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Di�erence formula for Jacobi functions and

the Calder�on identity

By

Takeshi Kawazoe

x1. Introduction

We briey recall the continuous wavelet transform and the corresponding
Calder�on identity. Let H2(R) denote the subspace of L2(R) consisting of
all L2 functions f on R such that f̂(�) = 0 if � < 0. We �x  2 L1(R)
satisfying the so-called admissibility condition:

c =
Z
1

0

j ̂(�)j2

�
d� <1;

and we de�ne the wavelet transform W on H2(R) by

(W f) (t; �) =
Z
1

�1

f(x)e�t=2 � (e�tx� �)dx (t; � 2 R): (1)

Then for any f 2 H2(R),

f(x) =
1

c 

Z
1

�1

Z
1

�1

(W f) (t; �)e
�t=2 (e�tx� �)dtd�: (2)

This inversion formula is equivalent to the so-called Calder�on identity: For
any f 2 H2(R),

f =
Z
1

0
Qt �Q

�

t (f)
dt

t
; (3)

where

Qt(f) = f �  t;  t(x) =
1

t
 
�
x

t

�

and Q�

t is the adjoint operator of Qt (cf. [M, p.16]). The formal proof of
(2) (or (3)) is carried out by taking Fourier transforms at both sides and the
precise one can be fond in [FJW, Theorem 1.2].
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In [GMP] Grossmann-Morelt-Paul pointed out a group-theoretical inter-
pretation of the wavelet transform. Let G0 be the ~A ~N -group consisting of
all matrices of the form

~at~n� =

 
et=2 0
0 e�t=2

! 
1 �
0 1

!
=

 
et=2 �et=2

0 e�t=2

!
(u; � 2 R):

Then dtd� is a left invariant Haar measure on G0 and, if we de�ne

(T (~at~n�)f) (x) = e�t=2f(e�tx� �); f 2 H2(R);

(T;H2(R)) is an irreducible unitary representation of G0. In this scheme, we
can rewrite (1) and (2) as

(W f) (t; �) = hf; T (atn�) i

and

f(x) =
1

c 

Z
~A

Z
~N
hf; T (~at~n�) i (T (~at~n�) ) (x)dtd�; (4)

where h�; �i is the inner product of L2(R). This formula (4) means that T is a
square-integrable representation of G0 in the sence that the matrix coe�cient
hf; T (atn�) i is square-integrable on G0, so the theory of continuous wavelet
transforms is based on the one of square-integrable representations of locally
compact groups. We here note that G0 = ~A ~N is a subgroup of ~G = SL(2;R)
and T is a restriction of the limit of holomorphic discrete series ~T1=2 of ~G to
G0 (see (21)):

hf; T (~at~n�) i = hf; ~T1=2(~at~n�) i

and, as a representation of ~G, ~T1=2 is not square-integrable.
As I said in the �rst paragraph, we can prove (4) by taking Fourier trans-

forms at both sides, that is, by using Fourier analysis on ~N �= R. The aim of
this paper is to replace the Fourier analysis on R by Fourier series on T. Ac-
tually, this replacement is done by changing ~G = SL(2;R) to G = SU(1; 1),
( ~T1=2; H

2(R)) to (T1=2; H
2(T)), and ~N to the maximal compact subgroup

K �= T of G (see x4). As a consequence, we expect a wavelet transform
associated to the KA-subset of G: For any f 2 H2(T),

f(x) = c
Z
K

Z
A
hf; T1=2(k�at) i

�
T1=2(k�at) 

�
(x)D(t)d�dt; (5)
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where dg = D(t)d�dt�0 is a Haar measure on G = KAK. If this formula
(5) is true, the matrix coe�cients hf; T1=2(k�at) i are square-integrable on
KA and they satisfy orthogonality relations. However, since T1=2 is not
square-integrable on G, we have some di�culties: How to �nd  for which
hf; T1=2(k�at) i is square-integrable on KA with respect to D(t)d�dt? How
about their orthogonality relations? In order to construct a  satisfying
these properties we shall condsider di�erences of matrix coe�cients of T1=2
(see (19), (16), and (17)). Then, these di�erences are square-integrable on
KA and they satisfy some orthogonality relations. Hence, as we expected,
we have theKA-wavelet transform (5) onH2(T) modulo a �nite dimensional
subspace.

The organization of this paper is the following. In x2 we de�ne Jacobi
polynomials (and functions) and we obtain some integrals. We de�ne the
desired di�erences of Jacoi functions in x3. The di�erence formulas and their
orthogonality relations are given by Theorems 1, 2, and 3. In x4 we recall
the representation theory of SU(1; 1) and the isomorphic group SL(2;R).
We write down matrix coe�cients of the holomorphic discrete series and the
limit of holomorphic discrete by using Jacobi polynomials. In x5 we generalize
the Calder�on identity (3) on R. Especially, we introduce the one on T and
we obtain some identities on H2(T) associated to the di�erences of Jacobi
polynomials (see Theorem 5). Finally, in x6 we give a group-theoretical
interpretation of the Calder�on identities obtained in x5. The identity on
H2(R) yields the AN -wavelets transform (4) and the one on H2(T) does the
desired KA-wavelet transform (5) modulo a �nite dimensional subspace of
H2(T) (see Theorem 7).

This type of transforms is also studied in [AV1,2] for the case of SO(3; 1).

x2. Notation.

We de�ne the classical Jacobi polynomial Gn(�; ;x) (n = 0; 1; 2; : : : ;  6=
�1;�2; : : : ;�n+ 1) by

Gn(�; ;x) = 2F1(�n; �+ n; ;x)

=
�()

�( + n)
x1�(1� x)��

dn

dxn

�
x+n�1(1� x)�+n�

�
; (6)
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where 2F1 is the hypergeometric function, and we put

R(�;�)
n (x) = Gn

�
�; � + 1;

1� x

2

�
= 2F1

�
�n; n+ �;� + 1;

1� x

2

�
; (7)

where � = � + � + 1. If �; � > �1, then R(�;�)
n (x) is a polynomial of degree

n satisfying R(�;�)
n (1) = 1 and

R(�;�)
n (�1) =

�(�+ 1)�(��)

�(�+ n+ 1)�(�n� �)
: (8)

Their orthogonality relations are given by

Z 1

�1
R(�;�)
m (x)R(�;�)

n (x)(1� x)�(1 + x)�dx = �mnA
(�;�)
n ; (9)

where

A(�;�)
n =

2��(�+ 1)�(� + 1)

�(�+ � + 2)

�
(n+ �)�(� + 1)�(� + n+ 1)�(n+ 1)�(�+ 1)

(2n+ �)�(�+ n+ 1)�(� + 1)�(n+ �+ 1)

(cf. [FK2, x2]). Moreover, doing an integration by parts, from (6) we have

Z 1

�1
xkR(�;�)

n (x)(1� x)�(1 + x)�dx = 0 (0 � k � n� 1) (10)

and if � > 0,

I(�;�)n =
Z 1

�1
R(�;�)
n (x)(1� x)�(1 + x)��1dx

= 2�+�(�1)n
�(� + 1)�(n+ 1)�(�)

�(n+ �)
: (11)

We de�ne the Jacobi function R(�;�)
� (� 2 C) by

R(�;�)
� (x) = 2F1(��; �+ �;�+ 1; (1� x)=2) (12)

= C(�;�)
�

1X
n=0

D(�;�)
�;n

�
1� x

2

�n
;
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where

C(�;�)
� =

�(� + 1)

�(��)�(�+ �)
;

D(�;�)
�;n =

�(��+ n)�(�+ �+ n)

�(� + 1 + n)�(n+ 1)
: (13)

In what follows we normalize R(�;�)
� as

�(�;�)� (r) = B(�;�)
� (1� r2)(�+1)=2r�R(�;�)

� (1� 2r2); (14)

where

B(�;�)
� =

1

�(�+ 1)

vuut�(� + �+ 1)�(�+ � + �+ 1)

�(�+ 1)�(�+ � + 1)
: (15)

x3. Di�erence formula for Jacobi functions.

We consider di�erences of �(�;�)� (r) (see (14)) with respect to � and �.
Then we deduce their square-integrability and orthogonality relations.

We �rst prove the following formula.

Theorem 1 (Di�erence Formula). Let Q(x) =
q
x(x+ 1).

(i) If � > 0; � > �1, and �(�� 1) � 0, then

Q(�+ �)�(�+1;�)� (r)�Q(�+ � + �)�(��1;�)� (r)

= Q(�� 1)�
(�+1;�+2)
��2 (r)�Q(� + �+ 1)�(��1;�+2)� (r);

(ii) If � > 0; � > �1, and �(�+ 1) � 0, then

Q(� + �+ 1)�(�+1;�)� (r)�Q(�+ 1)�
(��1;�)
�+2 (r)

= Q(�+ � + �+ 2)�(�+1;�+2)� (r)�Q(�+ �)�(��1;�+2)� (r)
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Proof. We shall prove (i). As for (ii) we can apply the exactly same process
in (i) (cf. [K, Lemma 4.1]). For simplicity, we put

q1 = Q(�+ �); q2 = Q(� + � + �); q3 = Q(�� 1); q4 = Q(� + �+ 1):

We substitute the normalized Jacobi functions at both sides with (14) and
their expansions of (12). We compare the coe�cients of (1�r2)(�+1)=2(�r)��1

r2n in each side. Then, to obatin the desired equation, it su�ces to show
that

q1B
(�+1;�)
� C(�+1;�)

� D
(�+1;�)
�;n�1 � q2B

(��1;�)
� C(��1;�)

� D(��1;�)
�;n

= q3B
(�+1;�+2)
��2 C

(�+1;�+2)
��2

�
D

(�+1;�+2)
��2;n�1 �D

(�+1;�+2)
��2;n�2

�
�q4B

(��1;�+2)
� C(��1;�+2)

�

�
D(��1;�+2)
�;n �D

(��1;�+2)
�;n�1

�
:

Furthermore, from (13) and (15) this equation is equivalent to

q1
�+ �+ � + n

�+ n
� q2

��+ n� 1

n

= (��+ n� 1)

 
(��+ n)(�+ � + � + n)

� + n
� (n� 1)

!

+(�+ � + � + n)

 
(� + n� 1)�

(��+ n� 1)(�+ �+ n)

n

!
:

The right side equals

(��+ n� 1)

 
(��+ n)(�+ � + � + n)

� + n
�

(n� 1)n

n

!

+(�+ � + � + n)

 
(�+ n� 1)(�+ n)

�+ n
�

(��+ n� 1)(�+ �+ n)

n

!

=
�+ � + � + n

�+ n
(q1 + 2(�+ n)(��+ n� 1))

�
��+ n� 1

n
(q2 + 2n(�+ � + � + n))

= q1
�+ �+ � + n

� + n
� q2

��+ n� 1

n
:

This completes the proof of (i).
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We denote

�1�
(�;�)
� (r) = Q(�+ �)�(�+1;�)� (r)�Q(�+ � + �)�(��1;�)� (r) (16)

and

�2�
(�;�)
� (r) = Q(� + �+ 1)�(�+1;�)� (r)�Q(�+ 1)�

(��1;�)
�+2 (r): (17)

Theorem 2 (Square-integrability). Let �; � > �1 and � = 0; 1; 2; : : :.

(i)
Z 1

0

�
�(�;�)� (r)

�2 4r

(1� r2)
dr =

2

(2�+ �+ � + 1)
;

(ii)
Z 1

0

�
�1�

(�;�)
� (r)

�2 4r

(1� r2)2
dr = 2(2�+ � + 1);

(iii)
Z 1

0

�
�2�

(�;�)
� (r)

�2 4r

(1� r2)2
dr = 2(2�+ � + 3):

Proof. (i) is clear from (9) and (14). We shall prove (ii). As for (iii) we can
apply the exactly same process in (ii) (cf. [K, Lemma 4.2]). As before, we
put

d3 = Q(�� 1) and d4 = Q(� + �+ 1):

The di�erence formula (i) in Theorem 1 yields that

I =
Z 1

0

�
�1�

(�;�)
� (r)

�2 4r

(1� r2)2
dr

= 2�(�+�+1)
Z 1

�1

�
d3B

(�+1;�+2)
��2 R

(�+1;�+2)
��2 (x)2�1(1� x)

� d4B
(��1;�+2)
� R(��1;�+2)

� (x)
�2
(1 + x)�+1(1� x)��1dx:

We here note that�
R
(�+1;�+2)
��2 (x)

�2
(1 + x)�+1(1� x)�+1

= R
(�+1;�+2)
��2 (x) �

R
(�+1;�+2)
��2 (x)� R

(�+1;�+2)
��2 (�1)

(1 + x)
� (1 + x)�+2(1� x)�+1

+R
(�+1;�+2)
��2 (x)R

(�+1;�+2)
��2 (�1) � (1 + x)�+1(1� x)�+1:
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Since
R
(�+1;�+2)
��2 (x)� R

(�+1;�+2)
��2 (�1)

(1 + x)

is a polynomial of degree < � � 2 and R
(�+1;�+2)
��2 (x) satis�es (10) and (11),

we haveZ 1

�1

�
R
(�+1;�+2)
��2 (x)

�2
(1 + x)�+1(1� x)�+1dx = R

(�+1;�+2)
��2 (�1)I

(�+1;�+2)
��2 :

Similarly,

Z 1

�1
R
(�+1;�+2)
��2 (x)R(��1;�+2)

� (x)(1 + x)�+1(1� x)�dx

= R
(�+1;�+2)
��2 (�1) � I(��1;�+2)�

andZ 1

�1

�
R(��1;�+2)
� (x)

�2
(1 + x)�+1(1� x)��1dx = R(��1;�+2)

� (�1)I(��1;�+2)� :

Thereby,

I = 2�(�+�+3)
��
d3B

(�+1;�+2)
��2

�2
R
(�+1;�+2)
��2 (�1) � I

(�+1;�+2)
��2

�8d3d4B
(�+1;�+2)
��2 B(��1;�+2)

� R
(�+1;�+2)
��2 (�1) � I(��1;�+2)�

+4
�
d4B

(��1;�+2)
�

�2
R(��1;�+2)
� (�1) � I(��1;�+2)�

�

= 2�(�+�+3)d3B
(�+1;�+2)
��2 R

(�+1;�+2)
��2 (�1)

�
�
d3B

(�+1;�+2)
��2 I

(�+1;�+2)
��2 � 4d4B

(��1;�+2)
� I(��1;�+2)�

�
+2�(�+�+1)d4B

(��1;�+2)
� I(��1;�+2)�

�
�
�d3B

(�+1;�+2)
��2 R

(�+1;�+2)
��2 (�1) + d4B

(��1;�+2)
� R(��1;�+2)

� (�1)
�

= I1 + I2:

After doing a tedious calculation with (8), (11), and (15), we have

I1 = 0 and I2 = 2(2�+ � + 1):

This completes the proof of (ii).
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Theorem 3 (Orthogonality). Let �; �0; � > �1 and �; �0 = 0; 1; 2; : : :.

(i) If � 6= �0, then

Z 1

0
�(�;�)� (r)�

(�;�)
�0 (r)

4r

(1� r2)
dr = 0

(ii) If j� � �0j � 2 and �+ � = �0 + �0, then

Z 1

0
�i�

(�;�)
� (r)�i�

(�0;�)
�0 (r)

2r

(1� r2)2
dr = 0 (i = 1; 2):

Proof. (i) is clear from (9) and (14). We shall prove the case of i = 1 in (ii).
As for i = 2 we leave it to the readers (cf. [K, Lemma 4.3]). We may suppose
that � > �0 (�0 > �), and we �rst form the integral in (ii) as

Z 1

�1

�
c1R

(�+1;�)
� (x)(1� x)� c2R

(��1;�)
� (x)

�
� P�0(x)

�(1 + x)��1(1� x)(�+�
0)=2�1dx;

where

P�0(x) = (1 + x)�(��1)=2(1� x)�(�
0
�1)=2�1�

(�0;�)
�0 (

q
(1� x)=2)

= c01R
(�0+1;�)
�0 (x)(1� x)� c02R

(�0
�1;�)

�0 (x):

The di�erence formula (i) in Theorem 1 yields that

P�0(x)(1 + x)�1

is a polynomial with degree �0. Since

R(�+1;�)
� (x)(1� x) � P�0(x) � (1 + x)��1(1� x)(�+�

0)=2�1

= R(�+1;�)
� (x)

�
P�0(x)(1 + x)�1 � (1� x)(�

0
��)=2�1

�
(1 + x)�(1� x)(�+1)

and

�0 � �

2
� 1 =

�� �0

2
� 1 � 0; �0 +

�0 � �

2
� 1 =

�+ �0

2
� 1 < �

9
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by the assumption on �; �0, we obtain from (10) that

Z 1

�1
R(�+1;�)
� (x)(1� x) � P�0(x) � (1 + x)��1(1� x)(�+�

0)=2�1dx = 0:

Similarly, since

R(��1;�)
� (x) � P�0(x) � (1 + x)��1(1� x)(�+�

0)=2�1

= R(��1;�)
� (x)

�
P�0(x)(1 + x)�1 � (1� x)(�

0
��)=2

�
(1 + x)�(1� x)(��1)

and

�0 +
�0 � �

2
=
�+ �0

2
< �;

we have
Z 1

�1
R(��1;�)
� (x) � P�0(x)(1 + x)��1(1� x)(�+�

0)=2�1dx = 0:

This completes the proof of (ii).

x4. SU(1; 1) and SL(2;R).

We briey recall the representation theory of SU(1; 1) and the isomorphic
group SL(2;R). Especially, we de�ne the holomorphic discrete series Th
(h 2 Z=2; h > 1=2) and the limit of holomorphic discrete series T1=2, and
then we give explicit forms of their matrix coe�cients (see [Sa] and [Su]
for general references). Then we understand that the normalization (14) of
R(�;�)
� is based on the matrix coe�cients of Th (see (19)).
Let G = SU(1; 1), the subgroup of GL(2;C) consisting of all matrices of

the form

g =

 
� �
�� ��

!
; j�j2 � j�j2 = 1:

Then
G = KAN and G = KAK;

where

K = fk� =
 
ei�=2 0
0 e�i�=2

!
; 0 � � < 4�g;

10
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A = fat =
 

cosh t=2 sinh t=2
sinh t=2 cosh t=2

!
; t 2 Rg;

N = fn� =
 

1 + i�=2 �i�=2
i�=2 1� i�=2

!
; � 2 Rg:

We denote the Haar measuresK, A, and N by dk� = (1=4�)d�, dat = dt, and
dn� = d� respectively, where d�; dt, and d� are Lebesgue measures. Then a
Haar measure dg on G is given by

dg =
1

2�
e2sdk dasdn� = D(t)dk�datdk�0 ; (18)

where 0 �  < 4�; s; � 2 R; 0 � �; �0 < 4�; t > 0, and

D(t)dt = sinh tdt =
4r

(1� r2)2
dr (r = tanh t=2):

Let Hh(D) (h > 1=2) denote the weighted Bergman space on the unit
disk D;

Hh(D) = fF : D! C;F is holomprphic on D and

kFk2h = �(2h� 1)�1
Z
D
jF (z)j2(1� jzj2)2(h�1)dz <1g;

and H1=2(D) the H2 Hardy space on D with norm kFk21=2 = limh!1=2 kFk2h.
By taking the boundary value functions on the unit circle T, H1=2(D) co-
incides with the H2 Hardy space H2(T) on T with L2-norm. We denote
by h�; �ih the inner product of Hh(D). Then an orthonormal basis fehn;n =
0; 1; 2; : : :g is given by

ehn(z) =

 
�(2h+ n)

�(2h)�(n+ 1)

!1=2

zn:

Let h 2 Z=2 and h � 1=2. For any g 2 G, we de�ne the operator Th(g) on
Hh(D) by

(Th(g)F )(z) = (�� + ��)�2hF

 
�z + �
��� + ��

!
; g�1 =

 
� �
�� ��

!
:

Then (Th;Hh(D)) is an irreducible unitary representation of G; the holpmor-
phic discrete sereis for h > 1=2 and the limit of holomorphic discrete series

11
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for h = 1=2. According to the above orthonormal basis, matrix coe�cients
hTh(g)ehn; ehmih (g 2 G) of Th are explicitly given as follows: For n � m,

hTh(g)ehn; ehmih
= e�i(m�+n�

0)hTh(at)ehn; ehmih

= e�i(m�+n�
0) 1

(n�m)!

vuut �(n+ 1)�(n+ 2h)

�(m+ 1)�(m+ 2h)

�(1� r2)h(�r)n�m2F1(�m;n+ 2h;n�m+ 1; r2);

where g = k�atk�0 , t > 0, and r = tanh t=2. For m > n, we replace n and m
by m and n respectively. Hence,

hTh(g)ehn; ehmih = e�i(m�+n�
0)�(n�m;2h�1)m (�r) (n � m): (19)

It is easy to see that

jhTh(at)ehn; ehmihj � j�(n�m;2h�1)m (�r)j � 1; (20)

and hTh(g)ehn; ehmih is square-integrable on G, equivalently, �(n�m;2h�1)m (r) is
square-integrable on (0; 1) with respect to 4r=(1� r2)2dr, if and only if h >
1=2. Furthermore, (19) and (20) are also valid for h 2 R and h � 1=2,
because of the analytic continuation of the irreducible representations of the
universal covering group of SU(1; 1).

The Cayley transform

� : G = SU(1; 1)! ~G = SL(2;R);

�(g) = C�1gC; C =
1p
2

 
1 1
i �i

!
;

gives an isomorphism between G and ~G. We put

~A = �(A); ~at = �(at) =

 
et=2 0
0 e�t=2

!

and

~N = �(N); ~n� = �(n�) =

 
1 �
0 1

!
:
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Let h 2 Z=2 and h � 1=2. For each function f on D we de�ne a function
Eh(f) on the upper half-plane C+ by

(Eh(f)) (z) =
p
�2�(2h�1)(z + i)�2hf(	�1(z));

where

	 : D ! C
+; 	(z) = C(z) = i

1 + z

1� z
;

is a complex analytic di�eomorphism of D onto C+. If we put Hh(C
+) =

Eh(Hh(D)), then Hh(C
+) (h > 1=2) is the weighted Bergman space on C

+

de�ned by

Hh(C
+) = fF : C+ ! C;F is holomprphic on C+ and

kFk2h = �(2h� 1)�1
Z
C+

jF (z)j2y2(h�1)dxdy <1g;
andH1=2(C

+) theH2 Hardy space onC+ with norm kFk21=2 = limh!1=2 kFk2h.
By taking the boundary value functions on R, H1=2(C

+) coincides with the
H2 Hardy space H2(R) on R with L2-norm. Here we put

~Th(g) = Eh � Th(��1(g)) � E�1
h (g 2 ~G):

Then ( ~Th;Hh(C
+)) is an irreducible unitary representation of ~G. Actually,

the operator ~Th(g) on Hh(C
+) is given by

( ~Th(g)F )(z) = (cz + d)�2hF

 
az + b

cz + d

!
; g�1 =

 
a b
c d

!
: (21)

Clearly fEh(ehn);n = 0; 1; 2; : : :g is an orthonormal basis of Hh(C
+) and

h ~Th(g)Eh(ehn); Eh(ehm)ih = hTh(��1(g))ehn; ehmih (g 2 ~G): (22)

x5. Calder�on identity.

We formulate the Calder�on identity on subspaces of L2(R) and L2(T).
Especially, we introduce some identities associated to the di�erences of Jacobi
polynomials.
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Let (S; dm) be a pair of a subset S of R and a positive measure dm on S,
and W a measurable subset of R. Let ~Qt (t 2 S) denote a Fourier multiplier
de�ned by �

~Qt(f)
�
^

(�) = ~qt(�)f̂(�)

and suppose that for � 2 ~W ,

j~qt(�)j � C and
Z
S
j~qt(�)j2dm(t) = 1; (23)

where C does not depend on t. Let L2
~W
(R) denote the subspace of L2(R)

consisting of all L2 function f on R such that supp(f) � ~W . Then for any
f 2 L2

~W
(R),

f =
Z
S

~Qt � ~Q�t (f)dm(t); (24)

where ~Q�t is the adjoint operator of ~Qt. The formal proof follows by taking
Fourier transforms at both sides;

Z
S
( ~Qt � ~Q�t (f))

^(�)dm(t) = f̂(�)
Z
S
j~qt(�)j2dm(t) = f̂(�) (� 2 ~W );

and the precise one follows as in [FJW, Thorem 1.2]. As an example of (24),
we have (3):

Remark 4 (Calder'on identity on R). We take (S; dm) = ((0;1); dt=t) and
~W = (0;1). We �x  2 L1(R) satisfying

Z
1

0
j ̂(�)j2d�

�
= 1 (25)

and we de�ne

~Qt(f) = f �  t;  t(x) =
1

t
 
�
x

t

�
(t > 0):

Since ~qt(�) =  ̂t(�) =  ̂(t�), it follows that

j~qt(�)j � k k1 and
Z
S
j~qt(�)j2dm(t) =

Z
1

0
j ̂(t)j2dt

t
= 1:
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Therefore, ~qt satis�es (23), and the Calder�on identity (3) onH
2(R) = L2

~W
(R)

follows from (24).

Next we shall consider the case of T. Let (S; dm) be as above, and W a
subset of Z. Let Qt denote a Fourier multiplier de�ned by

(Qt(f))
^ (n) = qt(n)f̂(n)

and suppose that for n 2W ,

jqt(n)j � C and
Z
S
jqt(n)j2dm(t) = 1; (26)

where C does not depend on t. Let L2
W (T) denote the subspace of L2(T)

consisting of all L2 function f on T such that supp(f) � W . Then for any
f 2 L2

W (T),

f =
Z
S
Qt �Q�t (f)dm(t); (27)

where Q�t is the adjoint operator of Qt. The formal proof follows by taking
Fourier series at both sides;Z

S
(Qt �Q�t (f))^(n)dm(t) = f̂(n)

Z
S
jqt(n)j2dm(t) = f̂(n) (n 2W );

and the precise one follows as in [FJW, Theorem 1.2].
Now, as an example of (27), we introduce some identities associated to

the di�erences of Jacobi polynomials (see (16) and (17)). We �x m 2 N and
� > �1. For t > 0 and n � m, we put

q�;1m;t(n) =
1q

2(2m+ � + 1)
�1�

(n�m�1;�)
m (t)

q�;2m;t(n) =
1q

2(2m+ � + 3)
�2�

(n�m�1;�)
m (t);

and Q�;i
m;t (i = 1; 2) the corresponding Fourier multipliers. We take (S; dm) =

((0; 1); 4t=(1� t2)2dt) and Wm = fn;n � mg. If we put H2
m(T) = L2

Wm
(T),

then H2
m(T) is the subspace of L2(T) consisting of all L2 function f on T
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such that f̂(n) = 0 if n < m. Then, (20) and Theorem 2 imply that each
q�;im;t satis�es (26) and hence, (27) yields the following.

Theorem 5 (Calder�on identities on T). Let m 2 N and � > �1. Then, we

have the following identities on H2
m(T):

Id =
Z 1

0
Q�;i
m;r � (Q�;i

m;r)
�

4r

(1� r2)2
dr (i = 1; 2):

x6. AN- and KA-wavelets. We give a group-theoretical interpretation of
the Calder�on identities ontained in x5.

AN -wavelets: Let  be as in Remark 4 and put

 �;t(x) =  t(x� �) =
1

t
 

 
x� �

t

!
:

Since �
~Q�t (f)

�
(x) = hf;  x;ti;

we can rewrite the Calder�on identity (3) as

f(x) =
Z
1

0

Z
1

�1

hf;  �;ti �;t(x)d�dt
t
:

In the scheme of the representation ( ~T1=2; H
2(T)) of ~G (see x4), it follows

that
 et�;et(x) = e�t=2

�
~T1=2(~at~n�) 

�
(x)

and thereby, for any f 2 H2(R),

f(x) =
Z
~A

Z
~N
hf; ~T1=2(~at~n�) i1=2

�
~T1=2(~at~n�) 

�
(x)dtd�: (28)

This gives a group theoretical interpretation of the Calder�on identity (3),
simultaneously, the continuous wavelet transform (2) (see [GMP]).

Remark 6. As we noted in x4, we can deduce the corresponding formula on
G = SU(1; 1). Let  be in L1(T) and suppose that E1=2( ) satis�es (25).
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Then for any f 2 H2(T),

f =
Z
A

Z
N
hf; T1=2(atn�) i1=2T1=2(atn�) dtd�: (29)

KA-wavelets: We shall consider the case of i = 2 in Theorem 5. Let
� = 0 (h = 1=2) and r = tanh t. Since

�2�
(n�m�1;0)
m (r)ein�

=
�
Q(m+ 1)�(n�m;0)

m (r)�Q(m+ 1)�
(n�m�2;0)
m+2 (r)

�
ein�

= Q(m+ 1)hT1=2(a�tk��)e1=2n ; e1=2m i1=2
�Q(m+ 1)hT1=2(a�tk��)e1=2n ; e

1=2
m+2i1=2

=
q
(m+ 1)(m+ 2)hT1=2(k�at)e1=2n ; e1=2m � e

1=2
m+2i1=2

= he1=2n ; T1=2(k�at)
�q

(m+ 1)(m+ 2)(e1=2m � e
1=2
m+2)

�
i1=2;

we see that for any f =
P
1

n=m ane
in� 2 H2

m(T),

�
(Q0;2

m;t)
�(f)

�
(�) =

1X
n=m

an
1q

2(2m+ 3)
�2�

(n�m�1;0)
m (r)ein�

= hf; T1=2(k�at) mi1=2;
where

 m =

vuut(m+ 1)(m+ 2)

2(2m+ 3)

�
e1=2m � e

1=2
m+2

�
:

Therefore, the identity in Theorem 5 implies that for any f 2 H2
m(T),

f =
Z
K

Z
A
hf; T1=2(k�at) mi1=2T1=2(k�at) mD(t)d�dt: (30)

Then (30) and the orthogonality relations (ii) in Theorem 3 yield the follow-
ing (see [K, Theorem 4.4]).

Theorem 7 (KA-wavelet transform). Let

 =
X

cm m;
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where the sum is taken over 0 � m �M;m 2 2N or 0 � m �M;m 2 2N+1,
and let k k20 =

P jcmj2. Then for any f in the L2-span of fe1=2n ; n � M +1g,

f =
1

k k0
Z
K

Z
A
hf; T1=2(k�at) i1=2T1=2(k�at) D(t)d�dt:

Theorem 8. Let  be as above. Then for any f 2 H2(T),

f =
1

k k0
Z
A

Z
N
hf; T1=2(atn�) i1=2T1=2(atn�) dtd�:

Proof. As noted in Remark 6, it su�ces to show that

Z
1

0
jE1=2( )

^(�)j2d�
�

= k k20: (31)

Proposition 9. Let notation be as above. Then,

Z
1

0
E1=2( m)

^(�)E1=2( m0)^(�)
d�

�
=

(
0 if jm�m0j � 2;
1 if m = m0:

Proof. Let � = 2h� 1 � 0 and recall that

Eh(e
h
n)
^(�) =

p
2

vuut �(n+ 1)

�(n+ 1 + �)
(�1)ne��(2�)�L(�)

n (2�)

(cf. [Sa, p.79]). Here L(�)
n is the Laguerre polynomial de�ned by

L(�)
n (x) =

exx��

n!

dn

dxn

�
e�xxn+�

�
; (32)

and we note that

L(�)
n (0) =

�(n+ 1 + �)

�(n+ 1)�(� + 1)
:
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Since L(0)
n (0) = 1, it is easy to see that, if jm�m0j � 2, say m � 2+m0, then

e����E1=2( m0)^(�)

�

is a polynomial of degree m0 + 1 < m. Therefore, the desired integral must
be 0 by the orhogonality relations of the Laguerre polynomials.

Let m = m0 and � > 0. We de�ne

 h
m =

vuut(m+ 1)(m+ 2)

2(2m+ 3)

�
ehm � ehm+2

�
:

Then (32) and the similar argument used in the proof of Theorem 2 yield
that Z

1

0
jEh( 

h
m)

^(�)j2 1

(2�)��
d�

=
(m+ 1)(m+ 2)

2(2m+ 3)
� 2
Z
1

0
e�����1

�
0
@
vuut �(m+ 1)

�(m+ 1 + �)
L(�)
m (�)�

vuut �(m+ 3)

�(m+ 3 + �)
L
(�)
m+2(�)

1
A
2

d�

=
(m+ 1)(m+ 2)

(2m+ 3)
�(�)

�
0
@ �(m+ 1)

�(m+ 1 + �)
L(�)
m (0)� 2

vuut �(m+ 1)

�(m+ 1 + �)

vuut �(m+ 3)

�(m+ 3 + �)
L(�)
m (0)

+
�(m+ 3)

�(m+ 3 + �)
L
(�)
m+2(0)

!

=
(m+ 1)(m+ 2)

(2m+ 3)

0
@2� 2

vuut (m+ 1)(m+ 2)

(m+ 1 + �)(m+ 2 + �)

1
A 1

�
:

Therefore, letting � ! 0 (h! 1=2), we have

Z
1

0
jE1=2( m)

^(�)j2d�
�

= 1:

This completes the proof of Proposition 9.
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(31) follows from the de�nition of  and Proposition 9.

Remark 10. (1) Noting the proofs of Theorem 2 (ii) and Proposition 9,
we have an integral formula between Jacobi and Laguerre polynomials: If
� = 2h� 1 > 0 and m = 0; 1; 2; : : :, then

Z 1

0
�(�;�)m (r)�

(�;�)
m+2 (r)

4r

(1� r2)2
dr

=
Z
1

0
Eh(e

h
m)

^(�)Eh(e
h
m+2)

^(�)
1

(2�)��
d�:

Actually, the both sides are equal to

2

�

vuut (m+ 1)(m+ 2)

(m+ 1 + �)(m+ 2 + �)
:

(2) The formulas in Theorems 7 and 8 yield that the integrals over KA and
AN coincides for a suitable function f onT. Without using the orthogonality
relations of the Jacobi and Laguerre polynomials, is it possible to deduce the
coincidence? If  has a singleK-type, then the coincidence is trivial from the
Iwasawa and Cartan decompositions of G, however, in our case the K-type
of  is not single to obatin the square-integrability in Theorem 2.
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