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SPECTRA OF ARITHMETIC INFINITE GRAPHS
AND THEIR APPLICATION

HIROFUMI NAGOSHI

ABsTRACT. We discuss some properties of certain finite volume infinite
graphs defined arithmetically, from spectral point of view. These graphs
are constructed from principal congruence subgroups over function fields
and known to be Ramanujan diagrams.

1. INTRODUCTION

The notation and an explicit construction of Ramanujan graphs have first
appeared in [LPS] as the nice connection between the objects which created
from the intrinsic interest in number theory and our motivation of constructing
efficient communication networks in the real world. Let X be a k-regular
connected graph with n vertices and A\g = k > Ay > -+ > A\, > —k the
eigenvalues of its adjacency operator, and we put A(X) = max,,|);|, where ),
runs through all eigenvalues distinct from +k. Then the graph X is called a
Ramanujan graph if A(X) < 2v/k — 1. Roughly speaking, this is a regular finite
graph with nontrivial eigenvalues small. We note that the number 2v/k — 1
comes from the well-known result of Alon and Boppana about the lower bound
of A(X) when n is large. Such small eigenvalue bound forces the graph X to
have high magnification and small diameter, hence these graphs give good
communication networks. Here the magnification of a graph, which is like
Cheeger’s constant of a Riemannian manifold, is defined so that it measures
a speed of transmission of information. However, it is a difficult task to give
an explicit example of Ramanujan graphs, especially when the size of graphs
is large. There are three systematic methods, which are number-theoretic,
to construct an infinite family of Ramanujan graphs explicitly (see [L2] for
example).

Morgenstern [M1] introduced the notation of diagrams, which are finite
volume graphs, and Ramanujan diagrams as a generalization of Ramanujan
graphs. Moreover by the result of Drinfeld he showed in [M2] that the quo-
tients graphs Xr given from principal congruence subgroups I' of PGL(2) over
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function fields over finite fields [, described in Section 1, are Ramanujan
diagrams.

In this survey paper we discuss some properties of these finite volume infinite
graphs Xr from the viewpoint of spectral graph theory and number theory.
Part of the material can be found in [N1] and [N2]. Section 2 provides the Sel-
berg trace formula of I and a determinant expression of the Thara-Selberg zeta
function of Xp. They can be regarded as a generalization of the well-known
works on finite graphs. In Section 3 we investigate the limit distributions of
the eigenvalues of Xr. Finally in Section 4 we discuss the asymptotic distribu-
tion of the primitive hyperbolic conjugacy classes of ' and its application to
number theory. More investigation of related topics to Section 4 will appear
elsewhere.

2. BRUHAT-TITS TREES AND RAMANUJAN DIAGRAMS

Our aim in this section is to exhibit certain arithmetic infinite graphs men-
tioned in Introduction, which we will treat in this paper.

The Ramanujan graphs which appeared for the first time in [LPS], [Ma]
and implicitly [Th], are quotients of type [\PGL(2, F')/K, where F is a local
non-archimedian field, K a maximal compact subgroup and I' a lattice, i.e.
discrete subgroup of finite covolume in PGL(2, F). In the case of char(F) = 0,
it was shown by Ihara and (more generally) Tamagawa (cf. [Sel, II.1.5]) that
every lattice is uniform, i.e. cocompact. On the other hand, when char(F) =
p > 0, there are many non-uniform (i.e. finite covolume but not cocompact)
lattices. These comprise not only arithmetic lattices, which are presented in
[Sel, IT] for example, but also non-arithmetic lattices [Lul]. This is unlike the
case of F-rank > 2, which is the work of Margulis. In this paper we treat
the following typical examples of arithmetic non-uniform lattices: principal
congruence subgroups of PGL(2,F,[t]) in G = PGL(2,F((}))) (see (1) ).
These discrete subgroups are seen as the counterpart of that of P.S L(2,Z) in
PGL(2,R) in view of the number-theoretic analogy between algebraic number
fields and function fields over finite fields.

Let [, be the finite field with g elements, [;[t] the ring of polynomials in
t over F,, and k = F,(t) its quotient field. Let ko, = [((3)) the field of
Laurent formal power series in % over [, which is the completion of k with
respect to the norm | - | at I (infinity). If an element a in ko is written
as 3000 a;t™" (an # 0), then |a|e = ¢™". We denote by re, the ring of local
integers IF,[[1]], whose elements can be written as Taylor series in § over I,.
Throughout this paper we put G = PGL(2,ke) and K = PGL(2,r). Note

that K is a maximal compact subgroup of G.
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One of the symmetric spaces associated with G is the Bruhat-Tits building
of G. This is in fact the right coset space G/K to which we add the structure
as a (q + l)-regular tree T = T 4y (cf. [Sel, 11.1.1] [St]). More precisely, this
coset space is the set of vertices V(7) of the tree 7, which are represented by
the following set of matrices:

(G 0)ee

and from the way of construction of 7 the neighbors of a vertex g (¢ € G)

n€dx € ke, modt"‘roo} ,

are ¢ + 1 vertices gs; K (1 =1,--- ,q+ 1), where

o ={(5) <R (4 )

Hence the group G acts on the tree 7 from the left as a group of automor-

phisms. This action induces an action of G on the boundary 87 of T, which
is just the usual fractional linear transformation of G on P! (k).

Let I be a principal congruence subgroup I'(A) (A € F,[t]) of PGL(2,E,[t]),
which is defined by
(1)
['(A) = {y € PGL(2,F,[t]) | for some representative ¥ of v,5 = I (mod A)}.

The full modular group I'(1) = PGL(2,F,[t]) is a non-uniform lattice in G (cf.
[Sel, I1.1.6]), so I'(A), which is of finite index in I'(1), is also a non-uniform
lattice in G. If we let ' act on the tree 7, noting that I' has no inversions, it
naturally gives rise to a quotient graph I'\7 and this graph I'\7" has the shape
of the union of a finite graph together with finitely many infinite half lines (cf.
[Sel, I1.1.6] [M2]). In fact, we are lead to have a graph of groups (I',T'\T),
where we attach the stabilizer T, to a vertex [v] = I'- v € V(I'\T), and the
stabilizer I'. to an edge [¢] = I' - ¢ € E(I'\T) (more precisely, see [Sel, 1.4,
L.5]). Now this graph of groups (I','\7) gives the structure of a (¢+1)-regular
diagram ('\7,w) under the weights w([v]) = |I',|™! and w([e]) = |T|™* (for
the definition of diagrams, see [M1]). We should note that the measure defined
by this weight function w are just the atomic one on V(I'\T) induced from
the Haar measure m on G normalized so that m(K) = 1.

In this paper we consider C-valued functions defined on the set of vertices
V(T) of T. If a function f on V(T) satisfies f(yg) = f(g) for all v € I' and
g € V(T) = G/K, then f is called an automorphic function for I', namely,
just functions on the quotient graph I'\'7. Next we define an operator for 7T,
which is called the adjacency operator, by

(THE)= Y fw), FV(T)-GC

d(v,u)=1
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where d denotes the natural distance on 7T, i.e. if u and v are adjacent in T
we let d(u,v) = 1. It induces an operator for ['\7 and this induced operator
can be represented as

ThHw = 3 O

e=(v,u)eE(I'\T) w(v)

flo), fV(I\T) =G

where e = (v, u) denotes the edge from v to u. It is known that T is self-adjoint
and IT)) < ¢+ 1.

As described in Introduction, Morgenstern introduced the notation of Ra-
manujan diagram [M1], and by virtue of the function field analogue of the
Ramanujan conjecture proved by Drinfeld [Dr], he deduced the following re-
sult:

Theorem 2.1. [M2, Theorem 2.1] The diagrams (C(ANT ,w) (A € F,[t]) are
Ramanujan diagrams.

We note that this theorem has the implication that if A is a nontrivial
eigenvalue of T on LA(T(A)\T,w) (i.e. A # £(g+1)), then || < 2,/4.

In [M2] an explicit structure of ['(A)\7 are given and by Theorem 2.1 some
finite subgraph of I'(A)\7 is shown to be a good bounded concentrator, from
which we get a family of superconcentrators of density 66.

3. TRACE FORMULAS AND IHARA-SELBERG ZETA FUNCTIONS

In this section we discuss an explicit trace formula of ' = I'(A) and express
the Thara-Selberg zeta function of T' in a determinant form with T. From this
section we let ¢ be odd. :

The quotient graph I'\T is an infinite graph, so that there will be continuous
spectra of T'. Let o be the number of inequivalent cusps of I'\'7". It is known
that the continuous spectra are furnished by the Eisenstein series E;(g,s) at
each cusp k; (i = 1,--- ,0) (see [L1] [N1] for the definition) and parametrized
by the interval [~2./4,2,/q]. The Eisenstein series Ei(g,s) is invariant under
', so it can be expanded as a Fourier series at each cusp ;. In the case
of principal congruence subgroups I'(A), Li [L1] obtains an explicit form of
the Fourier series in terms of the L-functions associated to characters X on
F,[t] mod A.

The constant terms of the Fourier series of Ei(g,s) at cusps k; define the
(0 x o)-matrix ®(s) which is called the scattering matrix of I'. Then ®(s)
satisfies the functional equation ®(s) = ®(1 — s) [L1, Theorem 7]. We put
©(s) = det ®(s) and call it the scattering determinant of T By the above
computation [L1] we find that ¢(s) is a rational function in q**, so we put

_ 4" — qa1)(¢* — qa5) - - (¢* — qa,)
® ) = ) —gb) (= gh)

4
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where ¢,a;(: = 1,--- ,;m),b;(j = 1,--- ,n) are constants and we assume that
the right hand side is written to be irreducible.

It is understood that the determinant ¢(s), in particular the set of its poles,
plays an important role in the theory. We note that by the functional equation
©(s) = p(1 — s) the set of poles of ¢(s) is one-to-one correspond to the set of
its zeros. The function ¢(s) controls the Eisenstein series in the sense that if
¢(s) is analytic at some point, then so are all the Eisenstein series. Moreover
¢(s) appears in the Selberg trace formula described below as the contribution
of the continuous spectra of 7.

In [N2] we give more detailed information about the poles of ¢(s) for I' by
a slightly different computation from [L1] above.

Lemma 3.1. Let A* = (I, [t]/ AF,[t]))* /IE‘Z‘ and A% be the set of characters
of A*. Let L(s,x) be the Dirichlet L-function associated with a character
X € AX. Then the poles of @(s) for T(A) are contained within the zeros of the
Sfunction

(¢ =" I Ls,x)",

XEAX

where h = o /r,r = ¢(A)/(q — 1) and ¢(A) is the Euler totient function. Here

we count zeros and poles with multiplicity.

Next we set some notations to describe the trace formula of I' = ['(A). For
hyperbolic elements P of I' we put N(P) = sup{|\:|% | \i is an eigenvalue of
the matrix P } and deg P = log, N(P). Recalling that any hyperbolic element
P of ' is written in the form P = P§(k > 1) with a primitive hyperbolic
element Py, we define the Mangoldt function A(P) on hyperbolic elements
of I' by A(P) = deg P, = log, N(F,). Let Pr (resp. Pr) denote the set of
primitive hyperbolic conjugacy classes (resp. hyperbolic conjugacy classes)
of I'. Let D be the set of discrete spectra of the adjacency operator T on
L*(T\T,w), which is a finite set. Denote the number of elements of D by |D].
Then the trace formula of T' is given explicitly in the following [N1]:

Theorem 3.1. For a discrete spectrum X; € D of T on L*(T\T,w), we set
Aj =q7+q'"% and s; = 1/2+ir;. Assume that the sequence c(n)eC (neZ)

5
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satisfies c(n) = ¢(—n) and q%llc(n)l < oo. Then if I' =T'(1), we have
n€Z

+(3)+ ( +-——q) = vol(P\T)k(0)
(75

q . deg P,
) + 3> S hae )
q {Po}epr =1 9 *

> —m q—2 3g—4
+22 (@7 + Vel2m) + pk(0) + 5=y

=1
and if I' = F(A (a =degA>1),
ID|

(5) Z r) = vol(\T)k(0) + 3 ZdigegfocldegPo)

7=1 {Poyepr =1 4 ?

+ (0 ~Trd (%)) (% <(0) + gl c(2m))

1 [Fss o (1 . -1
+21‘7; . h('l‘);‘(i—}-ZT‘) dT ”O'( q__l)C(O)
d k(-

Here the functions h(-) a
form.

) are determined by c(-) via the Selberg trans-

In the case of I' = I'(1), Efrat [E3] computes the spectral decomposition of
L*(I'\T,w). The set of discrete spectra of T' for I'(1) consists of two trivial
eigenvalues +(g + 1). We also remark that the study of trace formulas was
done by Akagawa [Ak] in the case of the full modular group I' = (1), but his
direct method is not applicable for other lattices I'. Modifying his computation
and using the structure of a (¢ + 1)-regular tree 7, we obtain an explicit trace
formula for I'(A) more naturally and plainly. Our computation seems to be

similar to that of the case of PSL(2,IR) [He] and applicable for generic I's.
The Thara-Selberg zeta function of I' is defined by

as)= [ (-npy)~.

{Po}€Br
Here we put
(7) No= > AP)= > deghy, m21,
1 P E
o

deg P=m

then the zeta function {r(s) can also be written as
o0 Nm m

®) ) =exn (32 22).
m=1

6
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where we put u = ¢~°.

Later we will write NV,, in two different forms and these formulas are keys
to the proofs of the results in Section 3 and Section 4.

We apply Theorem 3.1 to the test function ¢(n):

—(lo —Inl(s-3) n0
C(n):{o( 249 q njo

where s € Cis fixed with Re(s) > 1, then this gives the following determinant
expression with T of the Ihara-Selberg zeta function (r(u) [N1]:

Theorem 3.2. ForI' =T(1) we have

2
(9) (r(u) = %_%ﬁ,
‘and for T = [(A) (deg A > 1)
(10) r(u) = (1=u?)™(1 = qu?) [T (1 = u+ qu?) ™!
AeD
x I (0 =abu®)™ - [T = ab5'u?),
Ib;1<1 lb;|>1

where x = vol(T\T) %52, p = 1 (o —Tr®(%)) and b;’s are as in (3).

We here should mention the related result of Scheja [Scl]. By combinato-
rial argument, he obtained a determinant expression of the Ihara-Selberg zeta
function (r4)(s) which is different from Theorem 3.2. This expression is given
by certain deformation A*(u) of the operator A(u) = 1 —Tu+qu? on V(I'\T)
in Theorem 3.2, where we let A*(u) act on the finite part of I'\ 7 (i.e. removing
the ends).

4. ASYMPTOTIC DISTRIBUTION OF EIGENVALUES

As described in Section 2, Morgenstern [M2] shows that any nontrivial dis-
crete spectra A (i.e. A # £(q+1)) of T on L*(T(A)\T,w) satisfies |A| < 2,/7,
and moreover gives an explicit structure of I'(A)\7. However, it is difficult
to compute these eigenvalues concretely. In this section we will find certain
asymptotic distribution of them.

Now we set a normalized operator 17" = T/\/q and let D' be the set of
nontrivial discrete spectra of 7”, then every element A" of D’ satisfies A <2
We prepare two probability measures on 2 = [—2,2]. One is the Sato-Tate
measure or Wigner semi-circle:
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The other is defined for a real number ¢ (> 1) by

_ q+1
M‘?(x) - (q1/2 + q_1/2)2 _ .'L'2 Noo(x)

The measure p,(x) is known to be the spectral measure of T' on a (g+1)-regular
tree 7. These measures can also be found in number theory (for example, see
[KS1] [Sal] [Se2]).

The Chebychev polynomials of the second kind X,,(z)(m = 0,1,2,---),
which are defined by
sin ((m + 1)8)

sin 0

when z = 2cos (0 < 6 < «), are known to be orthogonal with respect to

Hoo(z). We have
_J1 (m=0)
/QXm(x)dl‘OO(x) = {0 (m > 0)

Xm(z) =

and these polynomials have the following identity:

> 1
S Ko™ =
— l—zu+u

where u is an indeterminate. Next let us define the polynomials X, ,(z) (m =
0,1,2,---) by the relation:

Kimg(z) := Xp(z) — q_le_z(a:),

where we set X,,(x) := 0 for m < 0. Then we can check that

(12) Lxmummm=f (m=0)

0 (m>0)
and
> 1—-u?/q
13 X, (2™ = —— 219
(13) 3 Kglon” =

On the other hand, generalizing T, we define the operator 75, (m = 0,1,2,---),
which average functions on V(7)) at distance m:

(Tof)v)= > fw), f:V(T)-C
d(v,u)=m
Note that Ty = I = identity and T; = T. Then we have the recursive relations:
T} =Tz + (¢ + 1)To,
Tle = Tm+1 + qu-—h m Z 2)

8
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from which we can show the following identity:

1—u
(14) Z T =+ —, o

2

m=0

d ’ 1—U2/q
15 T ™ = —— 17
( ) m=0 mu 1 - T’u + u2’

where we put T, = T,,/q%. Hence the relations (13) and (15) yield
T, = Xpmo(T),
(16) T = 4% X o(T/ 7).
Under the above preparation, we can establish the following result [N2].

Theorem 4.1. (i) Let q be fired. Then for any sequence of polynomials { A;} (i =
1,2,---; A; € F[t]) such that deg A; = oo as i — oo, the nontrivial discrete
spectra D, of T' = T/\/q for L(A)\Ty+1 are equidistributed with respect to the
measure po(x) on Q = [-2,2]. That is, let C() be the space of continuous
functions on Q, then for any f(z) € C(Q) the following holds:

(17) Jim 5 7210 )= [ f@du(a)

(ii) For any sequence of couples {q,,A Y@ =1,2,---;A; € F_[t]) such that
¢ — oo and deg A; — o0 as 1 — oo, the nontrwml dzscrete spectra D; of
T = T/\/@ for F(A N\Tg+1 are equidistributed with respect to the measure
Boo() on Q = [-2,2]. That is, for any f(z) € C(Q) the following holds:

(18) lim lDi Z f) = /f (2)dpoo(z

Sketch of the proof. We will give the proof of (i). By the same idea we can
also prove (ii). First note that the space spanned by the set of polynomials
{Xmq(x)} (m=0,1,2,---) is dense in C(Q), so it suffices to check that f(z) =
Xmqo() satisfies (17) for each m.

If we set f(z) = Xp4(z) and denote by TrT,, the sum of the nontrivial
eigenvalues of T, for I'(A), then Y, f(A) = ¢~ ¥ Tr T}, by (16). Taking the
logarithmic derivative of (10) and (8) in u, we obtain the formula connecting
Tr T, with N,,’s by using (14). This formula contains the terms of the con-
tribution of the scattering determinant (s ) By Lemma 3.1 it is possible to
estimate these terms.

As we let deg A — oo for principal congruence subgroups I'(A), we see that
Ny — 0 for each m, and by the trace formula (5) and Lemma 3.1, we obtain

9
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|D'| ~ vol(T(A)\T). Combing these facts, we can obtain that for each m # 0,
l—’i E,\eDf f(A) = 0 as i — oo. This and (12) complete the proof. 0

5. PRIME GEODESIC THEOREMS

In this section we exhibit the distribution of the primitive hyperbolic conju-
gacy classes of I'(4) and its application to a number-theoretic problem about
the fundamental units of orders of real quadratic function fields.

First we recall a number-theoretic interpretation of the primitive hyperbolic
conjugacy classes Pr of I' = I'(1) = PGL(2,F,[t]) (cf. [Ak]), which is an
analogue of the case of PSL(2,7Z). As before let g be an odd prime power
and we denote by D the subset of [F,[t] consisting of monic and square-free
polynomials of even degree and by £ the subset of Fq[t] consisting of monic
polynomials. The mapping d k(\/g) establishes a one-to-one correspondence
between D and the set of real quadratic function fields. Let w = z+yvd (z,y €
k) be a quadratic irrational function (i.e. not an element of k) and satisfy the
quadratic equation:

Cw? -~ Bw+ A=0, A,B,C € E[t].

If we require g.c.d (4, B,C) = 1 and that the coefficient of the highest power
i ¢ of 2Cy is 1, then the polynomials A, B, C are uniquely determined, so
we write w = {A,B,C}. Then the discriminant D(w) of w is defined by
D(w) = B? —4AC = 4C%*y%d. If two quadratic irrational functions wy, Ws

are equivalent by the following equivalence relation: w, = ;‘—:}ﬁ with a matrix

b L
(z d) € I, then they have the same discriminant and we say that they are

I-equivalent.

For d € D and | € £ we put O, 5 = F,[t] + F,[t]/v/d, which is an order
in k(v/d). Let hi/z be the narrow class number of O, /7 in k(v/d) and eng =
to + uolv/d be a fundamental unit of O,z with e, zlc > 1. For every real
quadratic irrational function w = {4, B, C'} of discriminant d/? we put

(to + Buo)/2 —Aug
Polw) = ( Cug (to — Buo)/2 ) ’
then N(Fo(w)) = |e, g%, For each d € D and | € L, we denote by R(dI*)
a complete set of representative of I'-equivalence classes of the real quadratic
irrational functions of discriminant dI?>. We note that the number of elements
of R(dl?) is equal to hiyz- Then a complete set of representatives of primitive
hyperbolic conjugacy classes of I is given by the following set:

UU U {Po(w)}.

deD leL weR(dI?)

10
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Before describing our result, we review the Prime Geodesic Theorem in the
case of I' C PSL(2,R), where we concentrate on congruence subgroups I' of
PSL(2,Z). Recall that for I' the Selberg zeta function Zp(s) is defined by

Zr(s)= ] ﬁ(l—N(Por‘”")),

{Po}ePr n=0

and these primitive conjugacy classes {Py} € Pr correspond to oriented prime
closed geodesics on I'\H (His the upper half plane) whose lengths are log N(Fp).
In the Prime Geodesic Theorem (PGT), which is about counting closed geodesics
and is the geometric counterpart of the Prime Number Theorem (PNT), the
Selberg zeta function plays a similar role to the Riemann zeta function ¢(s) in
the PNT. However, there are also differences between them.

The Riemann Hypothesis of the Riemann zeta function implies (and is im-
plies by) that the remainder term in the PNT s O(z? log z). In the case of
PGT, iflet A\ = 0 < )\, < Ay <--- be the eigenvalues of the Laplacian A on
L*(I'\H), we have that for the full modular group I'(1) = PSL(2,7) it holds
A1 > 4, so that via the trace formula the Selberg zeta function Zr)(s) sat-
isfies the Riemann Hypothesis, i.e. Zr@)(s) has no zeros in Re(s) > 1,5 # 1.
Nevertheless too many zeros of Zr(1)(s) on the line Re(s) = 3, unlike ((s),
makes it difficult to estimate the remainder term of mry(z), where we put

(19) mr(z) = [{distinct { Py} € Pr | N(F) < z}|.

The best known result about estimating this term is the following Prime Ge-
odesic Theorem:

Theorem 5.1. [LRS] Let T be congruence subgroup of PSL(2,7Z). Then it

holds that
(20) mr(z) = Li(z) + O.(eB%), &>,
where Li(z) = [* E% = llogx <dt.

In the course of Arithmetic Quantum Chaos, Luo and Sarnak [LS] estab-
lished the mean Lindelof Hypothesis in the Aj-aspect of the Rankin-Selberg
L-functions attached to L*-eigenfunctions ®; (Maass cusp forms) of A for I,
and then using Kuznetsov’s trace formula and Weil’s bound for Kloosterman
sums, they deduced the result (20) for the full modular group PSL(2,7) first.
For any congruence subgroup I', Luo, Rudnick and Sarnak [LRS] yielded a
new lower bound on A; and gave the remainder term in (20) by coincidence.

For a number-theoretic interpretation of Theorem 5.1, see [Sal]. We point
out that it is naturally expected as in the case of the PNT that

(21) mr(z) = Li(z) + O,(x3+*)

11
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for any ¢ > 0, but the abundance of the eigenvalues puts this bound completely
out of reach.
We have arrived at describing our result. If we put

: — 9"
Lij(z) =2 L -

1<m<log, =
m:even

which is an analog of Li(z) in Theorem 5.1, then in the case of function fields
we have the following result, which should be compared with (21):

Theorem 5.2. Let I' be a principal congruence subgroup I'(A) (A € E,[t]) of
PGL(2,F,[t]) and mr(z) be defined as in (19). Then we have

(22) nr(z) = Liy(e) + O (ljgl) .

By a number-theoretic interpretation of PBr(;y described first, this theorem
deduces the asymptotic formula of certain distribution of fundamental units
and class numbers in real quadratic fields over k:

Corollary 5.1.

(23) 3 h,ﬂzmq(mwo( r )

log z
IE,\/gl%oSﬂ” g

We remark that the remainder term of size O(x%/ log z) in Theorem 5.2 is
Just what we expect from the theory of primes (cf. [In] for example). We will
give a sketch of the proof of Theorem 5.2. Here we use the ordinary method
in analytic number theory. For other investigation, see the forthcoming paper.

Our proof is based on the two facts. One is that the graph I'\7 is a Ra-
manujan diagram (Theorem 2.1), which concludes that the Ihara-Selberg zeta
function (p(s) satisfies the Riemann Hypothesis, i.e. (r(s)~! has no zeros in
3 < Re(s) < 1. The other is that (an integral power of) (r(s) is a rational
function (Theorem 3.2), i.e. the zeros of (p(s) is essentially a finite set. This
implies that the role of the Ihara-Selberg zeta function (r(s) in the proof of
Theorem 5.2 is more similar to that of {(s) in the PNT rather than that of
the Selberg zeta function Zr(s), which has too many zeros as described above,
in the PGT. However, we note that the number of those essential zeros of
¢r(s) seems to be much more than that of a congruence zeta function, like the
relation between the Selberg zeta function and the Riemann zeta function (cf.

[N2]).

Proof. First we prepare some functions. Recall that we denote by Pr (resp.
‘ﬁlr) the primitive hyperbolic conjugacy classes (resp. the hyperbolic conjugacy
classes) of I' and define the Mangoldt function on hyperbolic elements P of

12
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I' by A(P) = log, N(P,) = deg P, when P = P¥ with a primitive hyperbolic
element Py and & > 1. We define Chebyshev’s 1)-function and ¥-function for

I' by

B - X AP Y dah= Y N
{P}ePy. {PYeph 1<m<log, =
N(P)<z deg P<log, =
{Po}ePr
N(Po)<z

respectively.

Next it follows from definition that for odd m, N,, = 0 . By (8) we have

ugl-:@ = 3 u™ -1

which gives
— _1___/ C[‘(u)u—malu7
2me Ju|=£; CF(U)

where 0 < £, < ¢7'. Now we shift the path of integration to the circle |u| =
¢2(1 < £3). Then by using Cauchy’s theorem of residues, Theorem 3.2 and

Lemma 3.1 and noting that f!ulzt’z %}g—z—;—u‘mdu - 0 as ¢, — oo since % =

O(1/u) for |u] > £(£ > 1), we obtain the following formula: Let m is even.
Then if I' = I'(1) we have

and if ' =T'(A) (deg A > 1),

N =2¢"+4% > (¢™ +¢™) + (g — 1)vol(I\T)

r

AR PPN H
_(U—-Trq)(§>)q2 +Zq2 Zb] R

1B51<1

where the sum 7 is taken over nontrivial eigenvalues A = ¢*+¢'~*(s = Tir).
Hence for even m,

(26) Nm = 2¢"™ +0(q%)
since I'\7 is a Ramanujan diagram.

13
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Substituting this result into (24), we have

py=2 > q+0| > dF

1<m<log, = 1<m<log,
m:even m:even
L
(27) =2 E q" + O(z?2).
1<m<log, =

m:even

On the other hand, it follows from (26) that ¥(z) = O(z log® z). Since it holds
(28) OEORTICORDILICE
n=3

by (24) and (25), we have ¢(z) = ¥(z) + O(z7 log? z). This and (27) yield
dz) =2 Z q" + O(,x% log? ),

1<m<logy
mieven

from which we have 9(z) = O(z). Using (28) again, we obtain

(29) P(a) = 9(z) + O(a?).

Therefore by (27) it follows that

(30) Ie)=2 », "+ O(z?).
1<m<log, z

“m:even

Now by definition we have

mr(z) = Z 1= /I 10; tdﬂ(t)

{Po}€PBr !
N(Py)<z
9 1 T oY(t
(31) ] ® 4
log,z  loggqJ, tlog,t
If we put
C(u) =2 Z q,

then it holds by an integration by parts that

m Clogye) | [% C(w)
q
2 ) w T Tegas / &

2
ISmlﬁlong logq T u
C(l * ((log, t
log, = logq J, tlog,t

14
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Combining (30), (31) and (32), we finally obtain that

re(z) = C(long)+0 z3 N 1 /x C(logqt)dt
r log, z log, x logq J, tloglt
+0 / £
q tlogjt

q" x z
= 2 —+0 0
Z m + <logx) + (log m)

1<m<log,
m:even
T

= Liy(z)+ O (log:c) .
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