables gives
flz,z,y)xg9(z,2,y) = / flz,s,t g(z,5'—3,t'—t)e%(“'“ts’)e“'”it'yd'sd“td‘s’d‘t’.
If we set f(z,z,y) * g(z,2,y) = h(z,2,y) = [h(z,s, ') “Hvas'dt’, then
h(z,s,t) = /f(z, s tg(z,8 — 't — t')e%(s’t‘t,s)d‘s'dt'.

Remarking that the estimate in Proposition 7.1 holds also for f , g via Lemma
7.1, we see that h(z,s,t) is well-defined and a holomorphic function in z €

C. Hence for the proof that S¢(C) are closed under the *-product, we
have only to show that k(z,z,y) € S;";fﬁ(@) for some K > 0, supposing

fr9 € Sea(©@).

A rough estimate gives
|2hy* 05 0 h(z, 2, y)|
< [ 10800 (11,005 =)0 E ) .
To estimate the integral, we use estimates :
[0 11 72 (11 )] SA142 (] 4 204
<(eA)*(eA)™|m)e,
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azlathg(z,S—Sl,t—t,)|s—sllml|t—tl|m2 < AImlHj[('ml+|jl)a(|m]+|j|)’

Then, setting C' = [(1+]|s'|*+|t'|*)'ds'dt’, we have
[uF k2 98 9% h(u,v)|
< Z Cglklwl(l + |Z|)IkIA|kI+2AIkI+l€I(]kl + Q)G(Ikl+lil)(|k|+Ul)a(lkmjl)
lil+171=1el
<C'(2(1 + [ZI)AZ)IkHlfI(W + Ifl)“("“‘”m'

This yields the desired estimate.
The associativity follows easily from the product formula (7.3).
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