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THE CLASS OF TYPE G DISTRIBUTIONS ON Rd

AND RELATED SUBCLASSES OF

INFINITELY DIVISIBLE DISTRIBUTIONS

Makoto Maejima and Jan Rosiński

Keio University and University of Tennessee

Abstract. Classes of infinitely divisible distributions obtained by iteration of Gauss-

ian randomization of Lévy measures are introduced and studied.
Their relation to Urbanik-Sato nested classes of selfdecomposable distributions is

also established.

1. Introduction

In our previous paper [MR00], we studied the class of type G distributions on Rd

defined in the following way. A symmetric infinitely divisible probability distribution

µ on Rd is of type G if its Lévy measure ν is of the form

(1.1) ν(A) = E[ν0(Z−1A)], A ∈ B0(Rd),

where ν0 is a Borel measure on Rd \ {0}, Z is the standard normal random variable,

and B0(Rd) is the class of all Borel sets A in Rd such that A ⊂ {|x| > ε} for some

ε > 0. Such kind of distributions combine Gaussian and Poissonian structures in a

nontrivial way (see Section 5 in [MR00]). Denote by TG(Rd) the class of type G

distributions on Rd.
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2 MAKOTO MAEJIMA AND JAN ROSIŃSKI

A typical representative of the class TG(Rd) is a symmetric stable distribution.

In this paper we will use the following convention. Given a class of measures H on

Rd, we will denote by H̃ the subset of H consisting of symmetric measures. Denote

by S(Rd) and I(Rd) the classes of stable and infinitely divisible distributions on Rd,

respectively. Therefore, we have S̃(Rd) ⊂ TG(Rd) ⊂ Ĩ(Rd). Our goal is to introduce

and investigate the nested classes TGm(Rd), m ≥ 1, between TG0(Rd) := TG(Rd)

and S̃(Rd), using the procedure somewhat analogous to Urbanik-Sato construction

of subclasses of selfdecomposable distributions.

In Section 2, we define the classes TGm(Rd), m ≥ 1, and show that they form

a strictly descending sequence. In Section 3, we compare our nested subclasses of

TG0(Rd) and those of the class L0(Rd) of selfdecomposable distributions introduced

and studied by Urbanik [U72], [U73] and Sato [S80]. A necessary and sufficient

condition for a type G distribution on R1 to be selfdecomposable was given in [R91].

We generalize this result to Rd and give an answer to the converse problem: When

is a symmetric selfdecomposable distribution of type G? We also study related

problems.

Every distribution µ ∈ TGm(Rd) has its predecessor µ0 ∈ TGm−1(Rd), as defined

in Section 2. In Section 4, we study the relationship between µ and µ0 along the

following lines : If µ belongs to a certain class of distributions, then does µ0 belong

to the same class? The answers are obtained for some important classes in Theorem

4.1. Section 5 contains some examples and Section 6 discusses open problems.

We conclude the introduction by stating a basic characterization theorem for type

G distributions on Rd, which has been proved in [MR00],

and will also be needed later in this paper.

Theorem A ([MR00]). A symmetric probability measure µ on Rd is of type G if and

only if it is infinitely divisible and its Lévy measure ν is either zero or represented

as

ν(EB) =
∫

B

λ(dx)
∫

E

gx(r2)dr for E ∈ B(R+), B ∈ B(S),
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TYPE G AND RELATED SUBCLASSES 3

where λ is a probability measure on S and gx(r) is a jointly measurable function

which, for any fixed x, is completely monotone on (0,∞) and satisfies

∫ ∞

0

(1 ∧ r2)gx(r2) dr = c ∈ (0,∞)

with c independent of x. This representation is unique in the sense that, if ν 6= 0

and two pairs (λ, gx) and (λ̃, g̃x) both satisfy the above conditions, then λ = λ̃ and

gx = g̃x for λ-a.e. x. Moreover, λ is a symmetric probability measure and gx = g−x

λ-a.e.

2. Subclasses of the class of type G distributions

In the following, if µ is infinitely divisible, we denote its Lévy measure by ν(µ).

We first rewrite the definition of type G distribution. In the definition (1.1), ν0

is a Borel measure but since ν is a Lévy measure, ν0 is also a Lévy measure (see

Proposition 2.2 (i)–(ii) in [MR00] or Proposition 2 in [J90]). Moreover, ν0 in (1.1)

always can and will be taken symmetric. For any µ0 ∈ Ĩ(Rd), define K(µ0) as the

infinitely divisible distribution µ having the same Gaussian component as µ0 and

Lévy measure ν given by (1.1) with ν0 = ν0(µ0). The symmetric distribution µ0

will be called the predecessor of µ (relative to the operation K). The predecessor is

uniquely

defined. Indeed, suppose that µ has two predecessors µ1 and µ2. Then ν satisfies

(1.1) with ν0 = ν1(µ1) and ν0 = ν2(µ2). By Proposition 2.2 (iii) in [MR00] ν1 = ν2,

and since µ1 and µ2 have the same Gaussian part, µ1 = µ2. We have just shown

that the operation K is one-to-one. If we write

K(H) = {K(µ0) : µ0 ∈ H}, H ⊂ Ĩ(Rd),

then

TG(Rd) = K(Ĩ(Rd)).
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4 MAKOTO MAEJIMA AND JAN ROSIŃSKI

Put TG−1(Rd) = Ĩ(Rd) and TG0(Rd) = TG(Rd). Define for 1 ≤ m < ∞,

TGm(Rd) = K(TGm−1(Rd)),

and

TG∞(Rd) =
∞⋂

m=0

TGm(Rd).

Theorem 2.1. Ĩ(Rd) ⊃ TG0(Rd) ⊃ TG1(Rd) ⊃ · · · ⊃ TGm(Rd) ⊃ TGm+1(Rd)

⊃ · · · ⊃ TG∞(Rd) ⊃ S̃(Rd).

Proof. By the definition,

TG−1(Rd) ⊃ TG0(Rd).

Suppose that TGm−1(Rd) ⊃ TGm(Rd) for some 0 ≤ m < ∞. If µ ∈ TGm+1(Rd),

then ν(µ)(A) = E[ν0(Z−1A)], where ν0 is the Lévy measure of the predecessor

µ0 ∈ TGm(Rd). By the induction hypothesis, we have that µ0 ∈ TGm−1(Rd).

Hence µ ∈ TGm(Rd), concluding

TGm+1(Rd) ⊂ TGm(Rd).

The assertion TGm(Rd) ⊃ TG∞(Rd) is trivial from its definition.

We next show that TG∞(Rd) ⊃ S̃(Rd). If µ0 ∈ S̃(Rd), then ν(A) = E[ν0(Z−1A)]

is the Lévy measure of a symmetric stable distribution, where ν0 is the Lévy measure

of µ0. Thus K(S̃(Rd)) ⊂ S̃(Rd). Conversely, if µ ∈ S̃(Rd), then

ν(µ)(A) = E[ν0(Z−1A)],

where ν0 is also the Lévy measure of a distribution in S̃(Rd). For, since the Lévy

measure of µ ∈ S̃(Rd) satisfies the condition aαν(µ)(A) = ν(µ)(a−1A), for every

a > 0 and A ∈ B0(Rd), where α ∈ (0, 2] is the index of stability, (1.1) holds with

ν0 = (E[|Z|α])−1ν. Hence S̃(Rd) ⊂ K(S̃(Rd)) and thus K(S̃(Rd)) = S̃(Rd), namely,

S̃(Rd) is invariant under the operation K. We thus have, for each m ≥ 0,

S̃(Rd) = Km(S̃(Rd)) ⊂ Km(Ĩ(Rd)) = TGm(Rd),
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TYPE G AND RELATED SUBCLASSES 5

where Km is the mth iteration of K. Thus S̃(Rd) ⊂ ⋂
m≥0 TGm(Rd) = TG∞(Rd).

This completes the proof. ¤

It might be asked whether the inclusions in Theorem 2.1 are strict or not. The

answer is the following.

Theorem 2.2. The inclusions in Theorem 2.1 are all strict, namely

Ĩ(Rd) % TG0(Rd) % TG1(Rd) % · · · % TGm(Rd) % TGm+1(Rd)

% · · · % TG∞(Rd) % S̃(Rd).

Proof. First note that TG−1(Rd) % TG0(Rd), since the existence of non-type G

infinitely divisible distribution is assured by Theorem A. Since the operation K is

one-to-one we have

TGm−1(Rd) \ TGm(Rd) = Km(TG−1(Rd) \ TG0(Rd)) 6= ∅,

proving

(2.1) TGm−1(Rd) % TGm(Rd), ∀m ≥ 0.

We next show that

TGm(Rd) % TG∞(Rd), ∀m ≥ 0.

If there exists an m0 such that

TGm0(Rd) = TG∞(Rd),

then

TGm0(Rd) = TGm0+1(Rd) = · · · = TG∞(Rd),

which contradicts (2.1).

Finally the fact that TG∞(Rd) % S̃(Rd) follows from Corollary 3.1 in Section 3,

and so the rest of the proof is postponed to the end of Section 3. ¤

The class TG∞(Rd) has the following special property.
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6 MAKOTO MAEJIMA AND JAN ROSIŃSKI

Theorem 2.3. TG∞(Rd) is the largest subclass of Ĩ(Rd) invariant under operation

K.

Proof. By Theorem 2.1,

TGm(Rd) ⊃ TGm+1(Rd) = K(TGm(Rd)),

and hence

⋂

m≥0

TGm(Rd) ⊃
⋂

m≥0

K(TGm(Rd)) ⊃ K


 ⋂

m≥0

TGm(Rd)


 .

Thus

TG∞(Rd) ⊃ K(TG∞(Rd)).

Let us show the converse inclusion. Let µ ∈ TG∞(Rd). Then for any m ≥ 0,

µ ∈ TGm(Rd). Hence µ has the predecessor µ0 in every class TGm−1(Rd). Since

the predecessor is uniquely defined,

µ0 ∈
⋂

m≥0

TGm(Rd) = TG∞(Rd),

and hence

µ ∈ K(TG∞(Rd)).

We thus conclude that

K(TG∞(Rd)) = TG∞(Rd).

We next show that TG∞(Rd) is the largest class among such classes. Suppose

that H(⊂ Ĩ(Rd)) satisfies that K(H) = H. As before, for each m ≥ 0,

H = Km(H) ⊂ Km(Ĩ(Rd)) = TGm(Rd),

and thus

H ⊂
⋂

m≥0

TGm(Rd) = TG∞(Rd).
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TYPE G AND RELATED SUBCLASSES 7

This completes the proof. ¤

In one dimensional case (d = 1), any random variable X with distribution µ in

TG0(R1) can be characterized by

(2.2) X
d= V 1/2Z,

where V is some nonnegative infinitely divisible random variable independent of Z

and d= means equivalence in law. Then a natural question is how we can characterize

X with µ in TGm(R1),m = 1, 2, ..., or what type of restriction on V assures that µ

belongs to TGm(R1).

To answer this question, we need a relationship between ν0 in (1.1) and the Lévy

measure ρ of V in (2.3).

Theorem 2.4. For A ∈ B0(R), let A1 = A ∩ (−A) and A2 = A \A1. Then

ν0(A) = ρ(A2
1) +

1
2
ρ(A2

2),

where A2 = {x2 : x ∈ A}. Particularly,

ν0([x,∞)) =
1
2
ρ([x2,∞)), x > 0.

Proof. Let {V (t)} be a Lévy process such that V (1) d= V , {Z(t)} the standard

Brownian motion, and X(t) = Z(V (t)). X(t) is a subordination, and X(1) d= X.

The Lévy measure of the subordination is given by

ν(A) =
∫ ∞

0

P{Z(t) ∈ A}ρ(dt),

(see [Z58]). Hence

ν(A) =
∫ ∞

0

P{t1/2Z ∈ A}ρ(dt)

= E
[∫ ∞

0

1{t1/2∈Z−1A}ρ(dt)
]

= E
[∫ ∞

0

1{t∈Z−2A2
1}ρ(dt)

]
+

1
2
E

[∫ ∞

0

1{t∈Z−2A2
2}ρ(dt)

]

= E[ρ(Z−2A2
1)] +

1
2
E[ρ(Z−2A2

2)].
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8 MAKOTO MAEJIMA AND JAN ROSIŃSKI

Here if we put

ρ0(A) = ρ(A2
1) +

1
2
ρ(A2

2),

then we have

ν(A) = E[ρ0(Z−1A)].

Note that ρ0 is a symmetric measure.

On the other hand,

ν(A) = E[ν0(Z−1A)].

Hence, from the uniqueness of ν0 determined by ν among symmetric measures, it

follows that ρ0 = ν0, namely,

ν0(A) = ρ(A2
1) +

1
2
ρ(A2

2).

The proof is completed. ¤

We thus have the following equivalence from the definition of TGm(Rd).

Theorem 2.5. Let m = 1, 2, .... Then the following are equivalent.

(i) µ ∈ TGm(R1).

(ii) The symmetric measure ν0 determined by

(2.4) ν0([x,∞)) =
1
2
ρ([x2,∞)), x > 0,

where ρ is the Lévy measure of V , is the Lévy measure of some µ0 ∈ TGm−1(R1).

3. The Urbanik-Sato nested subclasses of symmetric selfdecomposable

distributions

Urbanik [U72], [U73] and Sato [S80] introduced and studied the nested

classes Lm(Rd), m = 0, 1, 2, ...,∞, between I(Rd) and S(Rd), which are defined

in the following way.

KSTS/RR-00/012
October 26, 2000



TYPE G AND RELATED SUBCLASSES 9

In general, for H ⊂ I(Rd), define

Q(H) = {µ ∈ I(Rd) : for any a ∈ (0, 1), there exists ρa ∈ H

such that µ̂(θ) = µ̂(aθ)ρ̂a(θ), ∀θ ∈ Rd},

where µ̂ is the characteristic function of µ.

Then, L0(Rd) is defined as

L0(Rd) = Q(I(Rd)),

and Lm(Rd),m = 1, 2, ..., are defined inductively as

Lm(Rd) = Q(Lm−1(Rd))

and

L∞(Rd) =
⋂

m≥0

Lm(Rd).

Then it was shown that

I(Rd) ⊃ L0(Rd) ⊃ L1(Rd) ⊃ · · · ⊃ L∞(Rd) ⊃ S(Rd).

Distributions in L0(Rd) are called selfdecomposable. Throughout this paper, we

are only concerned with symmetric distributions. Therefore we will consider classes

L̃m(Rd). Now we have two sequences of nested classes between Ĩ(Rd) and S̃(Rd).

(i) Ĩ(Rd) ⊃ TG0(Rd) ⊃ TG1(Rd) ⊃ · · · ⊃ TG∞(Rd) ⊃ S̃(Rd)

and

(ii) Ĩ(Rd) ⊃ L̃0(Rd) ⊃ L̃1(Rd) ⊃ · · · ⊃ L̃∞(Rd) ⊃ S̃(Rd).

Then a natural question is to compare two sequences. The following is due to Sato

[S80].
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10 MAKOTO MAEJIMA AND JAN ROSIŃSKI

Theorem B ([S80]). A probability measure µ ∈ I(Rd) is selfdecomposable, namely

in L0(Rd) if and only if its Lévy measure ν is either zero or represented as

ν(EB) =
∫

B

λ(dx)
∫

E

kx(r)
r

dr for E ∈ B(R+), B ∈ B(S)

where λ is a probability measure on S and kx(r) is, for any fixed x, a nonnegative

nonincreasing right-continuous function of r satisfying

∫ ∞

0

(1 ∧ r2)
kx(r)

r
dr = c ∈ (0,∞)

with c independent of x, and for any r, kx(r) is a measurable function of x. This

representation is unique in the sense that, if ν 6= 0 and two pairs (λ, kx) and (λ̃, k̃x)

both satisfy the above conditions, then λ = λ̃ and kx = k̃x for λ-a.e. x.

A question when a given type G distribution on R1 is selfdecomposable was an-

swered in [R91], namely, a type G distribution is selfdecomposable if and only if

x1/2gx(r) is nonincreasing with respect to r on (0,∞). The proof in [R91] did not

use Theorem B, but once we have Theorems A and B, we can relate selfdecomposable

and type G distributions in Rd using spectral forms of their Lévy measures (which

are unique).

Theorem 3.1. (i) Let µ ∈ TG0(Rd). Then µ ∈ L0(Rd) if and only if for λ-a.e. x

r1/2gx(r) is nonincreasing with respect to r on (0,∞).

(ii) Let µ ∈ L̃0(Rd). Then µ ∈ TG0(Rd) if and only if for λ-a.e. x kx(r1/2)/r1/2

is complete monotone.

Proof. Note that if µ ∈ TG0(Rd) ∩ L̃0(Rd), then in the representations of ν = ν(µ)

given by Theorems A and B, the measures λ and constant c must be the same.

Furthermore,

(3.1) rgx(r2) = kx(r)

for λ-a.e. x. The theorem follows from (3.1). ¤
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TYPE G AND RELATED SUBCLASSES 11

Sato [S80] also gave a necessary and sufficient condition for µ ∈ Lm(Rd), m =

1, 2, ...,∞. Define hx(s) = kx(e−s), and call it the h-function of µ ∈ L0(Rd). For

δ > 0, let ∆δ be the difference operator, ∆δf(s) = f(s + δ) − f(s), and ∆n
δ be its

nth iteration. We say that a function f(s) is monotone of order n if

(3.2) ∆j
δf(s) ≥ 0 for δ > 0, s ∈ R1,

for any j = 0, 1, ..., n. When (3.2) holds for all integers j, f is called absolutely

monotone. Then one of results by Sato [S80] is the following.

Theorem C ([S80]). Let m = 0, 1, 2, ...,∞. A probability measure µ belongs to

Lm(Rd) if and only if µ ∈ L0(Rd) and h-function hx(s) of µ is monotone of order

m + 1 for λ-a.e. x, where λ is the spherical component of the Lévy measure of µ,

and when m = ∞, being monotone of order m + 1 is understood as being absolutely

monotone.

The next theorem is a direct consequence of Theorem C and the relation (3.1).

Theorem 3.2. Let µ ∈ TG0(Rd), and m = 0, 1, 2, ...,∞. Then µ ∈ Lm(Rd) if and

only if

hx(s) = e−sgx(e−2s)

is monotone of order m + 1 (absolutely monotone when m = ∞) for λ-a.e. x.

In [MR00], we have shown that TG0(Rd) is closed under convolution and weak

convergence. By exactly the same argument, we can show the following.

Theorem 3.3. The classes TGm(Rd),m = 1, 2, ...,∞, are closed under convolution

and weak convergence.

Corollary 3.1. TG∞(Rd) ⊃ L̃∞(Rd).

Proof. It is known ([S80]) that L∞(Rd) is the smallest class containing the class

S(Rd), closed under convolution and weak convergence, and thus L̃∞(Rd) is the

smallest class containing the class S̃(Rd), closed under convolution and weak con-

vergence. This fact combined with Theorem 3.3 for m = ∞ yields the conclusion. ¤
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12 MAKOTO MAEJIMA AND JAN ROSIŃSKI

A consequence of Corollary 3.1 is that convolutions of symmetric stable distribu-

tions of different indices are of type G. This fact is pointed out in [R91] for the case

d = 1.

Proof of Theorem 2.2 (continued). As stated above in the proof of Corollary 3.1, we

know that L̃∞(Rd) % S̃(Rd), because, for instance, convolutions of symmetric stable

distributions of different indices are in L̃(Rd) but not in S̃(Rd). Thus by Corollary

3.1,

TG∞(Rd) ⊃ L̃∞(Rd) % S̃(Rd).

This completes the proof of Theorem 2.2. ¤

4. Some invariant properties of type G distributions

The first two statements, (i) and (ii) of Theorem 4.1, give examples of invariant

properties under the operation K. (iii) and (iv) show that selfdecomposability of

K(µ0) is inherited from its predecessor µ0 but is not a K-invariant property (see

Section 2 for the definition of K).

Theorem 4.1. Suppose that µ ∈ TGm(Rd) and let µ0 ∈ TGm−1(Rd) be its prede-

cessor, m ≥ 0. Then the following holds.

(i) µ is operator stable if and only if µ0 is operator stable.

(ii) µ is Rd-valued semi-stable if and only if µ0 is Rd-valued semi-stable.

(iii) If µ0 is selfdecomposable, then so is µ.

(iv) Let m = 0 and d ≥ 2. Then there is a type G probability measure µ such that µ

is selfdecomposable, but µ0 is not selfdecomposable.

Proof. (i) The “if” part. If µ0 is operator stable with some exponent matrix M ,

then its Lévy measure ν0 satisfies that for any a > 0

(4.1) aν0(A) = ν0(b−MA), A ∈ B0(Rd),

KSTS/RR-00/012
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TYPE G AND RELATED SUBCLASSES 13

where tM =
∑∞

k=0
1
k! (log t)kMk, for t > 0 and a matrix M . Then we have

ν(A) = E[ν0(Z−1A)] = E[a−1ν0(Z−1a−MA)] = a−1ν(a−MA),

concluding that µ is operator stable.

The “only if” part. If µ is operator stable with some exponent M , then its Lévy

measure ν satisfies the relation in (4.1) for ν instead of ν0. Thus we have

E[aν0(Z−1A)] = E[ν0(Z−1a−MA)],

and by Proposition 2.3 in [MR00], we obtain

aν0(·) = ν0(a−M ·),

concluding that µ0 is operator stable.

(ii) The “if” part. If µ0 is Rd-valued semi-stable, then for some r ∈ (0, 1) and

α ∈ (0, 2],

(4.2) rν0(A) = ν0(r−1/αA), A ∈ B0(Rd).

Then obviously, ν satisfies (4.2) for the same r and α, which assures the semi-stability

of µ. The “if” part can be shown as in the second half part of the proof of (i).

(iii) Since µ0 is selfdecomposable, we have for each a ∈ (0, 1),

ν0(A) = ν0(aA) + νa
0 (A),

where νa
0 is a Lévy measure. Thus the Lévy measure ν of µ satisfies

ν(A) = ν(aA) + νa(A),

where νa is another Lévy measure. This implies the selfdecomposability of µ.

(iv) We use the same idea for Theorem 4.1 in [MR00]. Let D1 = {x ∈ Rd : 1 <

|x| < 2} and D2 = {x ∈ Rd : 0 < |x| < 1}, d ≥ 2. Let

ρ0(A) = λd(A ∩D1)− ελd(A ∩D2), 0 < ε < 1,
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14 MAKOTO MAEJIMA AND JAN ROSIŃSKI

and

(4.3) ρ(A) = E[ρ0(Z−1A)],

where λd is the Lebesgue measure In Rd. Then we have shown in the proof of Theo-

rem 4.1 in [MR00] that ρ0 is not a measure, but ρ is a measure for sufficiently small

ε > 0. Furthermore, these two ρ0 and ρ satisfy conditions in (2.1) in Proposition 2.1

of [S98], and thus we can define

(4.4) ν0(A) =
∫

Rd

ρ0(dx)
∫ ∞

0

1A(e−tx)dt

and

(4.5) ν(A) =
∫

Rd

ρ(dx)
∫ ∞

0

1A(e−tx)dt.

A direct verification shows that (4.5) is the Lévy measure of some selfdecomposable

distribution. In fact, it follows from [JV83] or by a reformulation in [SY84] of

a theorem due to Urbanik [U69], that every Lévy measure of a selfdecomposable

distribution can be written in the form (4.5) with ρ having the logarithmic moment.

On the other hand, Sato [S98] showed that ν0 is a Lévy measure, but the distribution

whose Lévy measure is ν0 in (4.4) is not selfdecomposable for ε small enough (see

Proposition 2.2 of [S98]). It follows from (4.3) that

ν(A) =
∫

Rd

E[ρ0(Z−1dx)]
∫ ∞

0

1A(e−tx)dt

= E
[∫

Rd

ρ0(dx)
∫ ∞

0

1Z−1A(e−tx)dt

]

= E[ν0(Z−1A)].

Thus the infinitely divisible probability measure, whose Lévy measure is ν in (4.5),

is of type G and satisfies our requirements in the statement (iv). This completes the

proof of (iv). ¤

Related to Theorem 4.1 (iv), we want to know under what conditions in addition

to the selfdecomposability of µ, µ0 is selfdecomposable. To answer this question, we

first prove the following. Note that if H ⊂ Ĩ(Rd), then Q(H) ⊂ Ĩ(Rd). Thus we can

define K(Q(H)).
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Theorem 4.2. For any H ⊂ Ĩ(Rd),

K(Q(H)) = Q(K(H)).

Proof. We first show that K(Q(H)) ⊂ Q(K(H)). Suppose µ ∈ K(Q(H)). Then

its Lévy measure ν is represented as in (1.1), and its predecessor µ0 satisfies that

for each a ∈ (0, 1), there exists ρa ∈ H such that µ̂0(θ) = µ̂0(aθ)ρ̂a
0(θ). Thus the

respective Lévy measures ν0 and νa
0 of µ0 and ρa

0 satisfy

ν0(A) = ν0(aA) + νa
0 (A).

Hence we have

ν(A) = E[ν0(aZ−1A)] + E[νa
0 (Z−1A)] = ν(aA) + ξa(A),

implying that

µ̂(θ) = µ̂(aθ)η̂a(θ),

where ηa ∈ I(Rd) is the probability distribution with Lévy measure ξa and ηa ∈
K(H). This concludes that µ ∈ Q(K(H)).

We next show that Q(K(H)) ⊂ K(Q(H)). Suppose µ ∈ Q(K(H)). Then for any

a ∈ (0, 1) there exists ρa ∈ K(H) such that

µ̂(θ) = µ̂(aθ)ρ̂a(θ),

If ρa ∈ K(H), then its Lévy measure νa is represented as

(4.6) νa(A) = E[νa
0 (Z−1A)]

for some Lévy measure νa
0 , depending on a, whose corresponding infinitely divisible

distribution belongs to the class H. On the other hand, since ρa is of type G and

ρa converges weakly to µ as a → 0, µ is of type G (see Proposition 2.4 in [MR00]).

Hence

ν(A) = E[ν0(Z−1A)]

KSTS/RR-00/012
October 26, 2000
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for some symmetric Lévy measure ν0. Combining this with (4.6) we get

E[νa
0 (Z−1A)] = E[ν0(Z−1A)− ν(aZ−1A)]

for any A ∈ B0(Rd). By Proposition 2.3 in [MR00],

νa
0 (A) = ν0(A)− ν(aA)

for any A ∈ B0(Rd). Hence µ0, the predecessor of µ, is selfdecomposable and µ0 ∈
Q(H). Consequently, µ ∈ K(Q(H)) and the proof of Theorem 4.2 is complete. ¤

Theorem 4.3. If µ is selfdecomposable, namely if for any a ∈ (0, 1), there exists

ρa ∈ I(Rd) such that µ̂(θ) = µ̂(aθ)ρ̂a(θ), and further if ρa is of type G, then µ0, the

predecessor of µ, is selfdecomposable.

Proof. Applying Theorem 4.2 to the case H = Ĩ(Rd), we have

K(L̃0(Rd)) = Q(TG0(Rd)).

Therefore, the following two statements are equivalent:

(i) µ is selfdecomposable such that for any a ∈ (0, 1), µ̂(θ) = µ̂(aθ)ρ̂a(θ), where ρa

is of type G.

(ii) µ is of type and its predecessor µ0 is selfdecomposable.

This equivalence concludes the statement of the theorem. ¤

5. Some examples

Here we give simple examples of µ ∈ TGm(R1),m = 0, 1. We start with a lemma

due to [ShSr77].

Lemma 5.1. Let Z be the standard normal random variable and Y be a positive

random variable independent of Z. Then |Z|pY is infinitely divisible for any p ≥ 2.
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Example 5.1. If Z1, ..., Zn are i.i.d. standard normal random variables, then

Z1 · · ·Zn is of type G.

Proof. Z1 · · ·Zn
d= Z1|Z2 · · ·Zn| and |Z2 · · ·Zn|2 is infinitely divisible by the above

lemma. ¤

We are now going to show that the distribution of Z1Z2 belongs to TG1(R1), by

applying Theorem 2.5.

Example 5.2. Let Z1 and Z2 be independent standard normal random variables.

Then the distribution of Z1Z2 is in TG1(R1).

Proof. Since

X := Z1Z2
d= Z1(|Z2|2)1/2,

V in (2.3) is |Z2|2 in this case. By Theorem 2.5, it is enough to show that the

symmetric measure ν0 determined by (2.4) with the Lévy measure ρ of V = |Z2|2 is

the Lévy measure of a type G distribution. Note that |Z2|2 is χ2-distribution with

freedom 1, thus is nonnegative infinitely divisible, and its Lévy measure ρ is of the

form

ρ([x,∞)) =
∫ ∞

x

e−u/2

u
du.

Then by Theorem 2.4, for x > 0,

ν0([x,∞)) =
1
2
ρ([x2,∞)) =

1
2

∫ ∞

x2

e−u/2

u
du

=
1
4

∫ ∞

x

e−v1/2/2

v
dv =

∫ ∞

x

g(v2)dv.

By a characterization for type G distributions (see Theorem 1 of [R91], also see

Theorem 2.5 of [MR00]), it is enough to check that

g(x) = x−1/2e−x1/4/2

is completely monotone. However, this is true, (see again e.g., E 55.1, page 424 in

[S99]). The proof is completed. ¤
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6. Further problems

We conclude the paper by stating some further problems which naturally arise

form the observations in this paper.

Problem 1 : In Theorem A, we gave a necessary and sufficient condition for that

µ ∈ TG0(Rd). Namely, µ ∈ TG0(Rd) if and only if the radial component of its

Lévy measure has a density involving a completely monotone function gx(·). What

additional conditions on gx(·) assure that µ ∈ TGm(Rd)?

Problem 2 : Related to Corollary 3.1, we conjecture that TG∞(Rd) = L̃∞(Rd),

namely TG∞(Rd) is also the smallest class containing the class S̃(Rd) of all sym-

metric stable distributions, closed under convolution and weak convergence.

Problem 3 : In Examples 5.1 and 5.2, we have shown that the distribution of the

product Z1 · · ·Zn is of type G and furthermore the distribution of Z1Z2 belongs to

TG1(Rd). Can one say more about the distribution of Z1 · · ·Zn?

Problem 4 : Type G distributions are continuous but are they absolutely contin-

uous on their support?
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