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Abstract

Transcendence of the number Y 7, a"*, where « is an algebraic number
with 0 < |a] < 1 and {rg}r>0 is a sequence of positive integers such that
limg oo 741/ = d € N \ {1}, is proved by Mahler’s method. This result
implies the transcendence of the number > 72, akd”

Mathematics Subject Classification (2000): 11J81.

1 Introduction.

Let f(z) = Y52, 2% be a power series in the complex variable z with a strictly
increasing sequence {ex}r>o of exponents. From the Hadamard’s gap theorem, if
liminfy o exr1/ex > 1, then f(z) has the unit circle |z| = 1 as a natural boundary.
The transcendence of the value f(«) of such a series at a nonzero algebraic number
« inside the unit circle has been investigated by various authors. In 1844, Liouville
proved the transcendency of 3°3°, 27 the first example of a transcendental number.
For the case of limsup,_, . ex+1/ex = 00, there were some results on the transcen-
dence of f(«), which are included in the result of Cijsouw and Tijdeman [1]. On the
other hand, only special sequences {ej }r>o have been treated in the remaining case
of lim supy,_,. ex+1/ex < 0o. Let d be an integer greater than 1. In 1929, Mahler [3]
proved that, if e, = d*, f(«a) is transcendental. Mahler’s method was generalized
by Loxton and van der Poorten [2], who proved the transcendence of f(a) when
{ex+1/er}r>0 is a sequence of integers greater than 1. However, for the case that
limy o0 €x+1/€x = d and {egy1/ex}r>0 is not necessarily a sequence of integers, for
example e, = kd*, no transcendence result had been known. In this paper we prove

the transcendence of f(a) under these conditions.
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Theorem 1. Let {rip}r>0 be a sequence of positive integers such that
limy .o 7xs1/7K = d, where d is an integer greater than 1. Suppose that there exists
a positive number M such that ri 1 > dr, — M for all k > 0. Let

fe) =3

and let a be an algebraic number with 0 < |a| < 1. Then the number f(«) is

transcendental.

EXAMPLE. Let a be an algebraic number with 0 < |a] < 1 and d an integer
greater than 1. Then the numbers

(1) iakdk, ia%dk“*d)k, ia[“dk”], and iak'(zkk)
k=0 k=0 k=0 k=1

are transcendental, where w > 0, n > 0, [x] denotes the largest integer not exceeding
a real number x, and (T:) is the binomial coefficient.

Applying Mahler’s method, we proved in [5] the transcendence of the number
>ro, ™ generated by a linear recurrence {ay }r>o of nonnegative integers with a; =
gp* + o(p*), where g > 0 and p > 1, under some additional conditions. However,
the transcendence of the first two numbers in (1) cannot be deduced from our result
in [5] although the sequences of their exponents are linear recurrences.

Theorem 1 can be deduced from Theorem 2 below. We prepare the notation for
stating the theorem. For any algebraic number «,, we denote by m the maximum of
the absolute values of the conjugates of a and by den(«) the smallest positive integer
such that den(a) -« is an algebraic integer. It is easily seen that ’a—%—ﬂ‘ < W—I—W
and ’a—ﬁ‘ < WW for any algebraic numbers o and 3. Furthermore, for any
algebraic number «, we define

lev]| = max{[ o |, den(c)}.

Then for any « # 0 we have the inequalities

(2) log la] > —2[Q(a) : Q]log |||l
and
(3) log ™! < 21@(a) : Q] 1og Jla]
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(cf. [4, Lemma 2.10.2]).
Let K be an algebraic number field. We denote by K][[z]] the ring of formal
power series in the variable z with coefficients in K. Let

o0

fz) =Y oM e K[[z]] (k> 0)

=0

and let a € K with 0 < || < 1. In what follows, ¢y, ¢a, . .. denote positive constants
independent of k and depending only on fi(z) (k > 0) and «, and if they may depend
also on parameters = as well as y, they will be denoted by ¢i(x), co(z,y),... . Let
{rr}x>0 be a sequence of positive integers with the following properties:

(I) rx — oo as k tends to infinity;
(IT) fe(a™) = agfo(a) + b (k> 1), where ay, b, € K and

log [|ax ||, log [|bk|| < c17s;

(III) for any € > 0 and for any [ > 0, there exists a constant c¢s(e,l) > 0 such that
log Hal(k)H <erpg(1+1)
for all k > cy(e,1);
(IV) for any € > 0 there exists a constant c3(¢) > 0 such that
log |crl(k)| <erp(1+41)
for all £ > ¢3(e) and for any [ > 0.

Let sg,s1,... be variables and put F(z;s) = Y7, s2'. Then F(z;00) =
fr(2) (k> 0). We assume that

(V) if Py(2;9),...,Py(%;s) are polynomials in z and {s;};>¢ with degrees at most
p in z and coefficients in K and if we put

E(z;s) = Zi:P](z, $)F(z;8) = iRl(s)zl,

then there exists a positive integer I(p), independent of k£ and depending only
on F(z;s) and p, with the following property. If k is sufficiently large and
Py(z;0M) ... P,(2;0%) are not all zero, then there is an [ such that [ < I(p)
and Ry(c®) # 0.
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Theorem 2. If the properties (1) — (V) are satisfied, then the number fo(a) is

transcendental.

REMARK. If the constant cs(e,l) in the property (III) does not depend on [,
then the property (IV) is satisfied by the property (III). This is the very case that
Loxton and van der Poorten [2] dealt with.

2 Proof of the theorems.

Proof of Theorem 1. We may assume that ro = 1, replacing rg,r,72,... by
1,79,71, ... if necessary. Define
fk(z) — Z aT‘thk*T‘kdhzdh (/i? Z 0)
h=0
Then

. N (N
) Ul( = {0 Eothervs)fise)
and fo(a) = > ,a™ = f(«), which is transcendental by Theorem 2 if the proper-
ties (I) — (V) are satisfied.

The sequence {ry}r>o obviously has the property (I). Let K = Q(«). Then
fr(2) € K[[z]] (k> 0) and

00 k—1
fk(aﬂ“k) — Zarh-s-k — fO(CY) . Zarh‘
h=0 h=0

Since 111 > 7 for all sufficiently large k by the assumption, there is a constant
C' > 1 such that maxo<p<—17n < Cry for all £ > 1. Hence

k—1
b
h=0

and the property (II) is satisfied.

log

< <
<logk + <0<T}{l§,§1rh> log [lo]| < erre,

Using (3), we have

(5) log |

By (4), (5), and ||0]] = 1, in order to prove that the property (III) is satisfied,
it suffices to show that for any ¢ > 0 and for any A > 0, there exists a constant
c2(e,h) > 0 such that

onrkath < 2[K : Ql|rnix — rid"| log ||| -

|Th+k — T‘kdh| S erkdh

4
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for all & > ca(e,h). If h = 0, this inequality holds for all £ > 0. Since
limg oo xv1/7 = d, for any € > 0 and for any h > 1, there exists a constant
c2(g,h) > 0 such that

€ Tk+1 €
1- <14 — 7
(14+¢e)h — dry * (1+e)h
for all k£ > ca(e, h). Then
Pk — rrd"| Thth  Thel Tiz

-1

h m
9
<2 <<1+a>h> RN

Next we prove that the property (IV) is satisfied. Since

T’kdh drk+h_1 dT’k

Phak — hd" = (Pegen — drisn—1) + d(rerno1 — dren—s) + -+ + d" (g — dry)
> —M(1+d+--+d)

by the assumption in the theorem,

M(d" - 1)

log |0 | = (rnix — red™) log la] < — o loglo| < —M(1 + d") log |a.

Then for any € > 0 there exists a constant c3(¢) > 0 such that ery, > —M log |a| for
all k > ¢3(¢), and the property (IV) is fulfilled.

Finally we show that the property (V) is satisfied by the same way as in the
proof of Theorem 2.10.1 in [4]. Choose a positive integer A(p), depending on p, such
that

max deg, Pj(z;s) < d*?).

0<j<p
Suppose that Py(z;0®), ..., P,(2;6®) are not all zero and put
p' =p'(k) = max{j | Pj(z; a®) £ 0}, a = a(k) = deg, Py(z; a®).
Then /
p o)
E(z;0W) =3 Pi(z0") fi(z)) = 3 Ri(e™)Z.
j=0 =0

We prove that R;(c®)) # 0 for some [. This can be done by choosing
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and considering the d-adic expansion of the positive integer [ in place of the
{dy,dy, .. .}-adic expansion in the proof of Theorem 2.10.1 in [4]. Since a(k) < d*?)
and p'(k) < p for any k, we can take I(p) = d*®*P+! and the property (V) is ful-
filled. Then by Theorem 2, f(«) is transcendental, and the proof of the theorem is
completed.

We prove Theorem 2 by the method of Loxton and van der Poorten [2] and
Nishioka [4].

Proof of Theorem 2. We assume on the contrary that fy(«) is algebraic. We
may suppose fo(a) € K.

Proposition 1 (Loxton and van der Poorten [2], see also Nishioka [4, Proposi-
tion 2.9.2]). Let m be a nonnegative integer. There exists an infinite subset A(m)
of the set N of positive integers such that for any polynomial P(sg,...,Sn) €
K[sq,...,Sm| the following two properties are equivalent:

(i) P(a(()k), .., ™)) =0 for infinitely many k € A(m).

(i) P(o”, ... 0™ =0 for all k € A(m).

Let m be a nonnegative integer and put

V(m) = {P(s0, .., 5m) € K[so, .., sm] | P(c{?,....6®)) =0 for all k € A(m)}.

Then V(m) is a prime ideal of K]so,...,sn,| by Proposition 1.

Proposition 2 (Loxton and van der Poorten [2], see also Nishioka [4,
Proposition 2.9.3]). For any positive integer p, there exist p + 1 polynomials
Po(2;80, -, 802)s -, Pp(25 80, ..., 82) € K[z, 50,...,8,2] with degrees at most p in

z such that the function
p ) 00
Ey(z;8) =Y Pi(2:80,...,8,2)F(z;8) =Y Ry(s)z'
§=0 =0

has the following two properties:

(1) Ri(s) = Ri(s0,-.-,8p2) € V(p?) for all | with I < p?;
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(i) there exists a positive integer I(p), independent of k and depending only on
F(z;5) and p, such that ord,—oE,(z;0®™) < I(p) for all sufficiently large k €

A(p?).

Proposition 3. For any positive integer p and any positive number €, if k >
ca(e,p), then
log HEp(ark; a(k))H < erges(p) + cerip.

Proof. By the property (III), ‘al(k)H < e for all k > cy(e,l).  Let
Pi(z; 80, ,8,2) = 30 0 Qils0,--.,82)z". Since Qu(so,...,52) € Klso,...,Sp],

we have

HQﬂ(gék)7 o ,01()’2?))“ < colp)esmes®)

for all k& > maxo<;<,2 c2(e,1). Since

Ey(a0®) = S Pi(a0l,. ,a,(,’?)F(oz’”k; o™y
§=0
= Y Pla™0l, . 0l) fula)!
=0
- (k) (k) -
= Z P](O/’k’ 0o 70-p2 )(a'kf()(a) + bk‘)]
§=0

noting that ||a™|| < cg*, we obtain
r rEC r 1T p
HEp(a k;o-(k?))H < c1o(p)erren®) e (62 (| fol@)|| + 1))
for k > maxg<;<,2 c2(€, (), which implies the proposition.

Proposition 4. For any positive integer p and any positive number €, there exist
infinitely many k € A(p?) such that E,(a™;0®) #£ 0 and

log |E,(a"™; a(k))| < —crpp? + errcs(p).

Proof. In what follows, we always assume that k € A(p?). By the property (i)

of Proposition 2,

Ep(ark;d(k)> — Z Rl<0-(k))0/’kl‘
I>p?

7
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Let
ny = min{l | R(c™) # 0} (k> 0).

By the property (ii) of Proposition 2, there is an [ such that [ < I(p) and R;(c®)) # 0
for all sufficiently large k. Hence there exists an integer N such that np = N for
infinitely many k. If n, = N,

(6) |Bp(a”;0W) = Ry(0®@)a N < 37 [Ri(0e™)a™].
I=N+1
Let , .
Pi(z;50, -, 82) = Y Q80,1 8,2) 2, F(zys) =3 Gil(s)7.
1=0 1=0

Then by the property (IV),

Qu(ed?,.. . o ®)| < cop)e0

P
and
Gale™) =] X @ ol < @+ et
htet =L
for k > ¢3(¢). Therefore
(7) [Ri(o™)] < en(p)e 2@ (L 4 1)resr @)

for k > ¢3(¢). On the other hand, noting that N < I(p), we obtain
®) |7 (0®)] < cus(p)esrren®
for k > c15(e,p). By (7)

log |Rl(a(k))a’"’“l| < logeyi(p) + ergcra(p) + plog(l + 1) + erg(p 4+ 1) + rillog |«
< ergeis(p) + (1 — crpe)rillog |

if k£ > c15(e,p). Choose ¢ so small that 1 — ¢j7e > 0. Then for k > c5(e, p),

(9) io: ‘Rl<0'(k))0fkl’ S eﬁchlﬁ(p) 0196(17617E)Tk (N+1)log |a|.
I=N+1
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By (2), (8), and (9), if k > ¢a(e,p) and ng = N, then

log > [Ri(a™)a™|/|Ry(a™)a™ ]

I=N+1
errcig(p) +1og cig + (1 — crre)ri(N + 1) log |

+2[K : Q]logci3(p) + 2[K : Qlerxcia(p) — riN log |«
= logcig + 2[K : Q]log c13(p)
+7k (€<616(p) +2[K : Qleia(p) — ci7(N + 1) log ‘04) + log |0")-

IN

Noting that N < I(p), we have
e(cis(p) + 2[K = Qlew(p) — crr(N + 1)log a]) +log|a| < 0

if ¢ < ¢21(p). Hence we have

o0

Z ‘Rl<0—(k))arkl’/|RN(U(k)>arkN’ 0 as k — 0o (nk _ N)

I=N+1

Therefore by (6)
Ey(a™;0™) /Ry (a™)amN — 1 as k — o0 (ng = N).

Noting that N > p? and using (7), we obtain the assertions of the proposition.

Now we complete the proof of the theorem by choosing p > 2[K : Q]cg/c7. By
Proposition 3, 4, and (2), for infinitely many k € A(p?), we have

v

log | Ey(ar; o)
—2[K : Q] logHE " gk H
—2[K : Q](eries(p) + cerip).

—crrEp? 4 ergcs (p)

(AVARRAVS

Dividing both sides by 7, we get

—crp? +ecs(p) > —2[K : Q(ecs(p) + cop).

Letting ¢ tend to 0, we obtain

—crp® > —2[K : Qcsp,

which contradicts the choice of p, and the proof of the theorem is completed.

9
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