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Abstract

We compute explicitly the Selberg trace formula for principal congru-
ence subgroups of PGL(2,F,[t]) which is the modular group in positive
characteristic cases. We also express the Selberg zeta function as a deter-
minant of the Laplacian which is composed of both discrete and continuous
spectra. All factors are calculated explicitly, and they are rational func-
tions in ¢~°.

1 Introduction

The aim of this paper is to give a new explicit example of the Selberg trace
formula and the Selberg zeta function. We treat principal congruence subgroups
[ of I'(1) = PGL(2,I,[t]) with [, the finite field. The group (1) is naturally
introduced as an analog of the standard modular group PSL(2,7Z.) in view of
the number theoretic analogy between algebraic number fields and function fields
over finite fields. In place of the upper half space which the standard modular
group acts on, the group I'(1) operates on the so-called Bruhat-Tits tree X.

As an analog of non-compact arithmetic manifold such as the modular surface,
our ' supplies an infinite arithmetic graph which is called a Ramanujan diagram
by Morgenstern [M1] [M2].

Our results can be regarded as a generalization of those works on the Ihara-
Selberg zeta functions in which they treated finite graphs [VN] [ST].

We survey the theory of Bruhat-Tits tree and the harmonic analysis on I'\ X
in Section 2. Next Section 3 is devoted to the construction of the Selberg trace
formula and the explicit calculation of each term. The final expression is in The-
orem 3.2. The adjacency operator Tt has both discrete and continuous spectra,
and the continuous ones can be described in terms of the suitable Eisenstein se-
ries. Finally in Section 4 we express the Selberg zeta function as the determinant
of Tr, and obtain its rationality in ¢~° (Theorem 4.1).



KSTS/RR-00/008
June 9, 2000

2 Preliminaries

Let [F, be the finite field with g elements, I [¢] the ring of polynomials in ¢ over E,
and k = [F,(t) its quotient field. The valuation at 1/t on k, which corresponds to
infinity, is defined by ve(f/g) = deg g—deg f, where f and g are polynomials in
IF,[t], and the norm is given by |a|e = g *>)(a € k). Let ko, be the completion
of k with respect to this norm | - |, and re be the ring of local integers. Then
ks = F,((t71)) is the fields of Laurent series in uniformizer ™' over [, and
Too = B [[t™"]] is the ring of Taylor series in ¢t~! over F,. If a element a in kg is

written as Zait‘i(an #0), then ve(a) =n and |a|o = ¢7".

For a rizngn R we let PGL(2, R) be the group of 2 x 2 invertible matrices over
R divided by its center. Throughout this paper we put G = PGL(2,ks) and
K = PGL(2,rs). Note that K is a maximal compact subgroup of GG. We will
study the homogenious space X = G/K. As is described in [Se, IL.1.1], we can
endow X with the structure of the g + 1 regular tree, also denoted by X. The
tree X has a natural distance d, namely, if v and v are adjacent in X we let
d(u,v) = 1. Taking it into consideration that a vertex of this tree corresponds to
an element of X, we sometimes write V(X)) for X and E(X) for the set of edges
of X. From the way of construction of the tree X, the neighbors of the vertex
gK (g € G) are the g+ 1 cosets gs;K (1 = 1,--- ,¢+ 1), where

o= (%) o1 2):

Let B be the subgroup of G of upper triangular matrices. Since G = BK, we
have

G/K ~ B/BNK,

so we can take the following set of matrices

o {(57)

as a complete set of representative of X = G/ K. Hence from the viewpoint of the
analogy to the upper half plane H, it is convenient that if ¢ € X is equivalent to

n€d, € ky,x modt"rw}

( tO alc ) (z mod t"ry,), we call z the z-coordinate of g and call t* or simply n

the y-coordinate of g. Using elementary divisors, we also see that every element

d

2) g=k(tg ‘j)k’,

b . .
g= ( Z ) € (G can be written in the form
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where k, k' € K and n = ve(det g) — 2 min{v(z)|z = a,b,¢,d }. The action of
G on X can be extended to the boundary of X. Namely, we define an end of X
as an equivalence class of half-lines, with two half-lines being equivalent if they
differ in a finite graph. Then we define X :=the set of ends of X. We see 0X
can be identified with P!(k.,). The action of G on dX = P'(k) is the usual
fractional linear transformation, which is induced from its matrix action on X .

From the view of actions on X and 9X, we classify elements in G which act
without inversions on X, as follows:

1) identity

2) hyperbolic: elements which have no fixed vertices on X. (Then from Lemma
2.1 it has two fixed points on 0X)

3) elliptic: elements which have fixed vertices on X and no fixed points on

0X.

4) parabolic: elements which have fixed vertices on X and a fixed point on

0X.

5) split hyperbolic: elements which have fixed vertices on X and two fixed
points on 9X.

The following Lemma summarizes the properties of hyperbolic elements.

Lemma 2.1 (Tits) [Se, p.63] Suppose P € G is hyperbolic (i.e., has no fixed
vertex on X ). Let the degree of P be defined by deg P = min{d(v, Pv)|v €
V(X)}.We put

Tp = {v € V(X)|d(v, Pv) = deg P}.
Then
1) Tp is the vertex set of an infinite path in X.
2) P induces a shift by the distance deg P on Tp.
3) If a vertez u is of distance d from Tp then d(u, Pu) = deg P + 2d.

The group G acts on the tree X as a group of automorphisms. Let I' be a
discrete subgroup of G which acts without inversions on X. Then it naturally
gives rise to a quotient graph '\ X. For example we see the case when I' = I'(1):=

PGL(2,F,[t]), which act without inversions. Throughout this paper we put for
nes

3) o = ( tg ’ ) EV(X), en=(0n,0ms1) € B(X),

3
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where let e = (v,u) mean that vertices v and u are adjacent by the edge e.

Let To(1) = PGL(2,F,), Bo(1) = {(g Z) eT(1)|a,deFxbe IE,}, and

a b
0 d
the action of '(1) on the tree X, the following theorem is known:

for every m > 1, I'n(1) = ) e I'(1) ‘ a,d € X, deg(b) < m} . Then for

Theorem 2.1 [Se, 11.1.6]
1) The infinite path (0o,01,02," - -) is the quotient graph T(1)\X.

2) For everym > 0, T' (1) is the stabilizer of o,,. Moreover By is the stabilizer
of e, and Ty (1) is of €, form > 1.

If [ is a principal congruence subgroup
r(A4) = {y € PGL2,F ) |7 =T (mod A)} (A€ Klt]),

the quotient graph I'(A)\X can be found in [L1] or in detail in [M2]. For other
congruence subgroups, see also [GN]. In general if ' is a discrete subgroup of G
of finite covolume (i.e., a lattice in G), Lubotzky [Lu, Theorem 6.1.] shows that
the quotient graph I'\X is the union of a finite graph Fo together with finitely
many infinite half lines (which are ends).

The classification of conjugacy classes in I' = T'(1) is known analogously to
the case of PSL(2,Z). We denote the conjugacy class of v in T by {y}r. We
write D for the subset of IF,[¢] consisting of monic and square-free polynomials
of even degree and I for the subset of IF, [t] consisting of monic polynomials. The
mapping d — k(\/d) establishes a one-to-one correspondence between D and the
set of real quadratic function fields. If w = « + yV/d is a quadratic irrational
function, where z,y € k, w satisfies the quadratic equation:

Cw?—Bw+A=0 A,B,CeFfl

If we require g.c.d (A4, B,C) = 1 and that the coefficient of the highest power in
t of 2Cy is 1, then the polynomials A, B, C are uniquely determined, so we write
w = {A, B,C}. In this setting the discriminant of w is defined by B? — 4AC =
4C%*y2d. If two quadratic irrational functions wy,w; are equivalent under the

. . . b
equivalence relation wy = ‘Z—;"I{t—s with Z J)€ PGL(2,F,[t]), then we say they

are PGL(2, F,[t])-equivalent. If w) and w; are PGL(2, IF,[t]))-equivalent, then they
have the same discriminant. For d € D,l € I we put O, ;5 = F,[t] + F,[t)iVd,
which is an order in k(v/d).
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Proposition 2.1 [Ak] Let g be an odd prime power and a be a generator of FX
We write C* for a complete set of representatives of equivalence classes in IFX —
{1} defined by the relation ab = 1 and C, for a complete set of representatwes of
equivalence classes in [, defined by the relation a+b = 0. Let hi sz be the narrow
class number of the order O, ;7 in k(v/d) and €12 = to + uolVd a fundamental
unit of Oy 5. For every real quadratic irrational function w = = {A,B,C} of
discriminant dl?, we put

_ ( (to + Bug)/2 —Aug ) '

(4) Cuo  (to— Bug)/2

Then a complete set of representatives of conjugacy classes of I' = PGL(2,E[t])
is given by the following five types of elements: One of them consists only of the
identity element and the others are the following four types

{((1) T)}F(xel), {((1) 0)} (ceC™), {(a{Q zg)}r(aea),

and {Y3}r(d € D,l € I,n = 1,2,---), where w runs through a complete set of
representative of I'-equivalence classes of the real quadratic irrational functions
of discriminant dI*>. The number of this complete set is by g

Remark. The elements of the above four types are parabolic, split hyperbolic,
elliptic, and hyperbolic, respectively. A hyperbolic element 7., stabilizes w € X
and its conjugate ' € 9X.

Let I' be a cofinite discrete subgroup of G. We consider C-valued functions
defined on the (q + 1)-regular tree X, i.e., on the set of vertices V(X). If a
function f on X satisfies f(yg) = f(g) forally € T and ¢g € V(X), f is called an
automorphic function for I'. In this section we will study the harmonic analysis of
automorphic functions for T', namely, just functions on the quotient graph '\ X.
We denote the stabilizer of v € V(I'\X) (resp. e € E(I\X) ) in I by I, (resp.
I'.). The graph I'\X can be made into a measure space by a Haar measure m
induced from G. If we normalize it so that m(K) = 1, it yields an atomic measure
on I'\.X that assigns to a vertex v € V(I'\ X) the measure

m(v) = ]Fvl_l7
(see [Se, I1.1.5]). For later use we put
m(e) = Irel—lv

where e € E(I'\X). For automorphic functions fi, f, for T', we define as usual
the inner product (-, )r\x, simply sometimes write (-,-), by

(fi, f2)r\x = /F\X f(g)-f(9)dg = > fi(v) fa(v)m(v),

veV(F\X)



KSTS/RR-00/008
June 9, 2000

and denote the space of all square integrable functions on I'\X by L*(T'\X).
Now we define a natural operator on X, which we call the adjacency operator or
Laplacian, by

(5) (THw) = > )f(u) (f: Xx - C).

(viu)eE(X

It induces an operator on I'\ X, sometimes denoted clearly by Tt, and we see that
Tr is represented as

m(e)

(6) (Trf)w) = X2 fw  (f:T\X = C).

e=(v,u)EE(T\X) m(v)

It is known that 7' is a self-adjoint operator and ||T)| < g+ 1 (see e.g. [M1]). We
assume a function fy : X — C satisfies T'fy = Af) and we consider its alternating
function fy which is equal to fy(v) if the distance between v and 0y is even, and
is equal to — fy(v) otherwise. Then fy satisfies TF = =Afr

Next we define an important function ¥s(g) (g € G,s € C) by

(7) bo(g) = | det(g)|5,h ((0,1)g)™%,

where we denote h((z,y)) := sup{|z|o,|y|eo}. It can be check that ¢¥,(g) is

K-right and N-left invariant, where N = {( (1) T l z€eqG } , and satisfies
(8) (Ts)(9) = (4" + 4" 7°) ¥s(9)-

Now we want to focus on the spectral decomposition of L*(I'\X') with respect
to the operator Tr. When I is cocompact, it can be done trivially. We assume
that I is not cocompact. Note that two one dimensional eigenspaces exist, which
are spanned by a constant function with eigenvalue q+1, and its alternating func-
tion with eigenvalue —(q + 1). As usual in the theory of automorphic functions,
we will define cusp forms and the Eisenstein series for each cusp.

Let ky,--- ,&, be a complete set of representatives of the orbits of I on 0X,
which are called inequivalent cusps. Throughout we take a quotient graph I'\ X
so that it contains the end corresponding to co € dX. Let Iy, be the stabilizer in
I of k; and take an element £; € G such that ;00 = k;. Let f be an automorphic
function for I', then f can be expanded in the Fourier series at each cusp. Fix a
cusp k;, and we say that f € L%(I'\X) is cuspidal at &; if the constant term of
the Fourier expansion at «; vanishes, i.e., for all g € G

~/(Fc._ll" FONN f(king)dn =0,
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where the invariant measure on (%7 'T'x, & N N)\N is normalized so that the total
measure of (7', % N N)\N is equal to 1. Let us denote the end attached to
a cusp ki by (ar;,ar,41," ), where we always assume that ar, € Fo is the foot,
i.e., ar, has more than two neighbors in I'\X. Here L; is defined by k7 tap, = or,-
To each cusp &;, we see from the way of the action of I'y, on X that for n > L;

© f(( o 1)) zf(( ! ?)>

for all z € k... Therefore if f is cuspidal at &;, then f vanishes on the end at
%;. A function f € L*T\X) is called a cusp form if it is an eigenfunction of
the operator Tr and it is cuspidal at all cusps. In particular, cusp forms are
supported by the finite graph Fo. Hence the number of cusp forms is finite.

Next we review the eigen condition on an end (ag,ar41,-+)- In detail see
[E2). Let f € L*(T\X) be an eigenfunction of Ty with eigenvalue A. Then for
n>L+1

(10) M(an) = (Tof)(an) = af (an-1) + f(ans1)-

We assume 0 < A < g+ 1 (X # 2,/g) and solving this difference equation we have
that

(e = ) flan) = 24 (flazsn)e — fla)a) = &2 (flazn)e’ = flar)a)

where z,z are roots of u? — A+ ¢ = 0. If 2,/g < A < g+ 1 then = and z'
are real, and we take z > z, s0 ¢ < /g < z. Since typically m(a,) = (a
constant)xq™", f € L*(T'\X) must satisfy f(an) = o(q?) as n — oco. Therefore
we have f(apy1)z — f(ar)g =0, so that

(¢ —2')flan) = =27 (flazsr)7 = flar)g)-
Next if 0 < A < 2,/g, then ¢ = z,|lz| = /g For f € L?(T\X), we can check

that f must vanishes on the end. From the Fourier coefficients condition (see
e.g. [L1, p.239 (1.2)]) we see that in fact f is cuspidal at this cusp. Finally if
= 2,/4, then by solving (10) directly we see that f must vanish on the end.
Now we define the Eisenstein series for a cusp &; by

(11) Edg,s)= Y $s(R'79),

~el \I'

where 1, is as in (7) and s € C. From (8) this function satisfies
(12) (TE:)(g,s) = (¢ + 4" ") Eilg,5)

7
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for g € X. It is obvious that E;(g, s) is invariant under I', so it can be expanded
as a Fourier series at each cusp ;. When I is a principal congruence group I'(4),
Li ([L1]) compute concretely the Fourier series expansion of E;(g, s) for each cusp
k;, which can be expressed using the L-functions associated to the characters x
on F,[{] mod A. In particular the constant term of the Fourier series of Ei(g,s)
at a cusp &; is of the form:

(13) 854" + @i (s)g" 7,

where §;; is Kronecker’s §. We define the matrix ®(s) := (¢i;(s)), which is
called the scattering matrix of T'. Its determinant ¢(s):= det ®(s) is called the
scattering determinant of . As for ¢;;(s) and ®(s), we summarize the results
which will be necessary later.

Theorem 2.2 [L1, p.241, p.242, p.249] Let I' = T'(4) (A € F,[t]). Then the
function ;;(s) is a rational function in g%, and for fized g € X the function
Ei(g,s) is a rational function in q~°. Moreover ©i;(s) and Ei(g,s) with g €
X fized are holomorphic on Re(s) > 1/2 except for simple poles at s = 1+
nmi/logq(n € Z). The matriz ®(s) is symmetric and satisfies the functional
equation

(14) ®(s) - B(1 —s) = 1.

Let LY(G) be the space of all integrable functions on G, and C(K\G/K) be
the space of all continuous functions f on G such that f(kgk') = f(g) for all
g € G and k, k' € K. Observing that a function on X is a function on G with
K-right invariant, we define an integral operator Ly on L?-functions on X by

(Leh)(9) = [ k(9.9)f()dg’

where the kernel function k(g,g') is represented as k(g,9) = F(g'~'g) for some
F € LYG)N C(K\G/K). Note that k(g, g') is determined by d(g,g'), where
d is the distance function on the tree X. We write k(g,g') = k(d(g,9')) as a
one-variable function. If we let cg = 0p,cg = o, (n > 1) by some element ¢ € G,
then we have k(g,9') = k(d(g,9')) = k(n) = F(o,). Assume f is a function on
X satisfying Tf = Af, where T is the adjacency operator (5) and A € C. Then
it is seen that there exists a constant A()\) depending only on k and A, and not
on the individual function f, such that Ly f = A(A)f. We call the transformation
k — A(}) the Selberg transform. The Selberg transform and its inverse transform
can be explicitly computed as in the following proposition.

Proposition 2.2 [VN, p.428] If we put s = 3 +ir, A = ¢* + ¢ (s,r € C) and
set A(X) = h(r), then the Selberg transform of the kernel function k is given by

8
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the following formulas:

A =h(r)= 3 cn)g™,
Inl ST
ety =% (ki) + 350" ="Kl +2m) ) (€ 2
m=1
Conversely, for given A(A) = h(r) we have the inverse Selberg transform as fol-
lows:
cln) = B [ hrygmdr; (e(n) = c(-m)
T J-wga
_lnl - —m
k) = ¢ ()~ (0= 1) 32 el + 2m)a ™)
m=1
forn € Z.

Remark. Let F be a function in C(K\G/K). Note that m(Ko,K) is equal to
¢" 4+ ¢*~'(n > 1). This is the number of the vertices of X which are n-distant
from oy. So we have

+1 n
[ 1F(@)ldg = 1F(e0)] + L= 3 | F(n)l
G 4 >
Hence F € L'(G) if and only if
(15) S ¢ F(on)] < oo.

n>1

Let h(r) = 3 ¢(n)g™ be the Selberg transform of F" € LYG)Nn C(K\G/K).

Then from Proposition 2.2 it follows that for sufficiently large {

SIFe) < Nt (Ic(n)l F(q=13 lefn +2m>|q-m)

n>l n>l m=1

< 23 qEle(n)|

n>l

Besides for any sequence ¢(n) € C (n € Z) satisfing ¢(n) = ¢(—n) and

(16) > g% |e(n)]| < oo,
n€L
put A(r) = > ¢(n)¢g"™ then the function k(r) is the Selberg transform of some

function F' € LY(G) N C(K\G/K). So throughout we require that the sequence
¢(n) (n € Z) is subject to the condition (16).

9
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3 Trace formula

Throughout this section let ¢ be an odd prime power and I' be a principal con-
gruence group I'(A) (A € F,[t]) with deg(A) =a 2 1. We consider the following
integral operator Ly on L*(I'\X):

(17) (Lif)lo) = [ krlo,g)f(a)dg (/€ LAT\X)).

where F € LY(G) N C(K\G/K) and kr(g,9) := F(g~'g) as introduced in
Section 3. This integral operator Li can be written as

(18) (Lef)a) = [ Krlo9)S (o).

where Kr(g,g) = ka(g,fyg’). Note that Kp(g,g') is a [-left invariant and
~er

K -right invariant function on G x G. Throughout we simply write k(g,g') (resp.

K(g,g')) for kr(g,q) (resp. Kr(g, g')). In this section we will compute explicitly

the trace of this integral operator Ly, which we call the Selberg trace formula for

r.

Lemma 3.1 Let F € L}(G) N C(K\G/K). Then K(g,q') converges absolutely
and uniformly on G x C and on C x G, where C is any compact set on G.

Proof. For g € C,q € G we have

K(g.¢) = S IF(¢ " 49)l < I NgKg™- 3 1F(g g,

~v€r g"ev(X)

since g'_lﬂy'g(fy' € T') represents the same vertex on X as g'ﬁlfyg if and only
if v~y € gKg™'. Here [ NgKg™|is bounded on C and F is in L'(G), so
K(g,g') converges absolutely and uniformly on C x G. Next if we apply the
above argument to F(g) := F(g™!), we see that K(g,g') converges absolutely
and uniformly on G x C. ]

The following lemmas shows how K (g, g') grows in the neighborhood of cusps.
These are necessary for our proving Theorem 3.1.

Lemma 3.2 Let F € LY(G)Nn C(K\G/K). For vertices g,g € \X, if 9,4

tend to a common cusp k; then K(g,9') — Z k(g, ~g) tends to zero. If g and
'Yerrc,'
g tend to different cusps then K(g,g') tends to zero.

10
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Proof. For the first assertion, we can assume that both g and ¢ tend to the cusp
00. So we put g = Opnyg = 0m(n,m >1). Then

S lk(g,v9)l = X kemyom)l = 2o |F(on'y ™ on)l.

B . vel—Too ~el-Too
Here from (2) we can check that for all v € I'(1)— Brqy (Bray:=BnN r))
(19) omtyon € KoK,
where j > m + n. Namely if v ¢ T, the larger n,m are, the longer the distance
between o, and vo,, becomes. Therefore we have

(20) Y 1Rt < [ o i P01,

el Too K o; K

i>mtn
since from Theorem 2.1 we have (['(1) — Bra)) N o, Koyt = ¢ (n >1). As
n,m — 0o, the right hand side in (20) tends to zero since F' € L'(G). Thus we
have the first assertion.
Next we assume that g tends to co and g tends to another cusp & (k # 00).
As before we take an element & € G such that kKoo = k. At present since
[ = ['(A) C I'(1), from Theorem 2.1 we can take such an element & in I'(1). We

now consider the behavior of Z k(g, fy;'%g') = Z F(g"lk“l'y—lg) as g,g tend to
~yel’ ~€er
oo. Here if we assume that &~ 1y~! belongs to Br(y, i.€., k147! is a stabilizer

of oo, then we have y"'oo = . But this contradicts the fact co and x are not
equivalent with respect to I'. Therefore %~14~! ¢ Br(;). Similarly using (19), we
have that as n,m — 0o

Plosiol < [ PO
S 1Floa"K I £ [ g (O
jzm+n

tends to zero, so we have the second assertion. |

Lemma 3.3 Let F € L}(G) N C(K\G/K) and n,m > a. Then we have

(21) Z k(on,n(z)on) = qﬁzﬂ“"“c(n —m),
z€ALt]

where AF,[t] = {Af(t)] f(t) € Ft]} and n(z) = ( (1) :: ) (z € G).

11
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Proof. First by using (2) we decompose the matrix o7, 'n(z)o, = ( ! 0 ! 1 ¢ )

N0 ¢

to the form & ( 01

) K (k, k" € K), where | = deg(x). We can check that
_J In=ml (I <sup{n,m})
N = { 20l -n—m (I > sup{n,m}).

This can be easily seen also from the geometric viewpoint. Hence by F €

C(K\G/K) and Proposition 2.2 we have that

Y Kown(@om) = X Flop'n(-2))

z€ATF,[t] r€ATR,[t]

_ qsup{ﬂym}‘*’l—aF(O‘ln—ml)

+ qsup{n,m}'l-l—a Z(q] . qj_l)F(U|n~—m|+2j)

j=1
— qsup{n,m}+1—aq-—k'—;ﬂlc(n . m)
¢"F e e(n — m).

o

The following theorem is particularly important and is the first step to the
Selberg trace formula for I'. It shows that the continuous spectrum of the integral
operator L defined by (17) is given by the values of the Eisenstein series on the
segment {s € C| Re(s) = 1/2, —n/log ¢ < Im(s) < w/log q}.

Theorem 3.1 Let T = I'(A) (A € F,[t],deg(A) = a > 1) and p=pur denote the
number of inequivalent cusps for I'. Assume that F' € L*(G) N C(A \G/K) and

its Selberg transform h(r) = Z ¢(n)g'™ satisfies (16): Z q7 |e(n)] < co. We
n=-00 n€Z

define the kernel function H(g,g') by

' i 10 lowq 1 _ 1 .
(22)  Hig,g) =2 58 ["7 KB, ) Bl 9)dr (s = 5 +ir).
i=1 -

log g

Then I%’(g,g,) = K(g,9) — H(g,q') is bounded on T\ X. Let D be the set of all
discrete L?(T'\ X }-eigenfunctions of Tr. Then for any f € D we have

(23) Sy Hlo:9)1 (g’ = 0.

12
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Proof. From Theorem 2.2 we have for Re(s) = 1/2, Ei(g,s) = O(q?) as g tends
to a cusp. Combing the result of L*-eigen condition on an end noted in Sec-
tion 3, we see that for any f € D the inner product (Ei(g,s), f) (Re(s) =
1/2) makes sense. Let us assume Trf = Af. Then from (12) the equation

(¢ + ") (Eilg, ), f) = (TrEi(g, ), /) = (Ei(g,s), Tt f) = MEi(g,s), f) bolds.
But we must have (E;(g,s),f) =0 since ¢° + ¢'~¢ is not a constant. This proves
(23).

Next we consider the behavior of the function H(g,g') as g and g tends to
a common cusp to x;. Then since from (9) the values on an end is given by the
constant term of the Fourier series expansion, we have

@
Z El(kiga S)El(kig ,5)

=1
m
(24) = (8uqg™ + eu(8)g" ) (g™ + ou(3)g™ ™),
=1

where we put ;g = 0, kig = Om(n,m > a). By (14) the scattering matrix ®(s)
on Re(s) = 1/2 is unitary, so the last equation (24) is equal to

(25) g + gt
(26) + pal(s)g" Vg™ + pu(8)g g
q"—’g—’ﬂ (g 4 g
F i)™ 4 i (3)gTm
It follows from Proposition 2.2 that

1 :’r_‘ n+m N :
Q47(:§aq I S: h(r)q——'g—-(q(n—m)zr + q—(n—m)zr)dr

“loga

1 .OL n+m N
_qlogq flogq h(r)q%—q(n—m)zrdr

2nq® -
(27) = ¢"F+1%¢(n — m).

On the other hand, from Theorem 2.2 we see that

o qugq k’L- nim —(n+m)ir - n4m)ir

(28) OB [0 () (o)™ o))
“Togq

(29) =C " e(n+m),

where C is a constant. Recalling the assumption, we see that for n,m > a the
equation (29) is bounded. Besides, as ¢,¢ tends to a common cusp k;, We have

S k(g,79) = 2 k(Fion, vRiom)

'YEF,Q ’YEFK"
= Y, k(O Y Om) = > E(on,n(z)om),
v €R T, R z€AL[f]

13



KSTS/RR-00/008
June 9, 2000

where we put ¢ = K0, g = kio,. Therefore from Lemma 3.2, Lemma 3.3 and
(27) we can conclude that

K(g,9) = (Z k(g,79) — D k(g,vg')) + ( S k(g,79) — H(g,g'))

~yel’ ’YEFK,' ’Yerni

is bounded as g and g  tend to the same cusp &;.
Next let us assume that g tends to a cusp «; and that g tends to a different
cusp k; (i # j), and examine the behavior of

p p

Z El(kigv ‘S)El(kjg" 5) = Z((Sliqns + @li(S)qn(l—s))((guqmg -+ So’j(g)qm(l—s))’

=1 =1
as n,m — oo. In this case the fact that ®(s) on Re(s) = 1/2 is unitary im-
plies that H(g,g') remains no terms of the form (25), but only terms of the
form (26). Hence H(g, ¢') is bounded. Therefore from Lemma 3.2 we have that
K(g,9) = K(g, g)—H(g,g') is bounded as g and g tend to different cusps. This
completes the proof. a

Remark. In the case I = ['(1) = PGL(2,I[t]), Efrat [E2] derives explicitly
the spectral decomposition of L*(I'\X). The discrete spectrum of the adja-
cency operator Tr on LX(I'\X) consists only of two trivial eigenvalues A =
g+1,—(g+1). They correspond to the poles of the Eisenstein series Eo(g,s) at
s = 1,1 — mi/log g, respectively.

Remark. Let T = T'(A). Using the function field analogue of the Ramanujan
conjecture proved by Drinfeld ([Dr]), Morgenstern ([M2]) deduces that the eigen-
values of T except for A = £(g+1) satisfy || < 2,/g. Thus '\ X is a Ramanujan
diagram. For the definition of a Ramanujan diagram see [M1].

_ Next we define the integral operator Ly on L*(I'\ X) having the kernel function
K(g,¢) in Theorem 3.1, by

(Lif)(g) = /F\X K(g,9)f(g')dg ,

which is the discrete part of the operator Ly defined in (17). Let {1, Ay, Am}
be the set of discrete spectrum of Tr. Then from Theorem 3.1 we obtain the
following formula with respect to the trace of Ly:

R . M
(30) Tr(ly) = [ K(g,9)dg = > h(ra),

\X

where £ is the Selberg transform of k as in Proposition 2.2. Here from the above
Remark the eigenfuntion corresponding to the discrete spectrum of Tt except for

14
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+(g + 1) is a cusp form, so M is finite (see also [HLW]). We call this formula
(30) the Selberg trace formula for I'. As usual the term ./r\x K(g,9)dg can be
divided into the sum over the conjugacy classes of . For y € T let {y}r be the
conjugacy class of v in ' and I'(y) be the centralizer of v in I. The elements in
I'(y) have the same fixed points as y on X U0X. Note from Theorem 2.1 we see
that if deg(A) > 1 then I = ['(A) has no elliptic elements. We rewrite the trace
formula (30) as the following: Put

N = k(g. Ig)d
C(I) /FU)\X (9, 19)dg,

C(H s dg,
(H = {%:r/(w)\X (9,79)dg

o) = % k(g,79)dg,
(P,n) {% oy, F@79)d
E = H d
() = [ Hlg,9)ds,
c(pP) = lim (C(P,n) — E(n)).
Here for C(H) the sum is taken over the conjugacy classes of hyperbolic elements

in T, and for C(P,n) the sum is taken over the conjugacy classes of parabolic
elements in ' and note that they are divided into the classes corresponding to

inequivalent cusps {ki,k2, - ,K,}. We let ¥, be the subgraph of X such that
the y-coordinates of the vertices in Y, are less than or equal to n, and
(31) S, = M\X N (N k:Ys) .

As we know later, C(P) has a finite evaluation, so the Selberg trace formula (30)
can be expressed as

(32) Zh ra) = C(I) + C(H) + C(P).

Now we will compute the explicit expression of the integrals C([), C(H), C(P,n), E(n)
and find the final form of the Selberg trace formula.

Proposition 3.1 Let vol(T\X) be the total measure of '\ X, t.e., /\X dm(v),
-
and we denote the set of primitive hyperbolic conjugacy classes of I' by Pr. Then

we have
33) Cc)= vol(F\X k(0),
6o o= Y 3L (e ),
{P}E‘ﬂr =19 ?
(35) C(P,n)=u {(n —a+1)c(0) + z; ¢(2m) — C(O) } +0o(1) (n — o0),

15
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where deg P is as in Lemma 2.1.

Proof. For C(I), we have
c(l) = /F MO/ = vol(T\ X )k(0).

For C(H), we note that C(H) may be written as

= > Z/r k(g, P'g)dg,

T =LY

since for a hyperbolic element € T', elements in ['(y) have the same fixed points
as those of 4 on X and from Proposition 2.1 [(y) is a cyclic group. Now a
combinatorial computation yields

k(g, P'g)d
Sy Ko P9}

=deg P - k(ldeg P) + deg P - (¢ — 1) ST ¢ k(2m + Ldeg pP)

m=1
Using the Selberg transform, this is given by

deg P
T8 wc(ldeg P),

q 2

hence we obtain (34).
Next we will compute C(P,n). Note that we can write

Z > [, e

i=1 I#~€ly; g \&iYn

> ¥ f k(g,79)dg,

i=1 I#v€l

C(P,n)

where 'y, = {n(:c) = ( (1) alc ) € F(A)} . Now we compute the following integral

(36) > / k(g,v9)dg = fw\yn (g7 'n(x)g)dg.

I#~Elo /T oo\ n 0£zEAT,[T

It is easily seen that the set of matrices

- (5 1)

m € Z, |z < q“}

16
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is a complete set of representatives of [, \X. The number of vertices in T\ X

with y-coordinate t™ is
1 (m > a)
a~1-m (l)

and from Theorem 2.1 the number of stabilizers of the vertex ( to T ) € T\ X
is
qm+l-—a (7TL Z a)
1 (m < a),
(in detail see [M2]). Hence the total measure of all the vertices in [oo\ X w1th y-
m t"“m
coordinate t™ is ¢*~17™. Forg = ( tO 313 ), we have g~ n(g; Jg = ( é lw ) ,

which is independent of z. Combining the above facts, the equation (36) is given

by
1 t™™z
a—l—mF
e ()}
(37) =3 q"""’"{ > F(( o ))}
nzm 0#zEAR,(T]

By using (2), the integral > OF (( (1) t_l x )) can be computed as

0#£zeAT,[T]
fm>a
(38) g {F(ao) DS qf—‘)F<azj)} - F(ou),
fm<a

(¢ = D) F(02g0mmy) + i(qj“ @) F(0aamsi)

(39) { 0-2(‘1 m) + Z 02(0 m+1))} - F(‘72(a—-m))'

Here we separate the sum of (37) as the following form: S5= >+ > . Then

n>m n>m>a a>m
the first sum z is equal to
n>m2>a
> + (e’ = ¢ Flow) LY g F(00)
n>m>a j=1 n>mza

— (n—at1)e(0) - E-%T (1 - ;1—_1-;1) F(o0).

17
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The second sum Z is equal to

a>m

= E c(2(a —m)) — Z @ T F(02(a-m))

m<a m<a

2 ¢ {F(O'Z(a—m) Z (@ = @) F(02(a-m)+25) } = 2 ¢ T (o2amm)

= Z) c(2m) — Z) 4" F(o9m)
« ¢(0) = F(o)
- - R

Therefore the equation (37) becomes

(n—a+1)e(0)+ 3 6&+0(1) (n — o0)

m2>1

Thus we have the formula (35). O

Next we will give the explicit computation of E(n). For this purpose we use
the following lemma.

Lemma 3.4 Let f, g be functions on T\ X, and n > a. Then we have the Green’s
formula

[ {41Tk9) = (TePadam(o) = Y- {F on)alorn) = f(Faonaaloliao)} mies),

where S,, is as in (31).

Proof. For a function f on I'\X we put

qoy .| fl) (veS,)
f(”)‘{ 0 (vel\X-=8,).

Then for f,§ we have

(40) (£, Trddrx = (Tr f, §)r\xs

18
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since Tt is self-adjoint on '\ X. Now we have

| (4(Teg) ~ (Te Nghdm(z)

-yl T Ms y e e

vESR e=(v,u)€E(T\X) e=(v,u)€E(I\X)
u€ES, ugSn

vy Mps M geme)

vESn | e=(vu)EE(N\X) (v) e=(vu)€E(T\X)
u€Sn uéSn

=2y X Zﬁjg(u) m(v) + 3 J(Fioa)m(Fien)g(Fionin)
veSn e=(v,u)€E(I'\X) i=1

uESn

-3 2 Zaf(u) g(v)m(v)—im(kien)f(,gignﬂ)g(kio_n)
vE€ESn | e=(v,u)eE(T\X) pa

ueSy

_ /5 X F(Trg) — (Tr f)gtdm(v)

+Z f(Riop)m(Fien)g(Rion + 1) z_: m(kien) f(Rion1)9(Rioy)-

i=1

Here from the definition of f,g and (40), it follows that

[ F(@g) — (@ prarame) = [ {f(Tr0) — (1r)ddm(v) =0,

so we have the assertion. O

For functions f, g on I'\X, let us define the inner product (-, -)s, by

(s, = [ f-gdm(v),

where S, is as in (31). From Lemma 3.4 we will derive the inner product formula
for the Eisenstein series on S,. Using this formula we can give the explicit
computation of

(41) E(n)= Ej:/n g}&f (/_% h(r)Ei(g,% +ir)E(g, % — z'r)dr) dg.

4mq o
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Proposition 3.2 Let ®(s) be the scattering matriz for T' and ¢(s) be its deter-
minant det ®(s). Then we have

(42)  E(m)=p (n + é) o(0) - % /_:— h(r)% (% vir)dr

+ Trq>(%) (%C(O) + :Z; c(2m)) +o(l) (n— oo).
@ o) =(u- Tr@(%)) (% q0)+ S c(2m))

m=1

1w g’(l ) dr - !
+47r./—_f—h(r)<p 2+zr dr — p a+q~1 <(0).

log q

Proof. We will apply f = Ei(g,5),9 = E]-(g,s/) (s,s € C) to Lemma 3.4. By 9)
we have E;(kj0,,s) = 6uq™ +<.,9,~1(5)q"(1_s) (n > a). From Theorem 2.1 we see that
the measure m(en) (n > a) is given by g~ =2+ (see (M2, p. 117 (5)]). Hence if
we put s =0+ ir,s =8§=o0—ir(o,r € R), we have the following inner product
formula

(Ei('v s)’ Ej(" S))Sn

et Jijq(nﬁ—l)(%-l) _ f:l @il(S)SOjl(g)qn(l_%) N Lp]‘,'(g)q("-H)z" _ wij(S)q"(”Zir)
q gl —1 g* —1 ’

whenever (E;(-,s), Ej(-,s))s, is well defined and s = 5 # 1/2. If we set the
column vector £(g,s):= (E1(g,8)s " » E,.(g,s)), this inner product formula may
be written in the matrix form as

(44) (E(5)," €, 8))sn
— qa—l q(n+1)(20—1) - ‘I’(s)@(é)q"(l—%) N Q)(:S‘)q(‘ﬂ+1)21r _ q)(s)qn(—hr)
qz"“ —1 qur —1
_ qa—-l q(n+l)(2¢r—l) _ q(n+1)(l—2a) N q1—2a _ @(5)(1)(3) qn(l—2a)
q20—1 -1 q2a—1 —1
P(5)gnt1%r — o(s)g"-%n)
+ . .
qur —~1

Next we must evaluate this formula on the line Re(s) = 1/2. For s = o+ir (0,7 €
R) we have

q(n+1)(2a—l) _ q(n+1)(l—2a')

lim
(,1_)5 q2¢7——l -1

- lim 2(n + 1)(log q) (q(n+1)(2a—-l) + q(n+1)(l—-2a))
=3 2(log q) ¢

= 2(n+1)
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On the other hand, the functional equation ®(3 +ir)®(3—ir) = (r € R) implies

(. 1 N\ & 1 . (L
(D(§+zr>-<1) (5—}—11")—(1)(5—21“)-@ (5—17).

Using these equations, we obtain

g%~ 8(5)0() i)

q20—1 -1

lm
0’-—)2

1 /1 . (1.
——I—E—g——qq)(§+zr)¢’ (§+zr>.

Hence on Re(s) = 1/2 the inner formula (44) is given by

(€

1 ) 1
— a—1 1] — —— - - _1(_ >
q (2n+ logq®<2+zr>¢> 2+zr

(I)(% _ i,,.)q(n—irl)?ir - @(% + ,L'T)qn(—%r))

zr),tg( — —ir))s,

+ q2ir —1

Therefore we have
ad 1 . 1 .
Z/ Ei(g, = +ir)E(g, = —r)dr
2
Tr(€ ( i), "E(- ,— —ir))s,

1 "1 [0} 1 _ (n+1)2ir _ P(L . n(—2ir)
(2n +1 PA(Z4+ir)+Tr (3 —ir)g _ (3+r)q ’
1 2ur
ogq p \2 @ — 1

I

Il

by using ¢(s) = det ®(s) and

—(s) Tr ®'(s) @7 (s).
Now we consider the matrix form integral

logq [F5 ® (% _ ir) q(n+l)2ir _® (% + ir> qn(—Zir)
— h(r) -
A _om q21r —1

log q

I(n) = dr.

—r) gtD2r P (1
B = BT [ i) it W)qiji 2 Gy,

logg

1Y — @ (L +4r) o2
B = B[ °() qu,(ff;r)q .

logg
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then I(n) = I(n) + I2(n). Recalling Theorem .'.2 we move the contour in the
integration I;(n) to Im(r) = b, where b is positi e and sufficiently small. Put

C]:{TEC‘-— T < Re(r) <
log q

then I;(n) is equal to

o (1
Li(n) = logg h(r)— (2)d,+o\'q—2(n+l)b)

ar Jou gt —1

log ¢ 1 , 2 ~2(n+1)b
- q)(—) \ mr e+ O

ELo(5) [0 Sty w0

- %@(%) (c(o)+2;}(;zm)) to1) (n— o),

since |¢*"| <1 on C,. Similarly we mov: the contour in the integration I(n) to

Im(r) = —b, where b is as above. Put

T T
= — < e < —_ [ =—b ’
Cs {r € (Cl ogq = Fe(r) < Tog g n(r) }

we have

1 @ (3 om
Ln) = _Z_g?;‘l Czh(r)—q—ﬁg%)—l-dr-i—((; 2nb)

_ log q @(%) /02 h(r) (Z g ~21'mr) dr + O(g~™™)

4 m>
= 3o(3) T +ols (n o)

since |¢¥7|>1 on Cy and A(r) = h(=r)(r < C). Therefore we have

I(n) = <1>(%) (%c(o) s c(2m)) +o(1)

m>1
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Combining the above results, the expression E(n) is computed as

1 e 1 ¢ /1
E(n) = _‘E-rﬁ ) ((2n+1)p—logq%<§+z7')>dr

log q

+ Trq)(%) (——c (0)+ > c(2m ) o(1)

m>1

’

]- 1 log g 419 1
= p(2n+1)=c(0) — — h(r) 2 (=
#(2n +1)5¢(0) 4“/-#;—5 (T)so(2

+ Tr@(%) ( 0)+3 ¢ 2m)) (1).

m>1

+r)dr

Hence we finally obtain (42). From (35) and (42), we also obtain (43). d

From (32), Proposition 3.1 and Proposition 3.2, We finally obtain explicitly
the Selberg trace formula for I'( A).

Theorem 3.2 Let g be an odd prime power and T = I'(A) (A € F,[t], deg(A) =
a>1). Assume that the sequence c(n) € C (n € Z) satisfies ¢(n) = ¢(—n) and
(16): Zq le(n)| < co. Then we have the following formula:

ne€Z
M
(45) 2 hra
(46) - ‘l(I‘\X)k(O)
(47) +oy sl g
{P}ePr I=1 q =
(48) + (u -Trd (%)) (-;— c(0) + "i:l c(2m)>
(49) + ;}; I : h(r)% (% + ir) dr
(50) - p (a + qi 1) <(0).

Furthermore we will investigate the following integral, which is the contribu-
tion of the continuous spectra in the trace formula:

1/@ o 1 .
— h(r)—(= + ir)dr.
ey LGRS
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Since from Theorem 2.2 ¢(s) is a rational function in ¢**, we now put

25 _ 25 _ (25 _
o(s) = 1 i qal)(q2 qa2) (q2 9%m)
(4% — gb1)(g* — qbs) - -~ (¢** — qba)
where ¢ is a constant and assume the right hand side is written to be irreducible.
Then we have

(51)

Lemma 3.5 The moduli of a;,b; (i =1,--- ,m;j =1,--+ ,n) are not equal to 1.

Proof. Recall that ¢(s) is holomorphic on the line Re(s) = 1. The functional

equation ®(3+1r)®(2 —ir) = I (r € R) implies that ¢(s) is non-zero on Re(s) =
1/2. Hence we have the assertion. O
Lemma 3.6 Let ¢(s) be written as (51). Then we have

= [ M EG i

(Z(Z Mty 3 ZC(QZ))

laif<1 =0 lai|>1 =1 a;
- ( S (enp) ~ ¥ Zc(j‘)),
Ibjl<1 =0 [bji>11=1 "3

where a;,b; are as in (51).
Proof. The equation (51) implies

£ (s) = i 2(logq)g** i 2(log g)¢*

@ o 9* —qai o ¢t —gb’

so it suffices to consider the integral
2s

logq oga 1 .
(52) el h(r)qZS — qadr (s = 3 + ir),

“logq

where a € C satisfies |a| # 1. Change the variable r here to z = ¢, then the
above integral (52) is given by

1 z ‘
— d
2mi /51 h(z)z2 —a

where h(r) = ) ¢(n)z" and S' = {z € C||z| = 1}. By simple calculation it is

computed as

g:c@l)a' (la] < 1)
(la| > 1).
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Therefore we have the assertion. O

By using the functional equation ®(s)®(1 —s) = I, we see easily the following
lemma:

Lemma 3.7 Assume that ¢(s) ts written as (51). Then {¢** — qa; |a; # 0,1 =
1,2,--- ,m} and {¢* —qb; | b; # 0,5 = 1,2,--- ,n} are one-to-one correspondent
in such a way that the term g** — qa(a # 0) in the numerator corresponds to the
term ¢** — qb(b = 1/a) in the denominator.

4 Selberg zeta function

As before let ' be a principal congruence subgroup I'(A) (A € [F,[t], deg(A) > 1).
In this section we define the Selberg zeta function attached to I' and obtain its
determinant expression for 7Tr. As before denote the set of primitive hyperbolic
conjugacy classes of I' by Pr. For {P}r € Pr, let us put N(P) = sup{|\|% | X
is an eigenvalue of the matrix P }. In the present case since I C PGL(2,[,[t]),
we see that N(P) = ¢*8F where deg P is as in Lemma 2.1. Then the Selberg
zeta function Zr(s) (s € C) attached to I' is defined by

(53) Zr(s):= I (1-N(P)™)
{P}rePr
We will apply the trace formula in Theorem 3.2 for the study of Zr(s). We
take the following function ¢(n,s)(n € Z,s € C) as the test function ¢(r) in
Theorem3.2:

_ [ —(logg)g=)  n£0
(54) c(n,s) = { 0o n—0,

-1

where s is fixed with Re(s) > 1. Then for Re(s) > 1 the function ¢(n,s) satis-
fies the required conditions of Theorem 3.2. By direct computation its Fourier

transform h(z, s) is given by
d d 1
h(z,s) := E ,8)2" = —1 .
(2,5) n:_ooc(" )z ds og - \/q(z_*_z—l)q—-s + g2t

In the trace formula the contribution of the identity (46) is computed as

wol(T\ X )k(0) = vol(F\X)Q;—IE(i- log(1 — q~%*).

The contribution of the hyperbolic classes (47) is precisely equal to the logarith-
mic derivative of the Selberg zeta function Zr(s):

>, d
~logg >, degPZq_sld"gP = — log Zr(s).
{P}rePr I=1 ds
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The contribution of (48) becomes

1 o ”—TT(I)(%) d 2541
(y—TTQ(—i)):L;c@m,o)—————Q——Eglog(l—q ).

As for the contribution of the continuous spectrum (49), we have from Lemma
3.6 and Lemma 3.7 that
!

L [re ﬁ(l )
471_/ h(r)@ 2+zr dr

R
log g

- &, (21
Dt R Sl Ph k.
[bjl<1 I=1 [b;]>1 1=1 bj
d —2s+1 d ~2s413—1
= Z E—log(l -9 b;) — Z Eflog(l —-q b)),
lb;l<1 % b [>1 &5

where ¢(s) is as in (51). Combining the above results, the Selberg trace formula
under the function ¢(n, s) defined by (54) yields the following;:
M d

st

n=1

—-1d
= vol(F\X)—q—é-—E log(1 — ¢~2)

log(l _ )\"q—s + ql-Zs)—l

d
+ T log Zr(s)

u— T'r“I’(%) d st
- Td—slog(l—q )
d 2 d 241
+ > —log(1—¢ BHEY~ > —log(1—¢ 2o,
Ib, <1 by 1>1

Since Zr(s) — 1 as Re(s) — oo, this equation implies

M
H(]- - /\nq—s +q1—23)—1

n=1

— (1 _ q—Zs)uol(F\X)Y;—‘

X Zp(s)

u=Tr %)
x (L—g @)~

H (1 _q—2s+1bj) H (1 ~q”25+1b;1)_1.

Jbil<1 lbs|>1
Now we define the determinant function for Ty by

(55) det (Tt, s) := detp(TT, s) - detc(Tt, ),
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where

M
detp(Tr,s) := detp(l — Trq™" + ¢"%) = [[(1 = Aug™® + ¢~ %),

n=1

dete(Tr, s) 1= H (1- q_zs"'lbj) H (1- q"2‘+1b]-"1)_1.

lbyl<1 Jbj>1
and b; is as in (51). We finally obtain the following:

Theorem 4.1 Let q be an odd prime power and T' = ['(A) with deg(A) > 1.
Then the Selberg zeta function Zp(s) attached to T has the Sollowing determinant
erpression:

(56) Ze(s)™ = (1= g)¥(1 — q) *det (T, ),

where x = vol(T\X)%3, p:= 177 (Iu - @(%)) and I, is the p x p-identity
matriz.

Remark. If (s) is written as (51), the factor ¢2° —gb; with |bi] > 1 (resp. |b;] < 1)
corresponds to the pole of ¢(s) on Re(s) > 1/2 (resp. Re(s) < 1/2 ). Hence the
definition of det(7t, s) denotes the product over the poles of (s) (or the zeros
of ¢(s) if we use Lemma 3.7). See also the determinant of the Laplacian with
respect to a Riemann surface of finite volume in [E1].

In the present case I' = I'(A), from Theorem 2.2 we see that @(s) has no
exceptional poles, i.e., ¢(s) is holomorphic on Re(s) > 1/2 except for simple
poles at s = 1+ nmi/logq (n € Z). Namely o(s) has a factor q*°* — g% with
multiplicity one. Moreover by using the results in [L1] [M2], Zr(s) is computed
as follows:

Corollary 4.1 Let q be an odd prime power and I' = I'(A) (A € E[t]) with
deg(A) =a>1. Welet A= A{AL --- A%be the decomposition of A into distinct
irreducible polynomials, where deg(A;) = a;, Yoy €ia; = deg(A). Moreover let
det’D(Tp,s) = s, (1 — Ang™® + ¢'=2), where the product is taken over discrete
spectra of Tr except for two trivial eigenvalues +(q¢+1). Then we have

Zp(s)_l = (1 — q"23)x(1 _ q—25+l)—p
X (1=¢"7%) detp(Tr,s) T] (1—q>*')),
I651<1

where b; is as in (51) and

3a {

- 4q 2
X = (q+1)(q—l)izl(1 )

e (e RS | ((ET1

q—1i=1

]
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Proof. By the results in [M2, p. 117], the number of cusps p = p(I'} and the total
volume of '\ X is computed as follows:

2a {

po= 2 ]](1—q4“)

q_ltzl

2q30 l o
vol(T\X) = ———— 1—q ).
O TN A
The function ;;(s) in Fourier series expansion of Ej(g, s) at a cusp &; is computed
in [L1, p.240 (2.8)]. Here I'(A) is a normal subgroup of I'(1), so we see that
Tr ®(1/2) is equal to g - ¢11(1/2). Since

—-2s

—-a a—sl_q d ' — a8\ —
pu(s) = ¢ (¢ = Dg T amg T =797,

=1

we have 1
1 a —a;
TrfI><§)=——q E(1+q )

The two trivial discrete spectra +(q + 1) correspond to the pole of ¢(s) coming
from the factor ¢** — ¢%. Combining the above, we have this corollary. O

For example we will compute the Selberg zeta function for I'(¢). Since the
quotient graph I'(¢)\ X can be taken as the union of the vertex oo together with ¢+
1 ends, we see that there is no eigenvalues of the Laplacian except for +(g+1) (see
also [L1, p.256]). By using [L1, p.240 (2.8)], it is computed that the scattering

-1

matrix ®ry(s) is (¢4 1) x (¢ + 1)-matrix which entries are pu(s) = -————ng 2) in
q9° —9q

the diagonal part and ¢11(s) +1 in the other part. So the scattering determinant

or((s) := det @p((s) becomes
q(q2s _ 1)
q2s . q2 ‘
In Corollary 4.1 we have x = g and p = ¢+ 1 for I'(¢). Hence we obtain

(1—¢ )0 —¢)
(1 . q1—25)q+1

ere(s) = — ((g+ Dpnls) +q) = —

Zrw(s)™! =
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