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Running Title. Prime Geodesic Theorem for Hyperbolic 3-manifolds

Abstract. We obtain a lower bound for the error term of the prime geodesic the-
orem for hyperbolic 3-manifolds. Our result is Q4 <£('°—5l35—$)i> We also generalize

log

Sarnak’s upper bound O(z'g“) to compact manifolds.
1991 Mathematics Subject Classification: 11F72, 11M41, 58F19

1. INTRODUCTION

For a (d-+1)-dimensional hyperbolic manifold with I' being the fundamental group,
the prime geodesic theorem is

M
mr(z) = li(z?) + ) li(z*) + (error),

n=1

(1.1)

where nr(z) is the number of prime geodesics P whose length [(P) satisfies that
N(P):= ¢ <z, and sy, ... sy are the zeros of the Selberg zeta function Z(s) in

" the interval (0,2). The chief concern of this paper is to give estimates of the error

term in (1.1).
Hejhal [4] obtained a lower bound in two-dimensional cases i.e. d = 1, by using the
explicit formula for W (z) := [{ Ur(t)dt. Here we put Up(z) = 3 Ap(P), where
{P}

N(P)<e
Ap(P) is defined by
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and is an analogue of the von-Mangoldt function in the theory of the Riemann zeta
function. His result is as follows:

Theorem 1.1. When I’ C PSL(2,R) is a cocompact subgroup or a cofinite subgroup

L Pt 1
satisfying that %Zw T = 0 (1+(logm)2)’

M
mr(z) = li(z) + 3 li(z*) + Q4

n=1

w%(log log :c)%
log =

) as T — 0o,
where 3, + i, are poles of the scattering determinant.

In this paper, we generalize it to three-dimensional cases. In Sections 3 and 4, we
prove the following main theorem of this paper:

Theorem 1.2. When ' C PSL(2,C) is a cocompact subgroup or a cofinite subgroup
. . hPn—1 _ 1
satisfying that ~,§o = 0] (1+(log Jr)3),

M
mr(z) = li(2®) + Y li(z*) + Q4

n=1

z(log log z)%
log =

) as ¢ — 00,

where B3, + iy, are poles of the scattering determinant.

Cocompact cases are dealt with in Section 3 (Theorem 3.21), and its generalization
to cofinite cases under the assumption in Theorem 1.2 is given in Section 4 (Theorem
4.10). Since the order of Z(s) is three, abundance of the zeros of Z(s) gives rise to a
difficulty concerning the estimate of ¥;(z). We overcame it by considering the explicit
formula for Wo(z) := [ Wy(t)dt. In cofinite cases, we can omit the contribution of
the continuous spectra under the assumption in Theorem 1.2. We will see in Example
4.11 that any Bianchi group satisfies this assumption. The conjectural exponent of
z in the error term in (1.1) is . Theorems 1.1 and 1.2 give sharp estimates in that
sense.

On the other hand, upper estimates of the error term in (1.1) have been studied
by many people in the case of d = 1. For higher dimensional cases, the only known
result is Sarnak’s error term O(z3+¢) in [10] for [ = PSL(2,O) with K being an
imaginary quadratic field (# Q(i), Q(v/=3)) of class number one. (Some conditional
results are obtained in [7].) We generalize Sarnak’s estimate to cocompact groups in
section 5 (Theorem 5.4) and to general Bianchi groups in Section 6 (Theorem 6.1) as
follows.

Theorem 1.3. When I' C PSL(2,C) is a cocompact subgroup or I' = PSL(2,0k)
with K an imaginary quadratic field,

M 5
mr(z) = li(z?) + Z li(z*) + O(z37%°)

n=1

2
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as T — 0.

The proof uses the explicit formula for ¥r(z).

2. PRELIMINARIES

Throughout this paper we put G to be PSL(2,C) and I to be a cofinite subgroup
of G. Let j be an element in the quaternion field which satisfies j2 = —1, ij = —j1,
and let H be the three-dimensional hyperbolic space:

Hi={v=z+yjlz=z1+ 220 € C,y >0}
with the Riemannian metric
_dzy? + day® + dy?
y? '
It induces a hyperbolic distance d(v,v) given by

dv?

|z =2 +9° +y”
2yy’
where v = z + y7 and v/ = 2’ + y'j. The volume measure is given by
dxdzxydy
vy
The group PSL(2,C) acts on H transitively by

cosh d(v,v") =

3y

a b -1 (a2+b)m+a62+ ]
(c d) (v) = (av + B){ev +d)7" = lez +dJ2 + |C|2yz <

The Laplacian for H is defined by
o? o? & g
A== =—+ =+ 5> -
Y (B:cl2 + Ozy? + 8y2) + yay
We denote the eigenvalues of A by 0 = g < Ay S A2 <+ - <Ay <1 < Apggree -
Next we give the classification of conjugacy classes.

Definition 2.1. An element P € I' — {1} is called

parabolic  iff jtr(P)l =2 and tr(P) € R,
hyperbolic  iff [tr(P)]| > 2 and tr(P)€R,
elliptic il [tr(P)| < 2 and tr(P)€R,

and lozodromic in all other cases. An element of PSL(2,C) is called parabolic,
elliptic, hyperbolic, lozodromic if its preimages in SL(2,C) have this property. A
conjugacy class { P} in T is called hyperbolic, elliptic, parabolic if each P in the class
has this property.
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The norm of a hyperbolic or loxodromic element P is defined by N(P) = |a(P)?,
if a(P) € C is the eigenvalue of P € G such that |a(P)| > 1.

Definition 2.2. An element P € T — {1} s called primitive iff it is not an essential
power of any other element. A conjugacy class {P} in I is called primitive if each
P in the class has this property.

For every hyperbolic matrix P € T there exist exactly one primitive hyperbolic
element Py € I' and exactly one n € N such that P = Fy". We define that mp(x) is
the number of P, which is primitive hyperbolic or loxodromic and satisfies N(F) < z.

Definition 2.3. For Re(s) > 2, the Selberg zeta function for I' is defined by

2(s) = [ T1( = a(Po)%a(Bo) " N(P)™),
{Po} (k1)
where the product on { Py} is taken over all hyperbolic or loxodromic conjugacy classes
of T', and (k,l) runs through all the pairs of positive integers satisfying the following
congruence relation: k =1 (mod m(F,)) with m(P) the order of the torsion of the
centralizer of P.

For the Selberg zeta function, Elstrodt, Grunewald and Mennicke proved the fol-
lowing Lemma.

Lemma 2.4. [2, p. 208, Lemma 4.2] For Re(s) > 2, we have
zZ' N(P)log N(F)
2 () =
7' = 2 P a(P) — a(P) T

where Py is a primitive element associated with P, and {P} runs through the hyper-
bolic or lozodromic conjugacy classes of T.

N(P)_s7

Recall that the von-Mangoldt function A(n) appears in the logarithmic derivative
of the Riemann zeta function:

(2.1) -—%,(s) = ij:l A(n)n™".

Comparing Lemma 2.4 and (2.1), the following definition is natural.

Definition 2.5. For a hyperbolic or lozodromic element P of T', we define
N(P)log N(F,)

(P)la(P) = a(P)~1]*’

A[‘(P) = m

and
Up(z) := z Ar(P),
{P}

N(P)<=z

4
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where Py is a primitive element associated with P, and {P} runs through hyperbolic
or lozodromic classes of I'.

Then we have

(22 2= 5 A (PIN(P)”

3. Q-RESULT FOR COCOMPACT GROUPS

First, we introduce some properties of Z(s) for cocompact I

A determinant expression of Selberg zeta functions was discovered by Sarnak{9]
and Voros[12] for compact Riemann surfaces. Koyama generalized it to 3-dimensional
Bianchi groups [6, Theorem 4.4]. He expressed Z(s) multiplied with some gamma
factors in terms of the determinant of the Laplacian.

In our cases, since I' is cocompact, we can omit in his formula the contribution
from the parabolic classes and the continuous spectra. We introduce the spectral
zeta function generalized by a variables s:

C(w,s,A) = gm (Re(w) > g) .

Then we immediately have the following theorem.

Theorem 3.1. Let X
Z(s):=Z1(s)Zg(s)Z(s)

Zi1(s) = exp (—EI—Q(;—\—IQ(S —~ 1)3)

log N(Py) *23! 2mm\ !
Zg(s) = exp T <1 — cos ) st,
{XR; QW(R) mz=:0 VR
where {R} runs through all the primitive elliptic conjugacy classes of T, and vg is
the order of R. We denote by m(R) the order of the mazimal finite subgroup of the
centralizer of R.
Then

with

Z(s) = e+* =) det p(A — 5(2 — s)),

where detp is the determinant of the Laplacian composed of the discrete spectra :

detp(A — s(2 — 5)) ;= exp (—- 8%

It is the zeta-regularization of a divergent product [22 o(A, — s(2 — 3)).

o).

w=0

5



KSTS/RR-00/005

May 16, 2000

For this Selberg zeta function, Elstrodt, Grunewald and Mennicke showed the
following functional equation.

Lemma 3.2. [2, p. 209, Corollary 4.4] The zeta function Z(s) satisfies the functional
equation

22— 5) = exp (—%@ 1P 4 20(s 1)) 2(s),
ere — lOgN(PQ)
where B = R |(wh) 4T

conjugacy classes of I.

and the summation of {R} is taken over all elliptic

Here we have the following property for Z(s) from the trace formula. From Theo-
rem 3.1, the zeros of Z(s) are expressed as s, = 1+iv/A, —land §, =1 —i/A, — L.
Let t, := n— L.

Proposition 3.3. We have,

ZI

1
Z(9)=

+ > — +O(Js]* +1).

|s=3nl<1 © — o7

ls— s,.](l 'S"
where s, = 1 +1it, and 3, =1 —it, are the zeros of Z(s) on Re(s) = 1.

Proof. From Theorem 3.1, we get

(3.1 T+ ZH0)+ ZE(5) = (25— 2) + 5 logldetn(A — 52— 5)),
together with

(32) Z1(s) = 0(1sf +1),

and

(3.3) %(s) = 0(1).

About the right hand side of (3.1), by Hadamard’s theory, we have

(3.4) detp (A — (2 — ) = & ] (1 -2) (- -;i) e,

n=0 Sn Sn

where P(s) is an integral function and the product is absolutely convergent for all s.
Elstrodt, Grunewald and Mennicke {2, p. 215 Lemma 5.8 show the order of (3.4) is

6
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three. Then we have

j (log(detp(A — s(2 —"5))))

=0(lsl"')+s—i§+§( ! +;:)+§:1( L +—1—>.

8 — Sp $— 38, 3,

(3.5)

Gathering together (3.1), (3.2), (3.3) and (3.5), we have Proposition 3.3. [

Now we need information about the distribution of the imaginary parts of the
complex zeros of Z(s) for cocompact T'.

Proposition 3.4. [2, p. 215, Theorem 5.6] Suppose that T > 0, T # t,,, then for all
n > M + 1, the counting function N(T) := #{n |n > M + 1, t, < T} satisfies
vol(T'\H)
672
where vo(T'\H) is the volume of the fundamental domain I'\H.

N(T) = T°+0(T* as T — oo,

From Propositions 3.3 and 3.4, we obtain the following estimates:

Lemma 3.5. Fore > 0, we get

Z/ ) |t|2
A 1
(3.7) -Z—(Q-{-E-I-it) <<E’
Z/
(3.8) —Z—(—a+z’t) <t +1,
(3.9) |2 ()| < PO gt (s =0 4it, 0> 14— 1| >2)
’ Z ’ loglt]”" ="
Moreover, for any T there exists 7 in [T',T + 1] such that
2| 7
(3.10) f Z(o+i7)|do < Tlog T.
0

Proof. By Propositions 3.3 and 3.4, we get

!

Z
Ztetit) <

This implies (3.6). Here ¢ is any number with 0 < ¢ < 2.

12 .
e+z‘t—1+?+0(lt' )

7
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Since Definition 2.3 converges for Re(s) > 2, we have from Proposition 3.3 that

(S)

for Re(s) > 2. It leads us to (3.7).

For proving (3.8), we again appeal to Proposition 3.3. Putting s = —¢ + it gives
the conclusion.

Next we deduce (3.9) from (3.6) and (3.7) together with the Phragmen-Lindel6f
principle:

(1) as s =2,

’
— ()
for s =0 +1it, and |t| > 2, a>1+@.

To see (3.10), we integrate the left hand side of (3.10) over 7 in

(3.11) T={r|T<r<T+1, |t —t,| > T3}
By Propositions 3.3, 3.4 and (3.11)7 we estimate

< ItIZmax(0,2—a) log ltl

/ / a—i—z’r dodr <</ Z log T'do
|sn—-T1<2
L T?logT.

On the other hand, | 7| = 1+ O(T~?%) > } for sufficiently large 7. This proves (3.10)
for sufficiently large T'. For small T the assertion is trivial. [

Now, we prove the following theorem about Wr(z).

Theorem 3.6. Let ¥y(z) := [ ¥r(t)dt. Then we have

Sn+1 M x§n+1

\I‘l(x)zaz+ﬁzlogx+al+zn i D) Zogn(g ey

s,.+l $§n+]

LD Doy prnsy R Dl x Faresy

tn 20 tn>0

with some constants «, # and oy, where s, = 1 +it, and 5, = 1 — it,, are the zeros
of Z(3).

For the proof of Theorem 3.6, we define W,(z), and express it with N(P) and
Ap(P).

Lemma 3.7. Let Wo(z) = {7 ¥y(¢t)dt. We have
Ui(z) = Y (z— N(P)A(P)

N(P)<z

8
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20,(z) = Y (z— N(P))*A(P).
N(P)<z
The following theorem is used for the proof of Lemma 3.7.
Theorem 3.8. [5, Theorem A] Let Ay, Mg, ..., be a real sequence which increases (in

the wide sense) and has the limst infinity, and let
Clz) =Y cu,
An<z

where the c, may be real or complex, and the notation indicates a summation over
the (finite) set of positive integers n for which A, < x. Then, if X > A\ and ¢(x)
has a continuous derivative, we have

X
3 cad(An) = _/ C(z)¢/(z)dz+ C(X)p(X).
An<X AL
If, further, C(X)éd(X) = 0 as X — oo, then
> end(hn) = = [ Cla)¢/(@)da,
n=1 M
provided that either side is convergent.

Proof of Lemma 3.7. ¥(z) is obtained by substituting n = P, A, = N(n), ¢(z) =
z — N(n) and ¢, = A(n) in Theorem 3.8. Similarly W5(z) is also obtained by putting
n= P, A, = N(n), ¢(z) = (z — N(n))? and ¢, = A(n) in Theorem 3.8. O

We express ¥z(z) with Z(s) by using the following fact.
Theorem 3.9. [5, p. 31, Theorem B] If k is a positive integer, ¢ > 0, y > 0, then

— [ e y'ds _ )0 (y<1),
271 Jeooi S(s4+1)...(s+ k) - %(1 - i)k, (y > 1).

From Lemma 3.7, we have

R (B2 )

2
z N(P)<z

This is the case of k = 2 in Theorem 3.9, so we can express

| et ot AP)
v} = — —_— ds f > 2.
@ =55 [ TIVETD D

From (2.2), we have

(3.12) Uy(x)

ctoot s+2 !
! / i z (s)ds.

T 270 Jemood s(s+1)(s+2) Z

9
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Now we begin the proof of Theorem 3.6.

Proof of Theorem 3.6. Suppose T' > 1000, and let A := N + % where IV is a positive
integer. We have by Cauchy’s theorem

1 3+iT 812 7
613) 5 [ T A
1 —A+:T 34T 3—iT z-7+2 7!
T om </_A_n i /—A+6T - /—A—iT) s(s +1)(s+ 2)7($)ds
xs+2 ZI
R € A
where

R(A,T):={z€C| —A<Re(z) <3,-T <Im(z) < T}
We will estimate each integral in the right hand side of (3.13), which will be denoted

by [17 12 and 13.
We first estimate ) ]
—A+1 —A+:T
I <</ +/ .
—A —Ati
We use Lemma 3.2 since A > % Then we have
~A+iT $s+2 ZI
./_A+i s(s+1)(s+ 2)7
vol(I'\H)

e (2, o (s —1)?—2E ) d
_/;A-i-i s(s+1)(s+2) (--Z—( —s)+ T (s=1)"— ) 5

Since —%(2 — ) —2FE = O(1), by denoting s = ¢ + it, we have

(s)ds

—A4iT 5+2 ZI
/ ud (s)ds

ari s(s+1)(s+2)Z

T g2-4 vol(T\H) [~A+T g5+2 _—
_o(/1 = dt) + 2 /_AH_ “yds = 0.

Since we have
—A+i $3+2 Z/
/_A s(s+1)(s+2) Z

2—-A

(s)ds| <1 x “"’AS = 0(z¥™),

x O(A?)

we obtain
[1 = 0(1'2-‘4).
Next, for I, we divide it into the following three parts,

3T 2542 VA J —1piT 14T 34T
/—A+iT s(s+ 1)(s + 2)7(3) $= /—A+iT t ./—1+z'T + /1+ﬂ ’

10
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We put them to be Jy, J; and Js, respectively.
By Lemma 3.2,

— 147
ne

! vol(I'\H)
— AT b

%(2 — s)‘ + ——Y(s = 1)*| + |2E|} |ds|.

ws+2
e el
Since |Z(2 — s)| < |Z(3)|, we have

Z', .1 vol(\H) 2E\ r°
< | —(3)— N VT o= 042 .
s (Z (g)Ta‘ + nT + T3 ,/;Ax do

_ 2?(1 — z74)
=0 ( Tlogz ) ‘

For J;, we use Lemma 3.2 again. We have

14T I0+2 VA VOI(F\H) ,
< = - ———— —_—
J2 —[1+iT T3 { 72 S +———lls=1) |+ |2E] ¢ |ds|.
Since
1+:T Z’ 1—:T Z/
/_1+iT 7(2 —s)|lds| = ~~/3—iT l"Z’(S) |ds],
we obtain o y
_ 3—iT g7 VA 22z — 1)
Jz—o(/l‘” |70 Idsl) +O< Tlogz )

It is obvious that
ZI

34T 4o+2
J3 S/ 7(8)

i T8 |dsl.

From (3.12), we have

1 3+:T xs+2 Z/ .’115
(o) = 5 [ e T (s)d ).

(%) 2mi Jsmir s(s+1)(s+2) Z (s)ds + 0O (T2>
Equation (3.13) now becomes

(3.14)
5 3 3+4+4T
Uy(z) + O (%) = 0(z> 1)+ 0 (Tﬁ)gw> +0 (—T1—3 /1; 27 +? {ds{)

+ S Res,. (;(‘;E%;T)Z?I(s)) '

2ER(A,T)

ZI
7(3)

It is easily seen that

S e /P W I ) S
Reso=s (s(s +1)(s+2)Z (L)) T sn(sn + 1)(sn +2) (n21),

11
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:L‘s+2 z! p(n)z§"+2
s=in | s (8) | = ——= — > 0),
R%—"<qs+n@+a)z“0 GGy 20
where p(n) is the multiplicity of s,.
For calculating the residue at s = 0, we have
A I(T\H 1 1 1
7(5) = %_)—aa-}-ch'{—g—i-!- (—VO](F\H)—QCI-—E)S—F...,

where

= log N(Ry) vEX ( Zmﬂ')'l
a.—zn: 2m(R) Z 1 — cos n y

m=0

by Theorem 3.1, and

1 )2
x5+2:x2<1+slogz+w+...),

2!

From these calculations, we can express

R 200 = aee? + foa?lo
€Sg=0 3(3+1)(3+2) 7 8 = QoT oL g T,

where ap := % (ﬂg\_ﬂ) —a+2d — 2) and Gy := %

For the case of s = —1, we can express

1‘3+2 ZI
Res;=—; (mj(s)) = oz,

with some constant a;.
For the case of s = —2, we can express

gst+2 A
Resy=_2 (WY(S)) = Qg,

with some constant aj.
Gathering together these residues,

12



KSTS/RR-00/005

May 16, 2000
(3.15)
ZI
Res;—y | ————— (s)>
zER(ZAT) ( s+1)s+ 2)Z
M M 5
4+ 2 x4+ 2
=3 + E ~ -
a0 5n(sn + 1)(sn +2) 5,30 +1)(5n +2)
x4 2 a4+ 2
+ + — —
tgo Sn(sn+1)(8n +2) 50 3(5n +1)(50 +2)
+ apz? + Gor?logz + a7 + .
Now we estimate f3 zr Z'( + iT)|da. From Lemma 3.5, we have
3 got2 | 7/ 2°t2 1
[ e oo« [T S et [ S ey [P
Then we get
3 po+2 Z/(U+ZT) z3+e N ;_‘;_;_13;:;: iz —1) . 5 .
v T3 | Z Tlog:c logz —2logT  T3logx T(logz — 2logT)
Now (3.14) becomes
(3.16)

5 e 5
Pa(2)+0 (Tg) =0 +0 (Tlogz) +0 (T(logacgi 210gT))
M % + 2 % + 2
1P Dy 2 « 5n(on + 1)(En + 2)
2o +? in+2
" §0 sn(sn +1)(sn +2) * ,§, 3n(3, +1)(3, +2)
+ agz? + Box? logz + a1z + a.
As both A and T go to oo in (3.16), we obtain

(3.17)
) 5 x8n+2 M pint2
() = aoz”+ floz 1°gf”+a"’+a2+z ERE T Py A i ey T
n—o n n n n n
3n+2 x$n+2

+2

+ — = .
tn>0 sn(sn +1)(sn +2) tgo 3a(3n + 1)(3. + 2)
Recall ¥y(z) = 77 ¥,(z), and we obtain Theorem 3.6. O

13
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Our next goal is to show an Q-result for

(3.18) P(z) := ¥p(z) — ( > nz )
Definition 3.10. We define ’

(3.19) Py(z) = ]0 P(t)dt,

(3.20) Py(z) := [Pl(t)dt,

and further

(3.21) P(e) = P(z) — N(0)az,

Pi(z) := Pi(z) — %N(O)ch2

Pa(2) i= Py(z) — %N(O)yﬂ

We have
(3.22) Pi(e) = by + /2 " p(t)dt,
and

(3.23) Paz) = b+ [ Put)it.

with constants by and b,.

Lemma 3.11. There exists b3 € C such that

elsn—1)v e(3n—1)v

e >0 5"(3" =1) 503G —1)
Proof. Put
F(v): ﬁ1+/ du for v >1,

where 3, € C is unspecified temporarily. By changing of variables with = e*.

have
F(v) =8
Now by integration by parts and (3.22), F(v) is written with a constant by as

F(v) = ﬁ1+b4+P(e +2/ A,

14
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We use integration by parts again and from (3.23), it follows that

(3.24) F(v) =01 +bs + —— Pl( ) + - 27)2 + 6/ Pz(z ———dz

e3v

with some constant bs.
Applying Theorem 3.6 leads to
x5n+1 5n+1

Pilz) = Z Sn(sn +1) + Z n (3, + 1)

tn>0 tn >0

Thus

PUeT) _ g (L e )
e =5 sn(sn + 1) §n(§n + 1)
Similarly, from (3.17) and (3.23), we obtain
Pa(e¥)

Hence

IZ:S"_I J:sn—l
& =X G )2 T EG I DG T 2)
tn>0 n\°on n n\°n n

).

/-e" PQ(«T) o — Z ( (sn——l)'u .o 6(511—1)7-/
€ >0

4

From these calculatxons we deduce from (3.24) that

F b e(sn—l)v e(En—l)U )
(v) =01 +bs +th>0 (Sn(sn =y + G )

5 (sn—-l)v 6(5“—1)
i t2>0 (Sn(sn +1)(sn +2) T3 8n(8n + 1)(3, + 2))

+6 5

$n(sn+ 1)(8n +2)(sn — 1) 3a(3n +1)(3n + 2)(5n — 1))

1, >0

(sn=1)v (3n—1)v
=51+65+Z(e + )

=30 sn(sn — 1) 5,(8,—1)

By taking 3, = —bs =: b3, we have the lemma. []

F(v)=b3+/lvwd

Lemma 3.12. There exists bg € C such that

In what follows we put

v elsn—1)v el3n—1)v
bs+/ Flu)du= Y
1

7+ 2

tn>0 s$n(sn —1)2 >0 5a(30 —1)%

15
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Proof. Put
G(v) :=f, +/U F(u)du for v >1,
1

where 3; € C is unspecified temporarily. By doing the same as in Lemma 3.11, we

obtain
G( ) /8 b Z e(sn——l)v Z e(én—l)v
v) = P2 + 7 ‘I" + ~ /~ ’
tn>0 5”(571 - 1)2 tn>0 Sn(sn - 1)2
where b7 is some constant. Choosing 8, = —by := bg yields the lemma. O

In what follows we put
=bs+ [ F(u)du.
Glw) = bs + [ Flu)du
Similarly, we find the following lemma.

Lemma 3.13. There exists bg € C such that

by +j1” Glu)du = 3

tp>0

e(s"—-l)v 6(5"——1)1/

Sn(sn — 1)3 + Z

tn>0 gn(gn - 1)3‘

The proof is similar to Lemma 3.12. Now in what follows we put
H(u) = bs + / G(w)du,
1

which is uniformly convergent for all v € R. We can therefore extend the definition
of H(v) to all R by using the series representation.
Here we introduce the following lemma.

Lemma 3.14. Let k(z) = (8222)2 Then

a) k(z) is a C*®°-function on R;
b) k(z), K (z),k"(x),k"(z) are all O(z~?) when |z| = oo,
c) [ k(z)e™*dr = max[0,1 — %“;l]

Proof. Every statement except for £”(z) in b) is proved by Hejhal {4, p. 264, Lemma
16.9]. The relevant property of k" (z) is also deduced by the same method. O

Now we want to estimate

/ AP (N = 1))

e'(/
for large values of r, A and N.

16
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Lemma 3.15. Let A be a positive constant. We have

/1'+AP( k(N = r))dv

=‘% > Singinr)(1'2;N)+O(A3>+O< )+O()

0<t, <2rN

Proof. For convenience, we assume A and N are integers. Using Lemma 3.11, it
follows that

o P(e) ,
/ Tk(N(v—r))dv:O<N2 2) N/ /(N (v — r))dv
We integrate by parts using Lemma 3.12. Then we have
A P(ev) —_ 1 72 r+a "
[ E k@ = rdo =0 (ﬁﬁ) + 3 [ Gk (N (o - )de
And using Lemma 3.13 yields

(3.25)
/-r+A ?-gj—v—)k(N(u )y =0 (%ﬁ) _ NP /lr+A H(v)k"(N(v — r))dv.

1

The function H(v) has been defined for all v € R. Since H(v) is uniformly bounded,
we can estimate as follows:

N3 /:A |H(v)E"(N(v —r))|dv = O (%) ’

and . ]
N [ @R (N (o= r)ldv = O (;3-) .
Therefore (3.25) becomes

[ P () w0 (£) - [~ o -

Since the series representation for H(v) converges uniformly on R, we can substitute
(sn—1)v (3n—1)v
e e
H(v) = _ 4 -
)= =P T 2 RGP

and commute integration and summation. So, after integrating term-by-term, we
obtain

(326) [ e Tifj—vlk(zv(v —))dv

o) o) -5 [ (5 5 v

tn>0

17
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Here, by considering s, = 1 + it,, §, = 1 — it, and changing of variables with
X := N(v—r), we have

/1r+A ?—((i—iu—)k(N(v —7))dv
o) vo(2) - 5 e () s

t >0
Let k(u) := [ k(z)e™ dz. Tt holds

[ B o= o= 0 (55) +0 () - 5 Sre () * ()

t,,>0

From Lemma 3.14 (c),

-/:-M mk’(N(v —r))dv

e’U
1y 2 cos(t,r) + t, sin(t,r) ( _ta )
=0 (As) +0 (r3> N Z 1+41¢,2 1 27N/~

0<tp<27N
By Proposition 3.4, we see
1
> 7 = O(R).
0<tn<R [sa P

Therefore,
/IMP( Vh(N(o = ))do

- ".% 2 t"fT(ti"zr) (1 - 2er> +0 ( 43> + O( ) +O).

0<t <21 N

Now

0<tn <2 N

This completes the proof of the lemma. [

Now we show the following lemma.

18
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Lemma 3.16. For N large, there exist some constants ¢; and ¢y which satisfy

e T (1+1007rN>

0<tn<2r N n

< ecgN3

Proof. 1t is obvious that

e, 0055 = 0 ()

0<tn <20 N 0<tn<2rN 0<tp<2rN

We can find c; and ¢4, which satisfies
(3.27)

27N 1007 N 3 2e N

oo 1) I 0+ 2 o ()
0<t,.1;I2WN tn o<t,£[27r1v tn o<tn<anN O I

Here by integration by parts,

21N 2N 2r N
328) 3 log( il ) = 0(log N) + [ log( . )dN(ac) — O(N%

T z

0<t, <277 N n
From (3.27) and (3.28), the lemma follows. [

Lemma 3.17. [4, p. 266 Lemma 16.10] Let ay, ..., a, be real numbers. Suppose that
To,61,...,8, are positive numbers. There will then exist integers xy,...,z, and a
number r such that:

ltay — x| <6 for 1<k<n

- 1
(3.29) TogrgTOH(1+—).
k=1 O
By applying Lemma 3.17, we have the following lemma.

Lemma 3.18. There exists ro such that:

(3.30) rotn =21l +¢, for 0<t, <27N,
where I is an integer and |e,| < &, and
(3.31) eV <y < 2oV

Proof. We obtain (3.30) by applying Lemma 3.17 with k = n, a, = £, 4, = &y
and with z; an integer.
We now set Tp = eV* in (3.29) and apply Lemma 3.16. This yields (3.31). O

From these lemmas, the following result holds.

Theorem 3.19. We have
P(z) = Q4 (2(loglog z)7) .

19
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Proof. In view of Lemma 3.15, we restrict ourselves to r, such that 0 < ¢, < 27 N.

Then we define )
™ =To— m

From (3.30) in Lemma 3.18,

tn

T‘ltn”—‘2ﬂ'1+€n“m,

N  ta 1ty
where —72 < e, — % < (so 47rN) b

Then for N large there exists ¢ > 0 which satisfies — sin(ry¢,) > Cﬁtﬁn. Thus for
N large, there exists ¢; > 0 such that

2 sin(t,r;) ( tn ) ces
- 1- Z - 1 Z Cr.
N D<t,§21rN tn 2nN N 0<t§rN
Referring back to Lemma 3.15, we obtain
ri+A v
(3.32) / Pl k(N (o = r))do > cs
1 ev

with some ¢z > 0, where A and N are kept sufficiently large. The number A is
independent of N.
By (3.31) in Lemma 3.18, we have

1
8C5N3 . " S - S 62(:5N3.

We can find ¢g and ¢;g such that

(3.33) coN < (log )3 < eroN.
Let
M ::sup{ﬂe—) 1 §v§A+r1}.
e’U

Using (3.32), we immediately deduce that:

r1+A

M /_°° k(N (v — ))dv > M/l K(N (v — r))dv > ce.

Since [%, k(N (v —r1))dv = O(%), it follows that
M Z CSIN
with some cg’ > 0. By (3.33) and definition for M, we have

sup P(e')

7 ” 1
1<u<ri44 €7 z ' 2 cs'(log ),
Svsm

20
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with some cg” > 0. It follows that
lim __73_(6)_1 > cs”.
v—00 CU(lOg U) 3
Hence putting z = e”, we obtain
T 2@ 5
7=z (loglog )3

and P(z) = O, ( (log log ac)l)
The Q_-result is proved similarly by using r, = o +
Plz) = Q4 (w(log log 1')3) .
From the definition of P(xz) in (3.21), this concludes the proof of this theorem.

Theorem 3.20. [2, p. 224 Lemma 7.1] For x — oo,
log N(F) _ log N(F)

47rN Then we have

= O(log ).
e NP 2. mPla(P) = ol PY T
From Definition 2.5 and Theorem 3.20, we have
> log N(P,) — ¥r(z) = O(zlog z).
N(Po)<z
Let
M T5n M .fl?g"
Po(il') = Z log N(P()) —_ Z - Z —,
N(Ro)<z n=0 %1 nZo *n
then we can express
(3.34) P(z) = Po(z) + O(z log z).
Whereas
- t M 4s5,-1 M t§n—1
[t = 2L (S R )
2 log N(P)<t 2 ogt ;= logt
z tsn—l z tsn—l
v s
(P0)<x Z/ logt Z lo gt
(Eh - +§:h ”") (1).
n=0
We define

Q(z) := mr(z) — (éli(xs") + éli(mg")) .
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It follows

Qe) = f: B | o).

logt

P, is expressed with P by (3.34), so we have

_[#dP(t) s logt+1
Qz) = jz log +0 (/zr log ¢ dt) '
From (3.19),

_ P(x) Pi(z) 1° = P(t)
(3.35) Q) = o - { TTiog t)"'L + f2 et 0w

On the other hand, by (3.18), (3.19) and (3.20),

iEs"+2 I§"+2

t§o o A (n2) :4;‘0 3G+ )(En+2)

(3.36) Py(z) =

Since [ %dN(z) = log R by Proposition 3.4, we have

1
Z —I'S_—F = O(log R)v
o<t,<R |5n
and
(3.37) Py(z) = O(«*log ).

From (3.20), it leads to
Pi(z) = O(z’ log 7).

Now the equation (3.35) is expressed with

(3.38) Q(z) P(”’)+0( ad )

- log log =

Therefore we reached our main theorem.

Theorem 3.21. When ¢ — oo,

M 3
mr(z) = li(z?) 4+ ) li(z*") + Qs (_x(l_ogloﬁ)_) )

— log =

22
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4. Q)-RESULT FOR COFINITE GROUPS

In this section, we obtain the Q-result of 7p(z), where I is a cofinite subgroup of
G. Then we have to consider the contribution from the elliptic classes, the parabolic
classes and the continuous spectra.

The Selberg trace formula is explicitly written by Elstrodt, Grunewald and Men-
nicke as follows:

Theorem 4.1. [2, p. 297 (5.4)] Assume that T’ has hr > 0 classes of cusps represented
by (i, -y Chyp, and o = det @ is the determinant of the scattering matriz. Let h be
a functwn holomorphic in a strip of width strictly greater than 2 around the real axis
satisfying the growth condition h(1 + 2%) = O((1 + |z )2=¢) for |z| = oo uniformly
in the strip. Let g be the cosine transform

Lo 2y —ita g, _ L[ 2
g(z) = 5 ) h(1+t)e "™ dt = é;[m h(1 + t*) cos(zt)dt.
Then there is for each cusp (; a number [; € N (i =1,...,hr) and constants

cr, 731“7 dFa d(z,])’ a(l,j) >0 (1 = 1a s 7hF7 .7 = ]7 'ali)
so that the following identity holds with all sums being absolutely convergent:

S h(A )_1‘%}9 I h o eyar

mlog N (Po) 4rg(log N(P))log N(P,)
+{%:}m(3)sm ( (R)) )+{Zp} (P)la(P) — a(P)-1]2
+ crg(0) + &rh(1) — t_f_‘l’(‘lL(l)

1 00 / o ’
——] h(1 +t2)%(it)dt-dr[ h(1 +t2)%(1 + it)dt

he L sinh z
a( .
+ZZ z])/ coshx—l‘i‘a(i’j)dx

=1 j=

The first sum in the second line extends over all T'-conjugacy classes of elliptic ele-
ments in ' which do not stabilize a cusp. The second sum extends over all hyperbolic
or lozodromic conjugacy classes.

If the stabilizer Ty, of the cusp (; is torsion free then d(i,j) =0 for j =1,...,1.

From the functional equation, the following lemma holds.
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Lemma 4.2. Assume 3 éﬁ—"—?)—u =0 (#), where p, = B, + iy, are poles of the

>0 o
scattering determinant. Then the Selberg zeta function satisfies,

A z ,
Z(8)+ (2= 5) = O(lsP).

Proof. From Gangolli [3, Theorem 4.4], we have the functional equation:

4khr
an #e-5=26) (=) - o

1 1 4rbg s—1
II (S___l__ﬂ) exp[/(; 4rrvol(T\H)#*dt + x1(s — 1)),
k=1

where x and k; are constants defined through the process described in [3], and gx
(1 < k <) are the finitely many poles of ¢ in the interval (0, 1] with order bx.
By (4.1),

.Z_'(s) + ZZ’(2 — 8) = 4khp (I;( —-3)+ I%(s)) + 4,‘:%’(1 —3)

VA
!
—_ Z(‘lﬁbk) (
k=1

We estimate each term in the right hand side.

From the property of the I-function [8, 8.362.2],

I’ I’

—I—;(Z —s)+ —F—(s) = O(log s).
From Elstrodt, Mennicke and Grunewald [2, p. 289 (4.25)],

AT —28,
%“ ) %%%2

1 + 1
5—1—‘qk I—S—qk

) — 4rkvol(T\H)(s — 1)* + &1.

(4.2)

+(t =)
where 3, € [0,1]. When e — 0 (ﬁ), the sum 5 -L; converges, and we
>0 Yn +v >0 n

see that

#{n |1 < va ST} = o(T?).
Then

¢
(4.3) *1—s<<§:

90 'Yn>0 n)

«iE:——=
>0 Tn

The lemma follows from (4.2) and (4.3). O
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From Theorem 4.1, we have the following proposition.

Proposition 4.3. Assume 3 o~ 0 (1—+1‘U‘§), where p, = B, + iy, are poles of

>0 m
the scattering determinant. Then we have for Re(s) > 1,
z' 1
(4.4) Z( s) = Y —=+O0(s+1),
ls—sn |<1 Sn |s=3n|<1 n

where s, = 1 +it, and &, = 1 —it, run over the zeros of Z(s) on Re(s) = 1.

Proof. In Theorem 4.1, we take the test function
1 1

h(l+t2)::t2+1+8(5——2)_t2+ﬁ2 <ﬂ>§’3>2>’
and
J e P L.
9(z) = 57— 25'[3 .
Then
(4.5)
©, 1 1
%<t2+(<—1)2—t2+52>
vol
Sl LR
wlogN(Po) ( 1 __1_) o 2 W2
+§}m(msm2( AU EERET) R A A

(R
(s v )9 )
“LZ{;/Z (t2+(i—1)2 - t?iﬂ?) %(“)dt
—dF/OO (12—(51— 1)2 t?i[ﬁ) F,(H'zt)d
P i [ oty

o cosh:c—l—}—a(z ])

Since %(zt

) = O(1) and 5(1 + it) = O(log?)[8, 8.362.2], the proposition follows
from (3.5). O
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Applying Lemma 4.2 and Proposition 4.3, we have same argument as in Theorem
3.6 under the condition .3 M =0 (37};3—) For the residues in (3.14), the

>0 Tn’

following terms are added to the right hand side of (3.15):
o2 z' pa(n)znt?
Ressepp | 757 = > 0),
e (T ) " A S 27
et 7 py(m)ae+?
Ressej, | —————= = _—— = > 0),
® “(ds+nw+a)2“ﬂ o+ Gt 20

where u;(n) is the multiplicity of p,.
Then we have the following theorem.

Theorem 4.4. Suppose that 3. €2 = O (1——1—3), then for constants a, 3, o,
AnS0 Tn +v
we have
M Is"+1 M .’E§"+l
Ui(z) = az + Bzlogz + oy + —+ Y
( ® DB s P PEN R
gsntl x$n+1 pPntl gPntl

+an8n+l)+z—————*~~ +

tn20 tn 20 Sn(Sn + 1) Y20 pn(Pn 1) Yn>0 ﬁn(ﬁn + 1>’

where s, = 1+1t, are the zeros of Z(s), and p, = B, +tyn are poles of the scattering
determinant. §, and p, are the conjugacy elements for s, and p,, respectively.

Our next goal is to show an Q-result for P(z) in (3.18).
Definition 4.5. We define
P(z) := P(z) — N(0)z,
The following calculations are analogous to those in the previous section.

Lemma 4.6. There exists d; € C such that

d1+/lu7)—(f;—)-d

=2

tn>0 Sn(sn —

6(su—l)u e(én—l)v e(pn—l)v e([),.——l)v

P rm R Ve sy I Viw papusy R D Ay

tn>0 STL sn

In what follows we put

F@):dﬁ/}"ﬁﬂd
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Lemma 4.7. There exists dy € C such that

d2+/ F(u)du
sn-l)v (’(s"—l) e(pn-—l)v e(ﬁ"—l)v
= + + + — .
tZ>0 Sn(sn —1)? t2>0 5n(8, —1)? %Z>o pu(pn —1)? 7,12;0 Pn(Pn — 1)
In what follows we put
G(v) = dy + / Fu)du
1
Lemma 4.8. There exists d3 € C such that
ds + [ Glu)du
1
e(sn—l)v e(én—-l)v e(pn—l)u e(ﬁn—l)v

+2 3 5+ 2

50 (30 — 1) 5 pulpn

=2

tn>0

Y

sn(sn —1)° 730 (P — 1)

In what follows we put

H(v) = ds + /1 " Glu)du

(Ba—1)v 1
Z . 2 =0 ( 3) ’
>0 In 1+

then we can express F'(v), G(v) and H(v) as

Suppose that

and
H(v) = ds + / " G(u)du
1
6(at,.--l)u e(?s,,—-l)fu 1
-y Y s +o().
th;O sn(sn —1)° rn§>:0 Sn(3n —1)° I+v

When v — oo, all O-terms are O(1). So, we can include this case in the case of
cocompact groups. Then we have the following theorem by substituting with z = €.
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gPn—1 —_ 1
Theorem 4.9. When %Z;O T = 0 (-—"—“1+(logx)3)7 we have

P(z) = Q4 (z(log log :v)%) .

On the other hand, about P(z), we can express that

) $S"+2 x§n+2
Py(2) = + — =

¥(=) tgo sn(Sn + 1)(sn +2) t,,z>_:0 $a(30 +1)(30 +2)
wﬁn+2 ‘Tﬁn"'z

7,,2_;0 Pr(pn + 1)(pn +2) * %Zw Pr(Pn + 1)(pn +2)
by (3.18), (3.19) and (3.20).

Since oot
zhn~ 1
=0 ,
%Z>o Vu? (1 + (108:3”)3)

we rewrite Py(z) as follows:

-+

pont? o t? < z3
Fale) = EO n(on FD)(5n +2) T EZ:O Bt D12 0 </, ﬁ‘(Tch"J)'B’d”) '
Then we can obtain by (3.36) and (3.37)
Py(z) = O(z*log 2).

It leads to
Pi(z) = O(2*log z).
Similarly, from (3.38), we have again

Q) = {:)(gxag +0 (lo::c) ’

M M -

where Q(z) = mr(z) — Y li(z*) — X li(z*"). Then we get our main theorem for
n=0 n=0

cofinite I'.

Theorem 4.10. Suppose that

V>0 Yn? log z)3

When © — oo, we have

M z(loglog z)3
mr(z) = li(z®) + 3 li(a*) + Q4 (—Q—-—g—li—)—) .

= log z
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Example 4.11. When I is the Bianchi group associated to an imaginary quadratic

number field K = Q(v/—D) (D # 1,3), i.e.

[=Tp=PSL(2,0k) = { (‘é g)

a,b,c,d € Ok, ad — be = 1} J{E1},
where Oy is the ring of integers of K, we deduce that the assumption (4.6) is satisfied
as follows:
By Efrat and Sarnak [1],
Theorem 4.12. [1, p. 817 Theorem 1] For I'p, let
€n(s) = (dg//(2m)"™ ) T(s)* Cu(s),

where H is the Hilbert class field of K, dy is the absolute value of the discriminant of
H, (y(s) is the Dedekind zeta function of H and hr is the class number of K. Then,

4,0(5) = (_1)(hr—2'—1)/2wK23__2{.H(S — 1)

Eu(s)

where wg = \/i/d;(é with dx being the absolute value of the discriminant of K and
t is the number of prime divisors of di .

By Suetsuna [11], (y(s) has no zeros in the region

a

1 — —— 0
7> gy 7Y
Then we have
,8 <1 ____(1—_
" log(Ival +2)’

and we obtain

@ ufmp<0%“?+”)-

On the other hand,

5 e(ﬂn—1>v< 5 6 1
w0 W T \So (= B)? ) vt

From (4.7),
1

Z '7n2(1 - rB'n)g

Yn >0

= 0(1).

By substituting z = €, the assumption (4.6) is satisfied.
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5. O-RESULT FOR COCOMPACT GROUPS

In this section, we obtain the ‘explicit formula’ of ¥p(z), where I' is a cocompact
group.
We have the following lemma.

Lemma 5.1. [5, p. 75, Theorem G] If ¢ > 0,y > 0, then

. 0, <1

(5.1) — /C+Ooz Vs = {1 " = 1)
’ 27['2 c—oot S8 - 2’ ( - )
L (y>1)

where, in the case y = 1, the integer is to be interpreted as a ‘Cauchy principal value’,
that is to say as the limit of

1 c+Ti ys
5.2 — / Y ds,
(5:2) 2wy Je-Ti S s

when T — oo. Moreover, if I(y) = I(y,T) + A(y,T), where I{y) and I{y,T) denote
the integrals (5.1) and (5.2) respectively, then, for T' > 0,

C

Y
|A(y, T)| < § 1| logyl

=T

(y#1)
(y=1),

Ay, T)| <y (always).
Applying Lemma 5.1, it leads us to the following explicit formula.

Theorem 5.2. Let 1 < T < z3. Then we have

(53) Wr(z) = ~9:2 + Z . _—x'

n=0 Sn n=0 Sn
2
+ > —x3"+ > = S"+O(—logw)
0<tn<T Sn 0<tn<T Sn

where s, = 1+ it, and 5, = 1 — it,, are the zeros of Z(3).

Proof. Suppose T > 1, let n be in (0,1), and we consider

(5:4) Jn) = 5= [ S 7 5)ds = Din) + et ) + e () + € )+ €5 + sl

21
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where the integral is taken in the positive sense around the rectangle R(a,T) := {z €

C| —n<Re(z) <2+n,

of the following integrals :

—T < Im(z) £ T}, and Ji(n),c

1 24n+iT 13 7/
M= [ 7
1 1+n+T S Z’
HUET =3 M50
1 n+iT g% 7/
= — ——(s)d
Cz (77) 27T'L ./+n+1T S Z (5) i

1 —n—iT g% 7/
=5 [0 T 7O
_ 1 gun=iT g5 7/
ey (n) = %/n o —S-—Z—(S)dsy

1 24+n— th Z’

e (n) = 2 /+n iT s Z( s)ds.

First, we consider J;(n). From (2.2), we can express that

c+zT
1(m) = om /c

”W}

(N(P)) \N Y4

t(n),ct(n), ca(n) are parts

)

where ¢ = 2 + 1. Then applying to Lemma 5.1 with y = 7\7%}3‘)’ we have

Putting

and

we have
(5.5)
By the definition of I(y),

(5.6)

() =>_ Ar(P)I

X =Y Ar(P)A

\I}FO(:E) = Vr

(m%’T)'

{P}

{P}

{r}

‘]1(77) = \I,Fo(m) -

(#) ~ 5108 N(Py),
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and from the property of A(y), we have

z 2+n . 1
(5.7) X <3 Ar(P) (ﬁ(—p“)) i {1’ nT|log 7\,—(“’,,—)1}'

{P}

We put the right hand side of this inequality to be X;. Since X, is bigger than
1log N(P,), we can express

(5.8) Ji(n) — Ur(z) < Xy.

Next, we estimate ¢t (i = 1,2,3) by using Lemma 3.5.
By (3.9), we have

1 /H-—'r)if]" 2 7'

)l = |5 ~(s)ds

24n+iT S VA

14ntiT 50
/ .n iC——]t|2(2“’)log [t|ds},

2+£iT o9 1 d
| g
24ni og[tlds| + 24T |$]

T S|

where s = o + 7t. Then

oo i< s+ ot ((2)' 7 - ()

2
< (% + TI‘Q”:E) z"log T.
We also see that (3.10) and (3.8) give

1 p-n+iT g5 7! J
ﬁfﬂwzf s)ds

(5.10) |z ()] =

<</ —T"’logTdaJr/ (IT? + 1)do
L Tz log T.

From (3.10), an estimation for cs(n) holds as:

(5.11) |es(n)] = / B Gas| < /—""T TR + 1)ds| < 2T
i it s Z kil 8]
On the other hand, from the theory of residues,
(5.12)
J(n =—x2+z x5"+Z—xS"+ o=t Y :1—1:;"—1-0(1).
n=0 Sn n=0 Sn 0<tn<T S 0<t T Sn
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Gathering together (5.4), (5.5), (5.6), (5.8) and (5.12), we obtain

Ur + ¢ (1) + & (n) + es(n)

:—;t +Z x’"—}-Z—z

n=0 Sn

+ > ——xs"+ > =

¥ + O(X,) + O(1).
0<ta<T § o<t<T Sn
Then, from (5.9), (5.10) and (5.11), we have
(5.13)
1 M
Ur(z) = 51*2 + Z " + Z —ws" + Z —zs" + > ——:c
n=0 n=0 Sn 0<tn<T Sn

0<tn<T Sn

2
+0(X,)+ 0 <<:;—,— + T1'2”z) z"log T + Tzt log T + x"’Tz)

Now we estimate X;. From the mean value theorem, we have

(5.14) log 355 > N(Pc),_x > '%Eg;il,
for z < ¢ < N(P).
If IN(P) — 2| > 1z, then
N(P)+z 2z
(5.15) MOte <14

<9,
|N(P) — |
and we get |log ﬁl

Next we deal with the case of |N(P) — z| < =z

For 2z < N(P) < z, we can write N(P) = 2, —r (r > 0), where z, is the maximum
of powers of N(P), not exceeding x. Here r is an integer satisfying 0 < r < Zz, and

0<r=|N(P) = 2| <|N(P)—z[+ |z — z:] <2|N(P) — 2|
Combining this with (5.14), we have

(5.16)

In the case of z < N(P) < 2z, we have

(5.17)

log

N(P)
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Now we put up and X’ to be as follows:

( T )C Ar(P)
up =

PTAN(P)) wTlog w5
and

X' =Y up,

{P}

respectively. Then, we have

e Ar(P)
5.18 X' = al _
( ) T % N(P)¢|log —-——N'(”P)|

Putting ¢ = 2 + 7, this can be written as:

$2+77 AF(P)
X' < Z + Z 77+ Uz
T {|N(P)—x|z%x |N(P>—x|<%x} N(P)*+|log N(P)[
where u,, is the case of N(P) = z;.
By (5.15), (5.16) and (5.17), we have
2t Ar(P) Ar(P) =z
(5.19) X —uy <! S D4 S =
T IN(P)~z[> 1z N(P)H" o<r<ts g#n
¥ Ar(P)
€ ==+ TZ —.

The summation over r is separated into two parts, 0 < r < fax and -ll—oz <r< %x.

In X', the summation over 0 < r < £z and u,, are larger than 1. By (5.7), (5.18)
and (5.19)

z2tn T AF(P) 247
X € T +T Z _T--l‘l‘ log z.

1 1
ﬁz‘<r<;‘-z

Since #{r|ssx <r < 1z} <« a? by the prime geodesic theorem, we have

247
(5.20) X1 < ?——7;-— + % (Ezz log :L') +2*tlog z
T

2tn

<7

log z.
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Combining (5.13) with (5.20), we have

Ur( =-$ +Z ’"+Z—xs"+ > —x5"+ > =

n=0 Sn n=0 5n 0<tn<T 0<tn <T Sn

2 " T?
+0 ((T]ogx) + (?+Ta:> 2"log T + E) .

Since 1 < T < x%, we get the error term with

247

0 <$T log x) ,
where n = (log T)~!. If T > 23, then the factor 27 is bounded. The theorem follows.
In the case of T < 73,

Ur( ——.l' +Z xs"+z—xs"+ > o —a 4+ Z s"+0(x%logx).

n=0 Sn n=g Sn 0<ta<T Sn 0<tn<T

From Proposition 3.4, we have

> T < T = 27? < 25,
Sp T

1
T<|tn|<z3

Since (5.3) holds for T' = 27, the theorem follows for T < z3. It completes the
proof. O

From this explicit formula, we have an estimation of ¥r(z).
Corollary 5.3. When ¢ — oo,

M
Up(z) = —:c + Z +> ;1—:1:" +0(a¥%9),
n=0 -7

__0 n
where s, = 1 + it, and 3, =1 — it,, are the zeros of Z(s).

Proof. We consider the summation over ¢, of explicit formula in Theorem 5.2. By
using Proposition 3.4, we have

z®n zy 'mitnl 3 2
- =T
ltn}é i K—=F—< TT

So, we can express
M 1 . .'E2
Ur( :—x —I—Z ZTzs"+O(sz+—logx).
n=0 Sn n=0 Sn T
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By choosing T = 23, we obtain
M

Ur(z) = —;1:2 + Z +3° :S;1~m§" + O(:r%“).

n=0 n n=0 n

O
Next we apply this to the prime geodesic theorem.

Theorem 5.4. When x — oo,

M
rr(z) = li(z?) + 3 lie™) + O(23+7)

n=1
Proof. Let
Alp)
O(z) := .
2<izs 108 N(P)
This is expressed in terms of 7r(z):
M1 s
) = 3 ek,
where M = [logz] So we have
M (o
(5.21) U(z) — mr(z) = 5. e ) = O(z).
m=2
From Theorem 3.8, we have
e Ur(u) Yr(z)
.22 (z) = .
(5.22) (2) /2 ulogzudu + log

By the definition of li{(z?) and integration by parts, we obtain
[ =L et e

2 logu log u 210g:t " log2
Gathering together (5.21), (5.22) and (5.23), we have

. Up(wdu  2Wr(z) — < _du
2 T - = - ’
(5.24)  mr(z) —li(z”) /2 ulog?u + 2log /2 log® u +0l)

(5.23) li(e?) =

Substituting Corollary 5.3 to (5.24) leads to

zite

mr(e) = li(e?) + O ( ) = li(z?) + O(z3**).

log
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6. O-RESULT FOR BIANCHI GROUPS

In this section, we obtain the O-result of mp(z), where I' is a Bianchi group.

In case [ is essentially cuspidal, the order of the scattering determinant is less than
three, and every estimate in the proof of Theorem 5.2 goes through.

In particular we have the following theorem as a consequence of Theorem 4.12.

Theorem 6.1. Suppose that I' is a Bianchi group. Let 1 <T < z%. Then we have

1 . M n
Ur(z) = 3% + E
n=0

sn M _5n Sn 5 2
SIS o A R S +O(:f logw>,
Sn 58 T

N 0<tn<T S o<t <T Sn

as © — oo, where s, = 1 + it, and 3, = 1 —1t, are the zeros of Z(s) coming from
discrete spectra.

We apply this to the prime geodesic theorem.
Theorem 6.2. Suppose that ' is a Bianchi group. When © — oo,
M
mr(z) = li(2?) + 3 li(z*) + O(:c%*'f)
n=0
Proof. From Theorem 6.1, the same result is established as that in Corollary 5.3:
1, L1 X1 S e
\I’F(l')=—$ +Z—+Z~—'+O(1}3 )
2 n=0 Sn n=0 Sn

as ¢ — 0o. The same argument as in Theorem 5.4 leads to the result. O

This estimate was proved by Sarnak [10, p. 282, Theorem 5.1] when the imaginary
quadratic field (# Q(:), Q(v/—3)) is of class number one. When I' = PSL(2,Z[1]),

the error term is reduced to O(:c%*'i) under the mean-Lindelof hypothesis (A-aspect)
for automorphic L-functions by Koyama [7].
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