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THE DISTRIBUTION OF EIGENVALUES OF
ARITHMETIC INFINITE GRAPHS

HIROFUMI NAGOSHI

ABSTRACT. Let T' be a principal congruence subgroups of PGL(2,F,[t]),
then it is known that I'\X is an infinite Ramanujan diagram, where X is
the g+1-regular tress. We obtain the limit distributions of eigenvalues of the
adjacency operator for I'\ X. The spectral measure of X and the Sato-Tate
measure appear as the limit distributions.

1. INTRODUCTION

Ramanujan graphs are defined as k-regular finite graphs whose nontrivial
eigenvalues of adjacency operator have absolute values bounded by 2vk — 1.
Such eigenvalue bound forces graphs to have high magnifications and small
diameters, hence these graphs give good communication networks. They also
have important applications in computer science. However, it is not easy to
determine whether a given graph is Ramanujan, especially when the size of a
graph is large. So it is a difficult task to give explicit constructions of an infinite
family of Ramanujan graphs whose sizes increase. The first construction of an
infinite family of Ramanujan graphs were given by Lubotzky, Phillips and
Sarnak [LPS] and Margulis [Ma]. It is based on the arithmetic of quaternion
algebras and the Ramanujan conjecture for Hecke operators acting on cusp
forms of weight 2.

Morgenstern [M1] introduced the notation of Ramanujan diagrams, which
is a generalization of Ramanujan graphs. To date, there are the only known
method to construct an infinite family of Ramanujan diagrams which are not
finite graphs. It is given by the congruence subgroups I" of GL(2) over function
fields over finite fields [F,. Using the Ramanujan conjecture proved by Drinfeld
[Dr], Morgenstern [M2] showed they are Ramanujan diagrams. In particular,
their nontrivial discrete spectra of the adjacency operator have absolute values
bounded by 2,/g. In [M2], the explicit constructions in the case of principal
congruence subgroups I'(4) (A € [F,[t]) are given. However, their concrete
eigenvalues are difficult to compute.
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In this paper, we describe the limit distribution of eigenvalues of the ad-
jacency operators for the Ramanujan diagrams attached to these principal
congruence subgroups ['(A). It does not look so clear whether these diagrams
have as many eigenvalues as their distributions converge to a measure which
is not zero almost everywhere (see [E2] and [E3]). For our investigation, we
will use the trace formulas described in [Na]. The results about the limit dis-
tribution of eigenvalues in the case of finite Ramanujan graphs are described,
for example, in [Te] and [L2], which contain several conjectures.

We give our main theorems (Theorem 5.1 and Theorem 5.2) in Section 5.
In Section 2 we denote some results on Bruhat-Tits and quotient graphs. In
Section 3 we describe the trace formulas in an useful form for our aim and in
Section 4 we investigate the scattering determinant for I'( A) which is necessary
later.

2. PRELIMINARIES

In this section we prepare some notations and basic facts about the Bruhat-
Tits trees attached to function fields.

Let IF, be the finite field with ¢ elements, I;[¢] the ring of polynomials in
t over [F,, and k = F,(t) its quotient field. Let k., be the completion of k
with respect to the norm |- |, at 1/¢, and 7o, the ring of local integers. Then
ks = F,((¢t71)) is the fields of Laurent series in uniformizer ¢~! over F,, and
Too = IF,[[t™1]] is the ring of Taylor series in ¢! over ;. If an element a in k.
is written as > oo a;t™ (a, # 0), then |a|e = ¢7".

Throughout this paper we put G = PGL(2,k) and K = PGL(2,r). Note
that K is a maximal compact subgroup of G. As described in [Sel, II.1.1}, we
can endow X := G/K with the structure of the g+1-regular tree, also denoted
by X or X, for short. The tree X has a natural distance d, namely, if u and
v are adjacent in X we let d(u,v) = 1. When a graph Y is given, we write
V(Y) (resp. E(Y)) for the set of vertices (resp. edges) of Y. As a complete set
of representatives of V(X) = G/K we can take the following set of matrices:

o G

From the way of construction of the tree X, the neighbors of a vertex gK (g €
G) are q+1 cosets gs; K (1 =1,---,q+ 1), where

{51,--.,sq+1}={(t; ‘f) aE]Fq}U(é ?)

The group G acts on the tree X as a group of automorphisms. This action
induces an action of G on the boundary X of X, which is just the usual
fractional linear transformation of G on ! (k.. ). See [Sel] or [Lu] for definitions

n€lLzx € koot modt”roo}.
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of terms with X. We assume from now on that I' denotes a discrete subgroup
of G which acts without inversions on X. Then the quotient set I'\ X naturally
has the structure of graphs. If ' is a lattice (i.e., a discrete subgroup of finite
covolume) in G, Lubotzky [Lu, Theorem 6.1.] shows that the quotient graph
['\ X is the union of a finite graph together with finitely many infinite rays. For
example, when T'(1):= PGL(2,F,[t]) the quotient graph I'(1)\ X is isomorphic
to a half-line tree [Sel, II.1.6].

In this paper we consider C-valued functions defined on the set of vertices
V(X). If a function f on V(X) satisfies f(yg) = f(g) for all v € ' and
g € V(X), f is called an automorphic function for I', namely, just functions
on the quotient graph I'\X. Now let denote the stabilizer of v € V(I'\X)
(resp. e € E(T'\X)) in T by I', (resp. I.). The quotient graph ['\X can be
made into a measure space by a Haar measure m induced from G, which we
normalize so that the volume of K is 1. It is an atomic measure on I'\ X that
assigns to a vertex v € V(I'\X) the measure

(2) m(v) = T,
(see [Sel, I1.1.5]). For later use we put
m(e) = |Fe|—1

for e € E(T'\X).
Next we define a natural operator for X, which is called the adjacency
operator, by

(3) (THER) = Y. flw (F:V(X)=OC).
d(v,u)=1

It induces an operator for '\ X and this induced operator can be represented
as

chw =Y s (1 vnx) - 0),

e=(v,u)eE(N\X) m(v)

where e = (v,u) denotes the edge from v to u. It is known that T is self-
adjoint and ||T'|| < ¢+ 1. Generalizing the operator T', we define the operator
T (m =0,1,2,--), which average functions on V(X) at distance m:

(i) = >, flw)  (F:V(X)=>0)
d(v,u)=m
Note that Ty, = I = identity and T) = T. Then we have the recursive relations:
T =T+ (¢+ 1)To
T1Tm =T + gl (m 2> 2).

3
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We can show that these relations yield the following identity:

(4) iTmu’"— L u

= T 1 —Tu+ qu?’

2

where u is an indeterminate.

3. TRACE FORMULAS

From this section we let ¢ be an odd prime power and T a principal congru-
ence subgroup of G:

I'(A) = {y € PGL2,E[t]) |y =1 (mod A)} (A€ F,[t]).

We assume deg A = a > 1. The quotient graph '\ X is an infinite graph, so
that there will be continuous spectra of 7. Let o be the number of inequivalent
cusps of '\ X. The continuous spectra are furnished by the Eisenstein series
Ei(g,s) at each cusp «; (1 = 1,--- ,0) (see Section 4 for the definition) and
parametrized by the interval [-2,/g,2,/q]. The Eisenstein series Ej(g,s) is
invariant under I, so it can be expanded as a Fourier series at each cusp Kj.
In the case of principal congruence groups, Li [L1] obtains an explicit form
of the Fourier series in terms of the L-functions associated to characters X on
[, [t] mod A.

The constant terms of the Fourier series of Ej;(g,s) at cusps k; define the
o X o-matrix ®(s) which is called the scattering matrix for I'. Then it is known
[L1, Theorem 7] that ®(s) satisfies the functional equation ®(s) = ®(1 — s).
We put ¢(s) = det ®(s) and call it the scattering determinant for I'. By the
above computation [L1] we find that ¢(s) is a rational function in ¢%*, so we
put

_ c(qz’ — qa,)(¢* — qdz) - (q* — qan,)
(5) #ls) = (g% — gb1)(q?* — gb) - - - (¢** — gb,)’

where ¢, a;, b; are constants and we assume that the right hand side is written to
be irreducible. It is understood that the determinant o(s) plays an important

role in the theory. It controls the Eisenstein series in the sense that if ©(s)
is analytic at some point, then so are all the Eisenstein series. Moreover @(s)
appears in the Selberg trace formula described below as the contribution of the
continuous spectra of 7. In Section 4 we will observe more detailed expression
of ¢(s) for I

Next we set some notations to describe the trace formula for I'. Let Pr
denote the set of primitive hyperbolic conjugacy classes of . For a hyperbolic
conjugacy class {P} of I', we put N({P}) = N(P) = sup{|\|% |\ is an
eigenvalue of the matrix P } and deg{P} = deg P = log, N(P). Let D be the
set of the discrete spectra of the adjacency operator T for I'\X, which is a
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finite set. Denote the number of elements of D by |D|. Then the trace formula
for I is found explicitly in the following:

Theorem 3.1. [Na] For a discrete spectrum \; € D of T on L*(V(T'\X),m),
we set A; = ¢% +¢'7% and s; = 1/2 +ir;. Assume that the sequence c(n) €
C (n € Z) satisfies c(n) = ¢(—n) and qlizﬂlc(n)l < oo. Then we have the

n€l
following formula:
|D|
(6) D h(r) = vol(T\X)k(0)
7=1
deg P
+ z Z dge c(l deg P)
{Pyepr =1 4 *

+(o-o(3)) (30 S etem)

1 log g
+ET- Wh()—( +Z7’)d

T Togq

_a(a—l—qil)c(O).

Here the functions h(-) and k() are determined by c(-) via the Selberg trans-
form.

The Selberg zeta function for I' is defined by
—s\ -1
Zr(s) = H (1"N(P) )

{P}ePr
Here we put
(8) Np= Y degP (m21)
{P}ePr
deg Plm

Then the Selberg zeta function Zp(s) can also be written as

) Zr(u) = exp (Z %m) ,

m=1

where we put u = ¢~°
Using the trace formula (6), we see that the Selberg zeta function Zp(u) can
be expressed as the determinant of 7"
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Theorem 3.2. [Na]
(10)  Zp(u) = (1 —u*) (1 — qu*)"

x JT(1 = du+qu)™ - T] (1= abju®)™ - ] (1 —ab5"e?),

AeD 1bjl<1 1bj|>1
where x = vol(F\X)q‘ P = (a - Trq)( )) and b;’s are as in (5).
Now taking the logarithmic derivative of (9) and (10) in u, we obtain

(11) ZN _ (g=Dvol(M\X)w? _ (0 = Tra(3)) qu’

1—u? 1—qu2
1 — At + au? _ T — b=l
1 Au+ qu |b|<11 qJ |b|>11 qb u
Here we have '
—Au + 2qu?
)‘eDl—)\u-{-quz
___Z1—)\u-{-quZ—(1~-u?)—l-(q—1)u2
fvers 1—-/\u+qu2
12 -+ Y ey
—_ - 2°
AeD /\u—l—qu2 1—u? /\GDl Au + qu

Let Tr T, denote the the sum of the discrete spectra of T,, on L*(V(I'\ X),
The relation (4) yields

2

(13) > TeTnum =Y e,

m=0 AeD
from which we have

18 3 Y Tl =303 T T

m=1 1Sk<1;— n=1 k=1
2

Hence by (13) and (14), the equation (12) is equal to

(e o]
m
m=1 m=11<k<Z

ZTrT u™ — (g —1) Z Z T Tongp™
:i TeT,—(¢g—1) Z Tr Tonak Um"(_q‘_"l‘)—uill)"

1—u?
m=1 1<k< 2
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Thus we find that (11) can be computed as

oo o0 o0 1
Nyu™ — 1vol(I'\ X)u?™ — (U — Tr@(—)) My 2m
Zl ; g — 1)vol(T'\ X) ; 5) )4
+> Tl —(g=1) D TeTpg | u™~ > (q- 1)|DJu*™
m=1 1Sk<1£‘_ m=1
+ qumz,;?‘u“‘m - Z ZQq’"b;mu%.
lb;)<1 m=1 lo;]>1 m=1

Therefore we obtain the following formulas connecting each N,, with the traces
of T,.’s. By induction we also have Proposition 3.1 (ii).

Proposition 3.1. For m > 1 let N,, be as in (8) and TrT,, the sum of the
discrete spectra of T,, for T\X. Then

(i)  fmisodd, Np=TiTn—(q—1) > Trl,_p;
1<k< 3

if m is even, Np, =TrT, —(¢—1) Z TrT ok

1<k< 2

+ (q— 1)(vol([‘\X) — ID[)

1 m
- -Trd| = 2
(r=me(3))
b2t S 0F ot YT
Ib;1<1 b51>1
(i) misodd, TrTn=Nn+(g—1) D ¢ 'Nu_a;
1<k<Z
ifmis even, TrT, =N, +(g—1) Z ¢ IN,, o
1<k

ol(T\X) — D|)(¢— 1)g7 "

(v
+ G—T@G)) (’;’q— Y
~2q-1)gF Y > b -2gF S b

lbyl<11<n< P bji<1
RO WAL S
[bj|>11<n< 2 1b;1>1

Remark. For I' = I'(A) C PGL(2,E,[t]) it follows by the definition of
deg P({P} € Pr) that deg P is even, so N,, = 0 if m is odd. See [Na]

7



KSTS/RR-00/009
June 9, 2000

for the geometric meaning of deg P. For a function f on V(X), let f be its
alternating function on V(X) defined by

. flv) if d(v, vo) is even
15 v) =
(15) f(v) {—f(v) if d(v,vo) is odd,

0 1)} € G/K. Then we find

that if let m be odd and 7,,f = A f for a function f on V(X) then we get
T f = —Xf. Noting that if f € L2(V(I'\X), m) then f € LA(V(I'\X), m), we
have Tr T, = 0 for odd m.

. : 10
where vp is the vertex which corresponds to [(

4. SCATTERING DETERMINANTS

In this section we investigate more details about the scattering determinant
@(s) for ['(A). In the following, let @ = b mean a = b(mod A), M (FF,[t]) be
the set of monic polynomials in F,[t] and P (F,[¢]) be the set of monic and
prime polynomials in [[t]. We denote by (a,--- ,b) the element in M (IF,[t])
of highest order which divides all a,--- ,b € F,[t].

We recall that I'(1) has one inequivalent cusp. By analogy of the case of
PSL(2,7), we find that a set C of ['(A)-inequivalent cusps x = —% (7,0 €
F,[t], (v,6) = 1) can be given by the equivalence classes of pairs < 7,8 > such
that (v, 4, A) = 1 under the following equivalence relation: An element < v, >
is equivalent to < 4',6" > if and only if ¥ = ay'(mod A) and § = o' (mod A)
for some o € F¥. The number of inequivalent cusps of [(A)(deg A > 1) is
given by

(16) o= o(A) = q_—l—l— Ak 1 (1 - 1_131|Z> .

BeP(F,[d])
BlA

Let T, be the stabilizer in I' of a cusp «; and we choose a;, 8; € I, [¢] such
that the matrix

(17) pi = ( j ?:_' ) e SL2,F,[1])

sends k; = "»T to co. Then the Eisenstein series F;(g, s) (¢ € G/K,Re(s) > 1)
attached to k; is defined by

Ei(gas) = 9’5) Z 1/)3 Pﬂ—g

TEFK. \F

where t,(g) = |det g|5,h((0,1)g) *and A(-) is a function which sends row
vectors (z,y) to Cby h((z,y)) = sup{|Z|w, [yl }. For ¢,d € [F,[t] with ¢ =
¥i,d = 6; and (¢,d) = 1 we have a;d — B;c = 1 by (17), so that there exist

8
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a,b € F,[t] such that a = ;,b = §; and ad — be = 1 (see the proof of [Sc, p. 74,
lemmal). By taking account of this fact and using these a and b, Ei(g, s) can
be written as

ns

B | det g|2, q
Ei(g,s) = Z Z h( ct®, cx + d))?s’

o= a b o=

for g = ( tO T ) € G/K asin (1).

We now put

3 | det g2, "~
Flos)= 3 = Y T

c=yi,d=8i p, ((0 1) (a b> g) e=i,d=4;
d
Then |

o= 3 3 e T

YeM(Fq[t]) (cd)=
(Y A)—l =i, d: +

ns

= 2 Y12 2 h ((ct?, ca + d))*

Y eM(T,[1)) (exd)=1
(Y,A)=1 =Y ~ly;,d=Y —16;
1 qﬂs
- Z Z Y |25 Z n 257
Ue(Flt)/ATg)* Y eM(E,[1) A (C AN R )
Y=U c=U Ly, ,d=U—16;

where Y ! denotes the inverse of Y in (IF,[t]/ AF,[t])*.
Let Uy,Us,--- ,U, be the set of representatives of A* := (I [t]/AF,[¢])* /
IF:’;, where

(21) r:i’i(_flz%lwm II (1—@1‘:).

BEP(K,[1])
BlA
Now we define the function ((s,U) = ((s,U; A) for U € F[t] b

) _—Z ) YL U0

Xe]rq[t] 5 €l YGM(ITq[t]) Yz

(22) ((s,U) = A{i 1
—— if U =0.
Xer 1X1z,
q
X=0,X#0
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Then we have ~

ns

< e q
Fi(g,s) = Z Z Y]z Z h((ctr, ca + d))2s

v=1 o e} Y EM (Fq[t]) (c,d)=1
Y=al, c=a~ U y;
d=a™U;1S;
(23) = Z ¢(2s, UV)EU.T‘W,',U,,“&.-(g’ s).
v=1

Here we see that AX acts on C by setting U,- < 7,6 >:=< U1y, U;'6 > for
<v,6 >€C and U, € A*. By taking account of this and changing indexes of
cusps &; appropriately, the relations (23) can be written as follows:

Fl J El
, J)\r
where each block J is the rx r-matriz J = (C(2S,Ui~lUj))_ ~and r is as in
%7
(21).

Next we turn to compute the constant term of the Fourier expansion of
Fi(g,s) at x;, namely, the Fourier expansion of F,-(pj"lg,s) at oo. We have

Lemma 4.1.

et for e = (to :15) € G/K,
N |det p.—lgizo
Fipi'g,s)= > ; b _
c=y; d=6; a -1
= > q
cmaes, (5 — dyj)tn, (cd; — dv;)z + (—¢B; + da;))*
— Z qns
- n 2s?
et (CASE X))
d=—~;0;+8:a,

ns

and will treat F(g,s). The constant term of the Fourier expansion at oo of

F(g,s) is defined by

ao(F;t", s) :/ F ((t :v) ,5) de’,
AR [t koo 0 1

10
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where the invariant measure dz” on AR, [#]\ke is normalized so that the total
volume of AF,[t]\kw is equal to 1. If we normalize the Haar measure dz on
koo so that vol(r) = 1, then

" _ 1 t" z
a(F3t,s) = vol(1=1re,) Jia-1, F((O 1),5>dx

qns

dz.
h((ctr, cx + d))* ’

r°°c 'yd =6

First we consider the case of v = 0, in which case the term with ¢ = 0
appears and § Z 0, then aq( F; 1", s) is equal to

(1) /

——dx
rog d 6 |d12

qns d
n 2s z
Lreo _0 o b ((ct?, cx + d))

c=!

The first term of (27) is equal to

1 quS /
dz = ((2s,8)q™.
1 2 S, ’

The second term of (27) is equal to

qns

28 dzx
28) AL [\koe 1 ((ct7; ez + LA+ 8))

¢=0,c#£0
LET,[1]

We now set £ = £'c+£"(0 < deg?" < degc), so cx+LA+8 = c(z+£ A)+£" A+3S.
Summing over £ € [F,[t] and changing variables we find that (28) is

1 715
¢! > / h((ctm, C$+E"A+5))

c= Oc;éO
Ogdegl’ <degc

1 7LS
- X / s dx
¢=0,c#0 o c["’sh t" x4 410 ))
0<deg£ <degc

- {m/w h(

—OC;éO
1
L o) / 1
q*! (2s koo B (
1 1— q n(1—s)
= 'qa—_lc(2$ 1,0) 1— 125 q 5

11
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by the following formula derived from the definition:

1 1— q—Zs
g T = .
koo H((1, 7)) L—gi=®
Next we consider the case of v # 0 in (25). In this case, the constant term

ao(F';t",s) is computed in the same way as the computation of the second
term of (27) and we get

Fogr _ 1 9 1 1— q—2s n(l1—s)
ao( F; ,5)'—'q'a__TC(—'5'“ 77)1__q1—2sq ’

To sum up, we find that the coefficient of ¢"(!=*) in the constant term of the
Fourier expansion of Fi(p]»‘lg, s) at oo is

. 1 1 - q-23
(29) e ((2s — 1,7:8; — 6:y;) T

Here we recall the definition of the scattering matrix ®(s) for I'. The con-
stant term of the Fourier expansion of E;(g,s) at a cusp x; is of the form:

(30) ;0™ + i (s)g" ),

where &;; is Kronecker’s § (see [L1]). Then we define the matrix ®(s) by
O(s) = (go,-j(s))ij___l .o BY (24) we can write the above conclusion (29) as
follows: ,

Proposition 4.1. Let J be the r x r-matric as in Lemma 4.1 and ®(s) the
scattering matrix for I'(A). Then

(31)
O(s) = — L= §;—6
) > 11— g% (28 = 1,%6; — bi;) im0

Let AX be the set of characters of A* and L(s, x) the L-function associated
to a character y € A:

Lis,x) = Z ngﬁ)

BeM(Fq[t]) A

Corollary 4.1. Let ¢(s) be the scattering determinant det ®(s) for I'(A).
Then

1 1—g-2\° det(§(25 — 1,74 — 51‘7'))1- ;
(32) o(s) = ( a1 qx—zs) : h : *
q l—g¢q erzi" L(2s, x)

12
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where

h=2=4. [] (1+ﬁ)‘

BeP(F,{t])
BjA

In particular, the poles of ¢(s) are contained within the zeros of the function
(¢ - ¢*) H L(2s,x)".
XEAX
Here we count zeros and poles with multiplicity.
Proof. First we claim that the determinant of the matrix J is computed as
(33) det J = T L(2s,%).
XEAX
To obtain (33) we begin with

P AUANCAED SIS Tf(auf)

=1 Re,[t]
R=U"'U;(mod A)

_ Z 3 x(R)
- X(Uz) IR'S
j=1 Rel[t) ©°
R=U1U;(mod A)

(R)
= x(Us) AT
ReMz(fq[t]) IRl

= X(Ui)L(SaX)a

where we consider x € A* as a Dirichlet character mod A on F,[t]. Hence we

x(Uy) x(U1)
(cte.ren) N e B B
HERTT () x(U:)
from which we get (33). Taking the determinant of (31) we obtain (32).
Next we note that the function {(s,U) for U € F,[t]/ AF,[t] in (22) is com-
puted as

have

=g U
(34) C(57 U) = (q . l)qs -
e if U =0,
7*(¢* — q) l
where u = min{deg X | X € [F,[t], X = U(mod A)}. So
tim (g° — q)¢(s, U) = L1,
2°—q q*

13
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which is independent of U. By this we see that the poles of

det (C(2s — 1,76 — 5m)>

t,7=1,,0

may come from the zeros of ¢** — ¢® with multiplicity one. Observing that
©(s) is holomorphic on Re(s) = 1/2 by [L1, p.241, lemma2], we get this
Corollary. |

To obtain Lemma 4.2 below, we require the next claim:
Claim 4.1. Let ©(s) be written as in (5). Thena; #0(z =1,--- ,m).

Proof. In the right hand side of (32) we let Re(s) — oo. First by (34) we find
that if U = o for some o € I then ((s,U) — 1 and otherwise ((s,U) —

0 as Re(s) — oo. So every element in the o x o-matrix (C(2s — 1,7v0; —

dEt(C(QS ~1,76; “5i7j)) ’ < oo as Re(s) — oo.

5,-7]-)) ~ converges and '
J

1,J

This implies
(35) lp(s)] < o0 as Re(s) — oo,

since L(s,x) — 1.

Next we note that if ¢(s) in (5) has factors ¢*° then these factors exist
either in the numerator or in the denominator since (5) is written to be irre-
ducible, and that by the functional equation ¢(s)@(1 —s) = 1 the set of factors
{¢** — qa;|a; # 0} in the numerator in (5) and the set {¢** — ¢b;|b; # 0} in the
denominator are one-to-one correspondent. Hence if we assume that ¢(s) in
(5) has a factor with a; = 0, then it follows that ¢(s) = co as Re(s) — co.
But this contradicts (35). Thus we have the assertion. O

Lemma 4.2. Let ¢(s) be as in (5), then in fact we have

_ L& = D(e” — qa) -~ (¢* — qam)
(36) e(s) = (@ — ) (¢ — qbs) - -- (¢% — qby)’

where |a;| > 1 fori=2,--- ;m and |bj| <1 forj=2,--- ,n.

Proof. By Corollary 4.1, [L1] and the theory of Eisenstein series, we have that
on Re(s) > 1/2 the function ¢(s) has a simple pole at s = 1+nmi/log g (n € Z)
(i.e., (s) as in (5) has a factor ¢** —¢? in the denominator) and is holomorphic
at the other s. Moreover by the fact that L(2s, x) does not vanish on Re(s) >
1/2 for each character x mod A, we can write ¢(s) as in (36) with |b;| < 1(j =
2,---,n).

By the functional equation (p(s)@(1 — s) = 1 we see that a factor ¢** — qa;
in the numerator, where a; # 0 by Lemma 4.1, corresponds to the factor
q** — gb; with b; = 1/a; in the denominator. So we have the assertion as for
the numerator. O
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The estimate in the next lemma has an important role for later use. It
should be noted that the volume of I'(A)\ X are computed via the construction
of I['(A)\X in [M2] as follows:

(37) vol(r(A)\X):——QIA';”_~ II (1_@%).

— 2
(g+1)(¢g—-1) BeP)
BJA

Lemma 4.3. Under the notation in Lemma 4.2 we have
> 1= o(vol (P(A)\ X))
Ibyl<1

as degA — oo.

Proof. On account of Corollary 4.1 we divide the set of b;(j=2,---,n)asin
(36) into two types: (i) the contribution of [T, cix L(2s,x)* and (ii) that of
det (C(25 —1,7v6; — 5,"7]')) . » which might possibly exist and are correspond to
b;’s which are 0. !

First we estimate the sum over b; of (i). As is well known, the L-series
L(s,x) is equal to the L-series L(s,t) of a primitive character % modulo the
conductor of x, multiplied by some factors, the number of which is less than
that of divisors of A. This and Theorem 6 of [We, p.134] imply that for any
e>0

(38) D1 <elatq) hor = (atg¥)-o(A)
bj:(i)
By (16) and (37) this gives us
(39) > 1= o(vol (T(A)\X)).
bj:(i)
Next as for the sum over b; of (ii), by (34) we have
Z 1 <a-o(A) = o(vol (I'(A)\X)).
bjx(ii)

Hence we obtain the assertion. O

5. THE DISTRIBUTION OF EIGENVALUES

As mentioned in Introduction, by virtue of the Ramanujan conjecture proved
by Drinfeld [Dr], Morgenstern [M2] shows that any nontrivial discrete spectra
A, (i.e. the eigenvalues except +(¢ + 1)) of T on LA(V(I'\X), m) satisfies
IA] <2,/g. We put a normalized operator T' = T/2,/q. Let D be the set of
the nontrivial discrete spectra of T'. Every element )’ of D’ satisfies [N < 2.
Then we consider certain limit distribution of the eigenvalues of T" for rX.

15



KSTS/RR-00/009

June 9, 2000

First we prepare two probability measures on = [~2,2] and their basic
facts which will be used later. One is the Sato-Tate measure or Wigner semi-

circle:
1 z2
Poo(Z) Trwl i

The other is defined for a real number ¢ (> 1) by

q+1
:uq(x) = (ql/z + q_1/2)2 _ .7:2 ,uoo(l.)

The measure p,(z) is found to be the spectral measure of the adjacency op-
erator for the g+ 1-regular tree X. The Chebychev polynomials of the second
kind X,,(z) (m =0,1,2,---), which are defined by

sin ((m + 1)0)

sin d

(40) Xn(z) =

when z = 2cos#(0 < 6 < 7), are known to be orthogonal with respect to
Keo(z). We have

1 (m=0)
41 Xop(2)du(z) =
(41) [ Xnl@ie() h =)
and these polynomials have the following identity:

_ 1
71— zu+u?

(42) > X(z)u™

where u is an indeterminate. Next let us define the polynomials X,, ,(z) (m =
0,1,2,---) by the relation:
(43) Ximg(2) = X (2) — ¢ Xma(2),

where we set X, (2) := 0 for m < 0. Then we can check that

(44) Axwummw=? (m =0)

0 (m>0)
and
ad 1—-u?/q
4 M= 7
w R

Now we normalize the operator 7}, = T,,/q% , then by (4)

N 1—u?/q
46 T u™ = ——— .
) St = Lot

16
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Hence the relations (45) and (46) yield

!

T = X (T),

m

(47) m I
T = q2 Ximo(T/q7)-

To prove our main theorems, we need the following lemmas. The next lemma
describes the number of eigenvalues of T' on L*(V(I'\ X),m). See also the work
in [HLW].

Lemma 5.1. As before, let D be the set of the discrete spectra of T for T\X
and vol(T'\X) the volume of T\ X which is normalized so that the Haar measure
of K is 1. Then

1 1
(48) D] = vol(I'\ X)) + 3 (a —Tr® (-2—)>
+1- 1—a(a+L>
q—1)’
]b,‘](l
where b; is as in Lemma 4.2. In particular we have
(49) | D] ~ vol(T\ X) as deg A — oo.

Proof. To the trace formula (6) we apply the test function such that ¢(0) = 1
and ¢(n) = 0 for n # 0, from which k(r) = 1(r € C) and k(0) = 1. Then we

obtain
D] = vol(T\X) + % (cr _Trd @))

1 ﬁt,o' 1 . 1
— e dr — — .
i[5 Gre)ae (i)

When ¢(s) is written as in (5), it follows by computations that

1 ﬁcp' 1
Z’I; ‘FL;(§+ZT>dT=Zl—Zl

59 leil<1 [bi]<1

=1- Y 1

Ibil<1

since Lemma 4.2. Thus we get (48).
Next by the result in [L1] we find

(50) Tr & (%) =4l ] (1 + ﬁ)

BeP(K,[t])
B|A
(see [Na]). By this, (16) and Lemma 4.3, we get (49). o
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Lemma 5.2. Let D(A) (A € F,[t]) be a principal congruence subgroup of PG L(2,,[¢]).
We assume deg A =a > 1, then

min {deg P | P € T'(A) is hyperbolic} > 2a.

Proof. Let P is a hyperbolic element of I'(A). By simple argument it follows
that N(P) = |Tr P|%,. For P € I'(A) we have Tr P = 2(modA), and hence
|Tr Pl > g° since P is hyperbolic. Thus deg P = log, N(P) > 2a. O

Combing the above results, we can establish the following theorems about
the limit distribution of eigenvalues of T" for infinite Ramanujan diagrams

T(A\X.

Theorem 5.1. Let g be fized. Then for any sequence of polynomials {A;} (¢ =
1,2, ; A; € F[t]) such that deg A; — oo as i — oo, the nontrivial discrete
spectra D, of T' = T/\/q for T(A)\Xy41 are equidistributed with respect to
the measure pug(x) on Q = [—2,2]. That is, let C(Q) be the set of continuous
functions on Q, then for any f(z) € C(R) the following holds:

(5) lim 5 3 ) = [ st

AED;

Proof. The space spanned by the set of polynomials { X ((z)} (m = 0,1,2,- )
is dense in C(R), so it suffices to check that f(z) = X q(z) satisfies (51) for
each m.

When m = 0, (51) holds since X, o(z) = 1 and (44). Next let m > 1 be
fixed. For I'(A)\ X, taking f(z) = Xm,q(z) gives us that

AeD
_m qg+1 qg+1
=q 2Tr T, — Xn, (—) — Xom, (—‘——‘>
q \/a q \/a

by (47). Now it follows from Lemma 5.2 that for each n, N, tends to 0 as
deg A — oo. Using this, Proposition 3.1 (ii), (16), (36), (37), Lemma 4.3,
(49) and (50), we obtain that WEA€D: f()) = 0 as i — oo. This and (44)
complete the proof. O

Theorem 5.2. For any sequence of couples {q;, A;} (i =1,2,--- ; A; € F [t])
such that ¢; — oo and deg A; — oo asi — o, the nontrivial discrete spectra D;
of T' = T/ /G for T(A:)\Xy.41 are equidistributed with respect to the measure
too(z) on Q = [=2,2]. That is, for any f(x) € C(Q) the following holds:

(52) lim 7 30 S0 = [ fe)dpste)

AeD!
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Proof. We use the same method as in the proof of Theorem 5.1. Since the
space spanned by the set of polynomials {X,,(z)} is dense in C(2), it suffices
to check that for each m, f(z) = X,,(z) satisfies (52).

When m = 0 we have (52) since X,,(z) = 1. Next for fixed m > 1 we have

(53) g]):/ FO) = Tr X (T) = Xom (q—}al) - X, (_E\J/r_(_ll> .

Now using Proposition 3.1 (ii), (43) and (47), we obtain by induction that
if misodd, ¢*TrXn(T)= > ¢ Npou;
0<k< ™

if m is even, q%Ter(TI) = Z qum,_gk
0<k< R

(54) +|D| = (vol(T\X) — D) (¢% — 1)

#(o-me(z)) 5

—24% ) >0

{byl<11<n< 2

+2¢% Z Z by

[bjl>11¢ng 2

|3

For I'(A)\X it follows from Lemma 5.2 that for each n, N, tends to 0 as
deg A — oo, which holds independently of ¢. According to this, (16), {(36),
(37), the proof of Lemma 4.3, Lemma 5.1, (50), (53) and (54), we have that
TI;—H ZAeD: f(A) = 0 as £ — co. By (41) we have the assertion. ]
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