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Abstract

We give intrinsic formula for the multi-dimensional Schwarzian derivative on a
manifold M endowed with a projective connection. This Schwarzian derivative is nat-
urally related to the space of second-order linear differential operators acting on tensor
densities on M.

1 Introduction

Let F) be the space of tensor densities of degree A on the circle S, and Diff(S) be
the group of diffeomorphisms of S! preserving orientation. The space F) admits nat-
urally a Diff(S!')—module structure. Consider the space of Sturm-Liouville operators
A = —2d?/dz? + u(z) : F_yj5 = Fsjz, where u(z) € F is the potential, z is an affine
parameter on S'. This space was already studied as a module over the group Diff(S1)
(see e.g., [9, 14]). Classical Schwarzian derivative is related to the space of Sturm-Liouville
operators by the following way: the action of a diffeomorphism f E Diff(S!) on the Sturm-
Liouville operator A is an operator with potential wo f~1 - (f~ ) + S(f~1), where

f"(z) 3 () 2 )
= ( o1 (7)) ) ()’ (-1
is the so-called Schwarzian derivative.

Said differently, the space of Sturm-Liouville operators viewed as a module over the
group Diff(S!) is a non-trivial deformation of the quadratic differentials ;. This deforma-
tion is generated by a non-trivial 1-cocycle on Diff (S') with values in F3, given actually by
the Schwarzian derivative (1.1) (see [2]). On the other hand, the space of Sturm-Liouville
operators and the module F, are isomorphic as PSL;(R)—module; it follows from the fact
that the kernel of the Schwarzian derivative is the subgroup PSLz(RR).

Consider now D? (S ) the space of second-order linear differential operators acting
from A—densities to p densities. This space admits naturally a two parameter family
of Diff(S')—modules (see [2, 7]). Recall that the space of Sturm-Liouville operators is a
submodule of D? L 3(51) For & := p — A generic, the module D% ,(S') is a non-trivial

deformation of the module M = Fs D Fs-1 D Fs—2 (cf. [4, 7]). On the other hand, these
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modules are isomorphic as PSL;(R)—module. The problem of deformation of the module
M with respect to the Lie group PSLy(R) is related to the cohomology group

H!(Diff (1), PSLy(R); End(M35)). (1.2)

(i.e. Consider cochains on Diff(S!) vanishing on the Lie group PSL;(R) see [6]).

Restrict the coefficients of the group of cohomology (1.2) to the submodule D(M;) C
End(Ms;) (i.e. linear differential operators on Mj). This group of cohomology was cal-
culated in [2], it is one dimension, for § generic, generated by a l-cocycle given as a
multiplication operator by the Schwarzian derivative (1.1).

In this paper we are interested to generalize, in higher dimension, classical Schwarzian
derivative (1.1) in the sense described above. Let us explicate this approach. Let M
be a manifold of any dimension, and Diff(M) (resp. Vect(M)) be the group of diffeo-
morphisms of M (resp. Lie algebra of vector fields on M). Denote by F) the space of
A—densities on M. Consider D?\,u(M) the space of second-order linear differential opera-
tors: F, -+ F,. This space admits naturally a two parameter family of Diff (M)—modules
(resp. Vect(M)—modules) (see [1, 3, 5, 10, 11]). Consider now S3(M) the space of sym-
metric contravariant tensor fields of degree less than two on M. One can define a one
parameter family of Diff (M) —modules on S; by taking 83 (M) := S2(M) ® Fs. Following
[1, 5, 10], the space 'D/z\,“(]ll) can be viewed as a non-trivial deformation of the module
832,5(M), where 6 = p — A. The problem of deformation of the module S s(M) is related
to the cohomology group

HY(Diff (M), End(S2,5(M)))  (resp. H (Vect(M), End(Sy,5(M)))).

Suppose now M = R" endowed with a projective structure. Then the problem of
deformation with respect to the Lie algebra sl (R) is given by the relative cohomology
group )

H' (Vect(R™), slp41 (R); End(Sa s(M))), (1.3)
For 6 = 0, the group of cohomology (1.3) was calculated in [11] (restricting coefficients on
the space of differential operators on 83 ). This group is generated by two 1-cocycles, one
of the two 1-cocycles is the infinitesimal multi-dimensional Schwarzian derivative. Qur goal
is to integrate these 1-cocyles on the group Diff(R™) and find which of these 1-cocycles
inherits naturally all properties of the classical Schwarzian derivative.

The aim of this paper is to give an intrinsic formula for the multi-dimensional Schwarzian
derivative introduced in [3]. We explain, as done in the projectively flat case (see [3]), that
this derivative is related to the space of second-order linear differential operators acting
on tensor densities.

2 Deformation of the space of symbols

Let M be an oriented manifold of dimension n. Fix an affine connection V on M. In this
section we will recall some results on the projectively equivariant quantization (see [1, 10]).
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2.1

Space of linear differential operators as a module
Let F\(M), or Fy for simplify, be the space of tensor densities on M. This space admits
naturally a Diff (M)-module structure: '

Let f € Diff(M) and ¢ € F». In a local coordinates (z*), the action is given by

Fro=¢o0f(Jp0)Y (2.1)
where J; = |Df/Dz| is the Jacobian of f.

Consider D, ,(M) the space of linear differential operators acting on tensor densities

A:Fy— F,.

(2.2)
The action of Diff(M) on D, ,(M) depends on two parameters A and u. This action is
given by the equation

Fru(A) = froAo f7,
where f* is the action (2.1) of Diff (M) on Fj.

(2.3)

The formulze (2.1) and (2.3) do not depend on the choice of a system of coordinates.

Denote by DIZ\,“(M) the space of second-order linear differential operators with the

Diff(M)—module structure given by (2.3). The space D?\,M(M) is in fact a Diff(M)-

submodule of D) ,(M).

In a local coordinates (z'), one can write A € D? L(M)

A= ai]’(z)if + bi() 9 -+ ¢(z) (2.4)

dz*dz7 dz’ i

with the coefficients % (z), b'(z), c(z) € C®°(M), where ¢,j = 1,...,n. (The summation

is understood in repeated indices).

2.2 Space of symbols

The space of symbols, Pol(T* M), is the space of functions on the cotangent bundle T*M
polynomial on the fibers. This space is naturally isomorphic to the space S(M) of symmet-
ric contravariant tensor fields on M. In a local coordinates (z*,£;), one can write P € S(M)
in the form

P =) Pt g,
1>0
with Pi-it(z) € C°(

One defines a one parameter family of Diff(M)—modules on the space of symbols by

Ss(M) :=S(M)Q Fs.
Let us explicate this action.

Take f € Diff (M) and P € S5(M). Then, in a local coordinates (z*), one has

fs(P)

fP =), (2)
where J; = |Df/Dz| is the Jacobian of f, and f* is the natural action of Diff(M) on
S(M).
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We have then a filtration of Diff (M)—module given by
oo
Ss(M) = P S5 (M),
k=0

where S¥(M) is the space of contravariant tensor fields of degree k endowed with the
Diff(M)— module structure (2.5).
We are interested to study the space of contravariant tensor fields of degree less than

two noted Ss2(M) (i.e. Ss2(M) = SZH(M) & S} (M) & S(M)).

2.3 Projectively equivariant quantization map

The problem of the equivariant quantization is to find a map between Ss(M) and the
space D) , (M), where § = p — A, equivariant with respect to the action (2.5) and (2.3).
In the one dimensional case M = S!, there exists such quantization map, for é generic,
equivariant with respect to the action of the subgroup PSL,(R) C Diff(S!) (cf. [4, 7]). In
higher dimension n > 1, there exists a quantization map

Q : Ss52(M) = D3 (M),

given as follows: for § # 1, ﬁ, %, and for each P = PU&E; + P& + Py € Ss,2 one

associates a linear differential operator given by
Q(P) = PV, V; + (a1 ViP" + PV, + 0aV;V; P + a3V, P' + auRi ;P + Py, (2.6)

where R;; is the components of Ricci tensor of the connection V (cf. [1, 11]). The constants

0y, ..., 04 are given by
2+ 20 +1) o A
YT oYY m+)(-0) T8
oy = AMn+1)(14A(n+1)) Alp = 1)(n+1)?

(=00 +n+D((-01+m+2) M T-m(@-0+m+1)

The quantization map (2.6) has the following properties:

(i) It depends only on the projective class of the connection V (see section 3.3).

(i) If M = R" endowed with a projective structure (i.e. coordinates change are given
by projective transformations) the map (2.6) is unique, equivariant with respect to the
subgroup SL,4+1(R) C Diff(R").

Remark 2.1 In the one-dimensional case, classical Schwarzian derivative appears as an
obstruction to the equivariant quantization on the full group Diff(S!) (cf. [3]). In the
same way, we will see that the multi-dimensional Schwarzian derivative appears as an
obstruction to the equivariant quantization (2.6) on the full group Diff (M).

3 Introducing the Schwarzian derivative

3.1 Cohomology of the Lie algebra of vector fields

Consider the standard SL,+;(R)-action on R™. Let D(S2,5(R™)) be the space of linear
differential operators on Sz 5(R™). This space is decomposed, as a Vect(R")— module, into

4
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direct sum

2
D(S25(R") = P D(S5(RY), S§"(R™),
k,m=0
where D(S¥(R™), ST (R™)) C Hom(S¥(R"), S7*(R™)).
For § = 0, the first group of differential cohomology of Vect(R"), with coefficients
in the space D(S*(R™), S™(R™)) of linear differential operators from S¥(R™) to S™(R"),
vanishing on the Lie algebra sl,;1(R), was calculated in [11]. For n > 2 the result is as

follows
R, k—m=2,
H'(Vect(R™), slnt1 (R); D(SH(R™, S™(R™)) = ¢ R, k—m=1,m#0, 3.1)
0, otherwise.

For k = 2, the l-cocycles generating the group of cohomology (3.1) are integrated on
the group Diff(R") (see [3]). We recall in the following section explicit formulae of these
1-cocylces.

3.2 Explicit formulze for the 1-cocycles on Diff(R")
Let f(z!,...,2") = (f(z),..., f*(z)) € Diff(R™). The following (2,1)—tensors

0%t Oz 1 r0log J¢ 0log Js i j 7]
bolf) = (3rci8xj6—fl T n+1 (5j ozt o Ozi )) do’ @ da’ @ zF (3.2)

where J; = |Df/Dz} is the Jacobian, is introduced in the literature as the multi-dimensional
Schwarzian derivative. It is well known that the map

f o bolF7Y), (3.3)

defines a non-trivial 1-cocyle on Diff (R™) with values in the space of tensor fields of type
(2, 1), vanishing on the group SL,41(R) (cf. [13]).

For k = 2, and m = 1, the I-cocyle on Diff(R") with values in D(S?(R"), S}(R")), van-
ishing on the group SL, 41 (R), is an operator given by contracting a 2—order contravariant
tensor fields with the 1-cocycle (3.3).

Remark 3.1 As explained in [3], the tensor (3.2) cannot be considered as a multi-
dimensional analogue of the Schwarzian derivative, actually in the one dimensional case
fg =0.

For k = 2, and m = 0, consider the differential operator S(f) : S}(R™) — S°(R"),
where

)k ] Bk 8zt n+3 9% n+20J;07;

5(f)i = bo(f 4 dak + 0zidzifz! fF n+1 Ozidxi 7/ n+1 0zt OzF

» (34)

and Eo(f)fj are the components of the tensor (3.2). The map

f=S(F7Y),

defines a 1-cocycle on Diff(R™) with values in D(S%(R™), S°(R™)), vanishing on the sub-
group SLy41(R).
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Remark 3.2 The operator (3.4) was introduced in [3] as the multi-dimensional Schwarzian
derivative since in the one-dimensional case it coincides (up to sign) with the Classical
Schwarzian derivative (1.1).

3.3 Global definition of the 1-cocycles

Let M be a manifold of dimension n. Fix a symmetric affine connection I" on M. Let us
recall the notion of projective connection which allows us to globalize the 1-cocycles (3.2)
and (3.4).

A projective connection is an equivalent class of symmetric affine connections giving
the same unparameterized geodesics.

Following [8], the symbol of the projective connection is given by the expression

1
il k kp. kp.

where I“fj are the Christoffel symbols of the connection I' and T'; = Ffj.

Two affine connection I' and T are projectively equivalent if the corresponding symbols
(3.5) coincide.
A projective connection on M is called flat if in a neighborhood of each point there exists a

local coordinate system (z!,...,z") such that the symbols Hfj are identically zero (see (8]
for a geometric definition). Every flat projective connection defines a projective structure
on M.

Let IT and I be two projective connections on M. Then the difference IT — M is a well-
defined (2, 1)—tensor fields. Therefore, it is clear that a projective connection on M leads
to the following 1-cocycle on Diff (M):

o = (Il - ) def o il © (3.6)
vanishing on (locally) projective diffeomorphisms. This formula is independent on the
choice of the coordinate system. The 1-cocycle (3.6) globalizes the 1-cocycle (3.3) in any
manifold.

As in section (3.2), we define a 1-cocycle on Diff (M) with values in D(S*(M),S'(M))
by contracting a 2—order contravariant tensor fields with the 1-cocycle (3.6).

3.4 The main definition

Let us introduce the formula of the multi-dimensional Schwarzian derivative by the ex-
pression

2-46(n+1 n+1)(1-46 m
28t Dy, (spt) + B =D g ey, @)

I n -1

S(f)ij = L)5Ve -

where £(f)%; are the components of the (2,1)—tensor (3.6). This expression is a linear

differential operator from SZ(M) to S§(M).

Remark 3.3 Even if the cohomology group (3.1) is calculated only for § = 0, the formula
of the Schwarzian derivative (3.7) is given for § not necessarily zero. '
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Theorem 3.4 (i) The map f > S(f~!) defines a non-trivial 1-cocycle on Diff (M) with
values in D(S?(M),SP(M)).
(ii) The operator (3.7) depends only on the projective class of the connection.

Proof. To prove that the map f — S(f~!) is a l-cocycle one has to check the 1-cocycle
condition

S(fog)=g"S(f)+5(9), (3.8)

for all f,g € Diff(M), and g* is the natural action on D(S}(M),S9(M)). A simple cal-
culation show that the 1-cocycle given by the operator (3.7) satisfies the equation (3.8).
Let us prove that this 1-cocycle is not trivial. Suppose that there exists an operator
A : S}(M) — S(M) such that
S{(f)=fA-A (3.9)
Since the operator (3.7) is first-order then the operator A is also first-order.
The coefficients of the operator A = (tfjak + uij) transform under coordinates change as
follows:
dz° dzb AyF
th. = ¢ ——
’l](y) ab(x) Byl 8y‘7 axc7
dz® dz® . dtyk  9z* 9z® da!
) = el gy gy T2 ot 0 047 oy

where round brackets mean symmetrization.
The coefficients (tfj) are actually a tensor fields of type (2,1). Comparing the coefficients
of degree one in (3.9), one obtains £(f)% = (f*t)% — tf;. It follows that the 1-cocycle £(f)
is trivial which is absurd (cf. [13]).

To prove (ii) denote by SY the operator (3.7) written with the connection V. Let v
be an other connection which is projectively equivalent to V. A direct computation gives
Ve(PY) + Qﬁ.‘i P, — Ty + 2200 Y piir, Ry,

1j
Vi(PY) n+1

]

Vel = Dwlh+ T 6T - B,

for all PY € S%.
It is now easy to see that one obtains from (3.7), according to those formule, that Sg (=

SY(f). ]

4 Relation to the modules of differential operators

The space of second-order linear differential operators Di,u(M) endowed with the struc-
ture of Diff(M)—module given by (2.3) and the corresponding space of symbols Ss2(M),
where § = 4 — A, endowed with the structure of Diff (A )—module given by (2.5) are not
isomorphic as Diff (M) —module (see section 2.3). We will see in the proposition below that
the module ’DK’H(M) is a non-trivial deformation of the module Ss52(M) in the sense of
the Neijenhuis & Richardson’s theory of deformation (see [12]). Let us give explicitly this
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deformation generated by the 1-cocycles (3.6) and (3.7). Namely, we are looking for the
operator fs = Q! o f), o @ such that the diagram below is commutative

Ss.2(M) SEEN Ss5.2(M)
Ql lcz (4.1)
D2 (M) L2y D2 (M)

The following statement, whose proof is straightforward, shows how the cocycles (3.6) and
(3.7) are related to the module of second-order linear differential operators.

Proposition 4.1 [fdim M > 2, for all & # 1,%1&, %, the deformation of the space
of symbols S5 2(M) by the space of second-order linear differential operators D?\Y“(M) as

Diff (M) —module is given as follows:
(5P)7 = (s P)

F v _ P @A +s-D(n+1)
P = P + S mi D=9
AA+8-1)(n+1)
A-)((1-0)(nt+1)+1)

where P = PY¢E; + P + Py € Ss2(M), and fs is the action (2.5).

Ga(F7) (s P (4-2)

Su(f)(fs P)M

(fsPlo = (fsP)o -
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