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Transcendence of the values of certain series with
Hadamard’s gaps

Taka-aki Tanaka

Abstract

Transcendence of the number
∑∞

k=0 αrk , where α is an algebraic number
with 0 < |α| < 1 and {rk}k≥0 is a sequence of positive integers such that
limk→∞ rk+1/rk = d ∈ N \ {1}, is proved by Mahler’s method. This result
implies the transcendence of the number

∑∞
k=0 αkdk

.

Mathematics Subject Classification (2000): 11J81.

1 Introduction.

Let f(z) =
∑∞

k=0 zek be a power series in the complex variable z with a strictly

increasing sequence {ek}k≥0 of exponents. From the Hadamard’s gap theorem, if

lim infk→∞ ek+1/ek > 1, then f(z) has the unit circle |z| = 1 as a natural boundary.

The transcendence of the value f(α) of such a series at a nonzero algebraic number

α inside the unit circle has been investigated by various authors. In 1844, Liouville

proved the transcendency of
∑∞

k=0 2−k!, the first example of a transcendental number.

For the case of lim supk→∞ ek+1/ek = ∞, there were some results on the transcen-

dence of f(α), which are included in the result of Cijsouw and Tijdeman [1]. On the

other hand, only special sequences {ek}k≥0 have been treated in the remaining case

of lim supk→∞ ek+1/ek < ∞. Let d be an integer greater than 1. In 1929, Mahler [3]

proved that, if ek = dk, f(α) is transcendental. Mahler’s method was generalized

by Loxton and van der Poorten [2], who proved the transcendence of f(α) when

{ek+1/ek}k≥0 is a sequence of integers greater than 1. However, for the case that

limk→∞ ek+1/ek = d and {ek+1/ek}k≥0 is not necessarily a sequence of integers, for

example ek = kdk, no transcendence result had been known. In this paper we prove

the transcendence of f(α) under these conditions.
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Theorem 1. Let {rk}k≥0 be a sequence of positive integers such that

limk→∞ rk+1/rk = d, where d is an integer greater than 1. Suppose that there exists

a positive number M such that rk+1 ≥ drk −M for all k ≥ 0. Let

f(z) =
∞∑

k=0

zrk

and let α be an algebraic number with 0 < |α| < 1. Then the number f(α) is

transcendental.

Example. Let α be an algebraic number with 0 < |α| < 1 and d an integer

greater than 1. Then the numbers

∞∑

k=0

αkdk

,
∞∑

k=0

α2kdk+(−d)k

,
∞∑

k=0

α[ωdk+η], and
∞∑

k=1

αk·(2k
k )(1)

are transcendental, where ω > 0, η ≥ 0, [x] denotes the largest integer not exceeding

a real number x, and
(

m
n

)
is the binomial coefficient.

Applying Mahler’s method, we proved in [5] the transcendence of the number
∑∞

k=0 αak generated by a linear recurrence {ak}k≥0 of nonnegative integers with ak =

gρk + o(ρk), where g > 0 and ρ > 1, under some additional conditions. However,

the transcendence of the first two numbers in (1) cannot be deduced from our result

in [5] although the sequences of their exponents are linear recurrences.

Theorem 1 can be deduced from Theorem 2 below. We prepare the notation for

stating the theorem. For any algebraic number α, we denote by α the maximum of

the absolute values of the conjugates of α and by den(α) the smallest positive integer

such that den(α) ·α is an algebraic integer. It is easily seen that α + β ≤ α + β

and αβ ≤ α β for any algebraic numbers α and β. Furthermore, for any

algebraic number α, we define

‖α‖ = max{ α , den(α)}.

Then for any α 6= 0 we have the inequalities

log |α| ≥ −2[Q(α) : Q] log ‖α‖(2)

and

log
∥∥∥α−1

∥∥∥ ≤ 2[Q(α) : Q] log ‖α‖(3)
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(cf. [4, Lemma 2.10.2]).

Let K be an algebraic number field. We denote by K[[z]] the ring of formal

power series in the variable z with coefficients in K. Let

fk(z) =
∞∑

l=0

σ
(k)
l zl ∈ K[[z]] (k ≥ 0)

and let α ∈ K with 0 < |α| < 1. In what follows, c1, c2, . . . denote positive constants

independent of k and depending only on fk(z) (k ≥ 0) and α, and if they may depend

also on parameters x as well as y, they will be denoted by c1(x), c2(x, y), . . . . Let

{rk}k≥0 be a sequence of positive integers with the following properties:

(I) rk →∞ as k tends to infinity;

(II) fk(α
rk) = akf0(α) + bk (k ≥ 1), where ak, bk ∈ K and

log ‖ak‖ , log ‖bk‖ ≤ c1rk;

(III) for any ε > 0 and for any l ≥ 0, there exists a constant c2(ε, l) > 0 such that

log
∥∥∥σ(k)

l

∥∥∥ ≤ εrk(1 + l)

for all k ≥ c2(ε, l);

(IV) for any ε > 0 there exists a constant c3(ε) > 0 such that

log |σ(k)
l | ≤ εrk(1 + l)

for all k ≥ c3(ε) and for any l ≥ 0.

Let s0, s1, . . . be variables and put F (z; s) =
∑∞

l=0 slz
l. Then F (z; σ(k)) =

fk(z) (k ≥ 0). We assume that

(V) if P0(z; s), . . . , Pp(z; s) are polynomials in z and {sl}l≥0 with degrees at most

p in z and coefficients in K and if we put

E(z; s) =
p∑

j=0

Pj(z; s)F (z; s)j =
∞∑

l=0

Rl(s)z
l,

then there exists a positive integer I(p), independent of k and depending only

on F (z; s) and p, with the following property. If k is sufficiently large and

P0(z; σ(k)), . . . , Pp(z; σ(k)) are not all zero, then there is an l such that l ≤ I(p)

and Rl(σ
(k)) 6= 0.
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Theorem 2. If the properties (I) – (V) are satisfied, then the number f0(α) is

transcendental.

Remark. If the constant c2(ε, l) in the property (III) does not depend on l,

then the property (IV) is satisfied by the property (III). This is the very case that

Loxton and van der Poorten [2] dealt with.

2 Proof of the theorems.

Proof of Theorem 1. We may assume that r0 = 1, replacing r0, r1, r2, . . . by

1, r0, r1, . . . if necessary. Define

fk(z) =
∞∑

h=0

αrh+k−rkdh

zdh

(k ≥ 0).

Then

σ
(k)
l =

{
αrh+k−rkdh

(l = dh)
0 (otherwise)

(4)

and f0(α) =
∑∞

h=0 αrh = f(α), which is transcendental by Theorem 2 if the proper-

ties (I) – (V) are satisfied.

The sequence {rk}k≥0 obviously has the property (I). Let K = Q(α). Then

fk(z) ∈ K[[z]] (k ≥ 0) and

fk(α
rk) =

∞∑

h=0

αrh+k = f0(α)−
k−1∑

h=0

αrh .

Since rk+1 > rk for all sufficiently large k by the assumption, there is a constant

C ≥ 1 such that max0≤h≤k−1 rh ≤ Crk for all k ≥ 1. Hence

log

∥∥∥∥∥−
k−1∑

h=0

αrh

∥∥∥∥∥ ≤ log k +
(

max
0≤h≤k−1

rh

)
log ‖α‖ ≤ c1rk,

and the property (II) is satisfied.

Using (3), we have

log
∥∥∥αrh+k−rkdh

∥∥∥ ≤ 2[K : Q]|rh+k − rkd
h| log ‖α‖ .(5)

By (4), (5), and ‖0‖ = 1, in order to prove that the property (III) is satisfied,

it suffices to show that for any ε > 0 and for any h ≥ 0, there exists a constant

c2(ε, h) > 0 such that

|rh+k − rkd
h| ≤ εrkd

h
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for all k ≥ c2(ε, h). If h = 0, this inequality holds for all k ≥ 0. Since

limk→∞ rk+1/rk = d, for any ε > 0 and for any h ≥ 1, there exists a constant

c2(ε, h) > 0 such that

1− ε

(1 + ε)h
<

rk+1

drk

< 1 +
ε

(1 + ε)h

for all k ≥ c2(ε, h). Then

|rh+k − rkd
h|

rkdh
=

∣∣∣∣∣
rk+h

drk+h−1

· · · rk+1

drk

− 1

∣∣∣∣∣ ≤
h∑

m=1

hm

(
ε

(1 + ε)h

)m

≤
ε

1+ε

1− ε
1+ε

= ε.

Next we prove that the property (IV) is satisfied. Since

rh+k − rkd
h = (rk+h − drk+h−1) + d(rk+h−1 − drk+h−2) + · · ·+ dh−1(rk+1 − drk)

≥ −M(1 + d + · · ·+ dh−1)

by the assumption in the theorem,

log |σ(k)

dh | = (rh+k − rkd
h) log |α| ≤ −M(dh − 1)

d− 1
log |α| < −M(1 + dh) log |α|.

Then for any ε > 0 there exists a constant c3(ε) > 0 such that εrk ≥ −M log |α| for

all k ≥ c3(ε), and the property (IV) is fulfilled.

Finally we show that the property (V) is satisfied by the same way as in the

proof of Theorem 2.10.1 in [4]. Choose a positive integer λ(p), depending on p, such

that

max
0≤j≤p

degz Pj(z; s) < dλ(p).

Suppose that P0(z; σ(k)), . . . , Pp(z; σ(k)) are not all zero and put

p′ = p′(k) = max{j | Pj(z; σ(k)) 6= 0}, a = a(k) = degz Pp′(z; σ(k)).

Then

E(z; σ(k)) =
p′∑

j=0

Pj(z; σ(k))fk(z)j =
∞∑

l=0

Rl(σ
(k))zl.

We prove that Rl(σ
(k)) 6= 0 for some l. This can be done by choosing

l = a +
p′∑

m=1

dλ(p)+m
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and considering the d-adic expansion of the positive integer l in place of the

{d1, d2, . . .}-adic expansion in the proof of Theorem 2.10.1 in [4]. Since a(k) < dλ(p)

and p′(k) ≤ p for any k, we can take I(p) = dλ(p)+p+1 and the property (V) is ful-

filled. Then by Theorem 2, f(α) is transcendental, and the proof of the theorem is

completed.

We prove Theorem 2 by the method of Loxton and van der Poorten [2] and

Nishioka [4].

Proof of Theorem 2. We assume on the contrary that f0(α) is algebraic. We

may suppose f0(α) ∈ K.

Proposition 1 (Loxton and van der Poorten [2], see also Nishioka [4, Proposi-

tion 2.9.2]). Let m be a nonnegative integer. There exists an infinite subset Λ(m)

of the set N of positive integers such that for any polynomial P (s0, . . . , sm) ∈
K[s0, . . . , sm] the following two properties are equivalent:

(i) P (σ
(k)
0 , . . . , σ(k)

m ) = 0 for infinitely many k ∈ Λ(m).

(ii) P (σ
(k)
0 , . . . , σ(k)

m ) = 0 for all k ∈ Λ(m).

Let m be a nonnegative integer and put

V (m) = {P (s0, . . . , sm) ∈ K[s0, . . . , sm] | P (σ
(k)
0 , . . . , σ(k)

m ) = 0 for all k ∈ Λ(m)}.

Then V (m) is a prime ideal of K[s0, . . . , sm] by Proposition 1.

Proposition 2 (Loxton and van der Poorten [2], see also Nishioka [4,

Proposition 2.9.3]). For any positive integer p, there exist p + 1 polynomials

P0(z; s0, . . . , sp2), . . . , Pp(z; s0, . . . , sp2) ∈ K[z, s0, . . . , sp2 ] with degrees at most p in

z such that the function

Ep(z; s) =
p∑

j=0

Pj(z; s0, . . . , sp2)F (z; s)j =
∞∑

l=0

Rl(s)z
l

has the following two properties:

(i) Rl(s) = Rl(s0, . . . , sp2) ∈ V (p2) for all l with l ≤ p2;
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(ii) there exists a positive integer I(p), independent of k and depending only on

F (z; s) and p, such that ordz=0Ep(z; σ(k)) ≤ I(p) for all sufficiently large k ∈
Λ(p2).

Proposition 3. For any positive integer p and any positive number ε, if k ≥
c4(ε, p), then

log
∥∥∥Ep(α

rk ; σ(k))
∥∥∥ ≤ εrkc5(p) + c6rkp.

Proof. By the property (III),
∥∥∥σ(k)

l

∥∥∥ ≤ eεrk(1+l) for all k ≥ c2(ε, l). Let

Pj(z; s0, . . . , sp2) =
∑p

l=0 Qjl(s0, . . . , sp2)zl. Since Qjl(s0, . . . , sp2) ∈ K[s0, . . . , sp2 ],

we have ∥∥∥Qjl(σ
(k)
0 , . . . , σ

(k)
p2 )

∥∥∥ ≤ c7(p)eεrkc8(p)

for all k ≥ max0≤l≤p2 c2(ε, l). Since

Ep(α
rk ; σ(k)) =

p∑

j=0

Pj(α
rk ; σ

(k)
0 , . . . , σ

(k)
p2 )F (αrk ; σ(k))j

=
p∑

j=0

Pj(α
rk ; σ

(k)
0 , . . . , σ

(k)
p2 )fk(α

rk)j

=
p∑

j=0

Pj(α
rk ; σ

(k)
0 , . . . , σ

(k)
p2 )(akf0(α) + bk)

j

=
p∑

j=0

( p∑

l=0

Qjl(σ
(k)
0 , . . . , σ

(k)
p2 )αrkl

)
(akf0(α) + bk)

j,

noting that ‖αrk‖ ≤ crk
9 , we obtain

∥∥∥Ep(α
rk ; σ(k))

∥∥∥ ≤ c10(p)eεrkc11(p)crkp
9

(
e2c1rk(‖f0(α)‖+ 1)

)p

for k ≥ max0≤l≤p2 c2(ε, l), which implies the proposition.

Proposition 4. For any positive integer p and any positive number ε, there exist

infinitely many k ∈ Λ(p2) such that Ep(α
rk ; σ(k)) 6= 0 and

log |Ep(α
rk ; σ(k))| ≤ −c7rkp

2 + εrkc8(p).

Proof. In what follows, we always assume that k ∈ Λ(p2). By the property (i)

of Proposition 2,

Ep(α
rk ; σ(k)) =

∑

l>p2

Rl(σ
(k))αrkl.
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Let

nk = min{l | Rl(σ
(k)) 6= 0} (k ≥ 0).

By the property (ii) of Proposition 2, there is an l such that l ≤ I(p) and Rl(σ
(k)) 6= 0

for all sufficiently large k. Hence there exists an integer N such that nk = N for

infinitely many k. If nk = N ,

|Ep(α
rk ; σ(k))−RN(σ(k))αrkN | ≤

∞∑

l=N+1

|Rl(σ
(k))αrkl|.(6)

Let

Pj(z; s0, . . . , sp2) =
p∑

l=0

Qjl(s0, . . . , sp2)zl, F (z; s)j =
∞∑

l=0

Gjl(s)z
l.

Then by the property (IV),

|Qjl(σ
(k)
0 , . . . , σ

(k)
p2 )| ≤ c9(p)eεrkc10(p)

and

|Gjl(σ
(k))| =

∣∣∣∣∣∣
∑

l1+···+lj=l

σ
(k)
l1
· · ·σ(k)

lj

∣∣∣∣∣∣
≤ (l + 1)jeεrk(j+l)

for k ≥ c3(ε). Therefore

|Rl(σ
(k))| ≤ c11(p)eεrkc12(p)(l + 1)peεrk(p+l)(7)

for k ≥ c3(ε). On the other hand, noting that N ≤ I(p), we obtain

∥∥∥RN(σ(k))
∥∥∥ ≤ c13(p)eεrkc14(p)(8)

for k ≥ c15(ε, p). By (7)

log |Rl(σ
(k))αrkl| ≤ log c11(p) + εrkc12(p) + p log(l + 1) + εrk(p + l) + rkl log |α|

≤ εrkc16(p) + (1− c17ε)rkl log |α|

if k ≥ c18(ε, p). Choose ε so small that 1− c17ε > 0. Then for k ≥ c18(ε, p),

∞∑

l=N+1

|Rl(σ
(k))αrkl| ≤ eεrkc16(p)c19e

(1−c17ε)rk(N+1) log |α|.(9)
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By (2), (8), and (9), if k ≥ c20(ε, p) and nk = N , then

log
∞∑

l=N+1

|Rl(σ
(k))αrkl|/|RN(σ(k))αrkN |

≤ εrkc16(p) + log c19 + (1− c17ε)rk(N + 1) log |α|
+2[K : Q] log c13(p) + 2[K : Q]εrkc14(p)− rkN log |α|

= log c19 + 2[K : Q] log c13(p)

+rk

(
ε
(
c16(p) + 2[K : Q]c14(p)− c17(N + 1) log |α|

)
+ log |α|

)
.

Noting that N ≤ I(p), we have

ε
(
c16(p) + 2[K : Q]c14(p)− c17(N + 1) log |α|

)
+ log |α| < 0

if ε < c21(p). Hence we have

∞∑

l=N+1

|Rl(σ
(k))αrkl|/|RN(σ(k))αrkN | → 0 as k →∞ (nk = N).

Therefore by (6)

Ep(α
rk ; σ(k))/RN(σ(k))αrkN → 1 as k →∞ (nk = N).

Noting that N > p2 and using (7), we obtain the assertions of the proposition.

Now we complete the proof of the theorem by choosing p > 2[K : Q]c6/c7. By

Proposition 3, 4, and (2), for infinitely many k ∈ Λ(p2), we have

−c7rkp
2 + εrkc8(p) ≥ log |Ep(α

rk ; σ(k))|
≥ −2[K : Q] log

∥∥∥Ep(α
rk ; σ(k))

∥∥∥
≥ −2[K : Q](εrkc5(p) + c6rkp).

Dividing both sides by rk, we get

−c7p
2 + εc8(p) ≥ −2[K : Q](εc5(p) + c6p).

Letting ε tend to 0, we obtain

−c7p
2 ≥ −2[K : Q]c6p,

which contradicts the choice of p, and the proof of the theorem is completed.
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