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Quantum Ergodicity of Eisenstein series for Arithmetic 3-Manifolds

SHIN-YA KOYAMA

Abstract. We prove the quantum ergodicity for Eisenstein series for PSL(2,0k),

where O is the integer ring of an imaginary quadratic field K of class number one.

1. Introduction. Luo and Sarnak [LS] proved the quantum ergodicity of Eisen-

stein series for PSL(2,Z). It is stated as follows:

Theorem 1.1. Let A, B be compact Jordan measurable subsets of PSL(2,Z)\H?,

then

i 2eL4) _ Vol()
=% u(B) ~ Vol(B)’

where py = |E(z, 3 +1t)|2dV with E(z,s) being the Eisenstein series for PSL(2,7Z),

and dV is the volume element of the upper half plane HZ.

In this paper we will generalize Theorem 1.1 to three dimensional cases
X = PSL(2,0k)\H?, where Ok is the integer ring of an imaginary quadratic
field K of class number one, and H? is the three dimensional upper half space. Our

main theorem is analogously described as follows:
Theorem 1.2. Let A, B be compact Jordan measurable subsets of X, then

L m(4) _ Vol(4)
=% pe(B) ~ Vol(B)’
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where py = |E(v,141it)|?dV with E(v,s) being the Eisenstein series for X, and dV

is the volume element of H>.

Indeed we show that as ¢ — oo,

2Vol(A)
pe(A) ~ T logt,

where (x(s) is the Dedekind zeta function.

In two dimensional cases numerical examples [HR] suggested that the quantum
ergodicity would hold. For higher dimensional cases no numerical examples are
known. Theorem 1.2 is the first result along this direction.

The author would like to express his thanks to Professor Peter Sarnak, who

introduced the author to the subject.

2. Three-Dimensional Settings. In this section we introduce some notation on
the three-dimensional hyperbolic space.

A point in the hyperbolic three-dimensional space H?® is denoted by v = z +yJ,
2z = 1 +x21 € C, y > 0. We fix an imaginary quadratic field K whose class number
is one. Denote its discriminant by Dy and integer ring O = Og. Put D = |Dg|.
We often regard O as a lattice in R?, which is denoted by L with the fundamental
domain F; C R2. Also put w = wi = D~/2, the inverse different of K. The
group I' = PSL(2,0) acts on H® and the quotient space X = I'\H® is a three
dimensional arithmetic hyperbolic orbifold. The Laplacian on X is defined by

d? d? d? d

a= v (Gr+ gt ag) iy
It has a self-adjoint extension on L2?(X). It is known that the spectra of A is
composed of both discrete and continuous ones. The eigenfunction for a discrete
spectrum is called a cusp form. We denote it by ¢;(v) with eigenvalue A; (0 = \o <
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A <Ay <--v). Weput A\j =14 7% We shall assume the ¢;(v)’s to be chosen so
that they are eigenfunctions of the ring of Hecke operators and are L2-normalized.

The Fourier development of ¢;(v) is given in [S] (2.20):

$i(v)= > pi(n)yKir; (2x|nly)e((n, 2)), (2.1)

n€o* [/~

where n ~ m means that they generate the same ideal in O, and (n,z) is the
standard inner product in R? with K, being the K-Bessel function.

For a Maass-Hecke cusp form ¢;(v) with its Fourier development given by (2.1),
we have the Rankin-Selberg convolution L-function L(s,¢; x ¢;) and the second

symmetric power L-function L(2)(s, ¢;) which satisfy the following:

o sy 3 B
n€O* [/~
L(Q)(S,qu) = %j(‘(‘:—))‘; = CK(S)_IL(Saqu x &;5),

n€O* [~
with pj(n) = 1/ = 0;(n), vj(n) = v;(1)Aj(n) and ¢j(n) = Dy Ai(K)- Tt is
known that the both functions converge in Re(s) > 1. The functional equation of
L(s,¢; x ¢;) is inherited from Eisenstein series by our unfolding the integral. We

compute that

L(s,¢j x ¢j) T(s +1r;)I'(s —ir;)['(s)?
Cx(2s) 82T (2s)

[ )P E@. 2900 = oy (1)
X
is invariant under changing the variable s to 1 —s. We normalize such that ||¢;|| =1

with respect to the Petersson inner product

1 -
= — dv.
(19) = s [ F@aoae
The residue R; of L(s,¢; % ¢;) at its unique simple pole s = 1 is equal to

87¢ic(2)
lo;(1)?

where Res;—3FE(v,s) = Vol(F)/Vol(X) is known by Sarnak [S] Lemma 2.15.

_ 8m(x(2)Vol(Fy)

ReSs=2E(U> 8) - W7

(2.4)
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3. Proofs. In this section we prove Theorem 1.2. We first define the Eisenstein

series by

E(v,s)= > y(w)’, (3.1)

Too\T"

where y(v) = y for v = z + jy € H* and Re(s) > 2. Here the group I'y, is given by

rw:{(é ’f) :nEO}.

The Fourier development of E(v,s) is known by Asai [A] and Elstrodt et al. [E]:

s 2—3 ‘SK(S - 1)

E(v,s) =y’ +
(v,;s) =y’ +y 5]
2 — niRe(nwz) 1~
+ 7= § : ln|s 10’2(143)("’)64 Ret )IX3—1(47T|nw‘y)ya (32)
éh’(s) ne€o* [~

where o4(n) = 3 |d|* and £x(s) = (L2)*T(s)¢x(s).
din
Our goal is to prove the equidistribution of the measure y; = |E(v, 1+it)[2dV (v),

where dV(v) = i%?—dl. We consider its inner product with various functions

spanning L%(X). We begin with inner products with Maass cusp forms ¢;.

Proposition 3.1. For any fized ¢;,

Y RYZEL

Proof. Set
Ji(t) = /X Pidug = /X ¢i(v)E(v,1 +it)E(v,1 - zt)defz—C—lE (3.3)
with z = x; + z27. To investigate this we first consider
I(s) = /X 8,(v)E(v, 1 + it)E(v,s)@%Q—dﬁ. (3.4)

All of the above integrals converge since ¢; is a cusp form. We unfold the integral
(3.4) to get

(3.5)

< . Jdzidzyd
Ii(s) :/ ¢j(v)E(v, 1+ it)y ————32 v
0 Fy Yy
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Denote the conjugate of v = z+yj € H® by ¥ = z—yj. As is well-known in the two
dimensional case, the space of the Maass cusp forms is expressed as a direct sum
of spaces of even and odd cusp forms. Here even (resp. odd) cusp forms are ones
satisfying ¢;(1 — ) = epj(v) with e =1 (resp. —1). Since E(v,s) = E(1 —7,s), it
follows that I;(s) = 0 if ¢; odd. So we may assume that ¢; is even. In this case

the Fourier development (2.1) is written as

i) =y 3 pi(n)Kun, (2rlnly) cos(2mi(n, 2)), (3.6)
n€o* [~

where 1 +r% = \;. Normalizing the coefficients by p;(n) = p;(1)A;(n), the multi-
plicative relations are satisfied by X;(n). These amounts to

N Aj{n) Ai(p) 1\
L(¢j,s) = ) Ny II (1—N(p)s +N(p)2_q> . (87)

neO* [~ (p):prime ideal
By substituting (3.2) and (3.6) into (3.5) we have

ne=[" [ v 2 pj(mm-rj(2w|n1y‘)cos(2w<n,z>>)

neo* [~
1+t 1-ie_ €k (1t)
+ ———
(y Yo k(1 + )
2y it 4miRe(mwz) 1~
e Z Im|" o g5 (m)e™™ Kii(4r|m|wy)
ék’(l .+ Zt) meox/,\,
dzr1dzod
ys___—“yf? Y. (3.8)

Now we have
0 O —-{0
/ cos(2mi{nw, z))dv = { ne {0} .
Fr 1 n=—= O

In the expansion of (3.8), we appeal to the formula cosz cosy = J(cos(z + y) +

cos(z — y)). Only the terms with n = m remain as follows:

2 < it - e sdy
Lo = e ) X I oma(m Ka(2rinly)pi (Ko, Crinly)y ™

neO* [~
2 Inlto_git(n)pi(n) /w ‘ N dy
= — K;:(2ny) K;r, (2my)y® —.
Exc(1+4t) ne;/N nl* | Ka(2my) K, (2my)y"
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An evaluation of the integral involving Bessel functions [GR] yields

on—s F( s+ir;+it)l-1( s+i7“2j ~it)I‘( s—i2j+it )r( .s—irzj—it)

Er(1+1t) I'(s)

Ii(s) = R(s)

with

Ry Llieatnie)
n€o* [~

We compute R(s) as follows:

1 |P| UZz't(Pk)
R‘S)‘mm M >> B

(p):prime ideal k=0

- |,J§" e

(P)k Y

[zkt 1 — —2it(k+1)

-1 lp|

= o) sz R

= 1 > Ak —k(s—it) _ —21t —k(s+it)
P]‘(l)(l — |p1‘2it) H (,;_0 /\](P )lpl lpl Zx\ [p{ )

(»r) k=0

1
pi(D(L —|p|=2)

H ( l. B |p| 2t >
1= X, (p)lpl~C= + [p|~2G=i0 1 — X;(p)|p|=(+) + |p|~2(+D)

()
1
pi(1)
11 _ 1- lp|~2* .
L Sl 1 g2 (L= A, a0 + [ 20 F0)
L6565 o)
pi(1) Ck(s)
Therefore
Ji(t) = L1 — it
_ 27r‘1+” F( 1+22rj )P(LHT%_Z”)F( 1—211",' )F(l—zr;—-mt)R(l ~ it).
Exc (L +1at) I'(1—1t) (3.10)
By Stirling’s formula |[I'(o + it)| ~ e~ /21|73 we see
the gamma factors in (3.10) < [¢|™" (3.11)
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as t — oo. It is known that the Dedekind zeta function in (3.10) is estimated as
17 < ¢ (1 +it)| <t (3.12)

Estimating the automorphic L-functions in (3.10) was recently succeeded by Sarnak

and Petridis [SP]. They proved there exists § > 0 such that for any ¢ > 0,
1 : 1—6+¢
L(g;, 5t it) <je [t] (3.13)
as |t| — co. The estimates (3.11)-(3.13) yields
Ji(t) < [t (3.14)

This implies Proposition 3.1. [

We now turn to inner products of u; with incomplete Eisenstein series. Let h(y)
be a rapidly decreasing function at 0 and oo, that is h(y) = On(y") as y — oo or
0 and N € Z. Let H(s) be its Mellin transform

H(s) = /Ooo h(y)y"sd?y-

Clearly H(s) is entire in s and is of Schwartz class in t for each vertical line o + it.
The inversion formula gives
1
h(y) = 5= [ H(s)y’ds

2m (o)

for any o € R. For such an h we form the convergent series

Fy(v) = Z h(y(yv)) = é% H(s)E(v,s)ds,
YEP o \T @)

which we call incomplete Eisenstein series.
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Proposition 3.2, For incomplete Fisenstein series F(v), we have

/XF(u)dm(v) ~ &%) (/X F(v)dV(v)) log t

as t — oo.

Proof. Incomplete Eisenstein series decreases rapidly as y — oo and belongs to

C*(X). Hence

dzd
/F,, Ydpse(v /Fh V)| E(v, 1 + it)|2 Y
y?
2#1/ / H(s)E(v,s)ds|E(v,1 + t)
dzdy
s 2
27”/ [ G ds/ B, 1+t

27”/ (3)H( g Sds(

S Joosi(m)K n<4w|n|wy>|)%

E dzdy
y3

it 4 1=t £r(it) ’2
Ex (1 +1t)

Ll
Ex(1+it)

= Fi(t) + Fy(t),

neo* /[~

where we put

2mi 3"

1 o
F@)= -——.‘/OA " H(s)y’ds |y

it 1—it fh’(it) ‘2 dy

Ex(l+4t)| y
Since Z}%‘ = 1, we have
*° dy ) ) .
Fi(t)=2 h(y)? + (a rapidly decreasing function of t). (3.15)
0
Whereas
> sl [~ L dy
Bit)= =775 H(s — K (4m *—ds.
)= e+ oF S () 2 e J Kalmenlyrde

n€O* [~
(3.16)



KSTS/RR-00/003
May 11, 2000

The series is computed as follows:

loa(n)* _ oa(p )a_ (»*)
y bl St
ne€o* [~ (p): prime ideal k=0
H Z <1 — |p|a(k+l)> (1 — |p|—a(k+1)>2
B IPI’“ 1—|ple 1—|p|=@

(p) k=0

1
B (u (1= 1pl)(T = I~
> (2™
k=0
1

:(1} (= Tpl) (T = [p[**)

( 2 el e )
L—|pj=* 1—=|pl*=* 1—|p|7o~*

_ H 1+p7*
- > T=p )= p (I~ p )

s (S*ta
(r(3)? CKC(IX( ))CA( ) (3.17)

s |p|(a-s)k+a + |p|(-—a~s)k—a)

The y-integral in (3.16) is evaluated in terms of I' function as before. We obtain

_ 2 |o—2ie(n)|? /OO o a2 s 0y
FZ(t)“mlg /(3) H(s) Y, Ter |Kie(dmwy) |y ?ds

nEO* [~
_ 2 / H(s)Ck(3)° Gk (3 +D(5 +it)T(5)°
mil€x (1 + it)[? (47w)*Cx (s)D(s)
2
= R TR Jy B (3.18)
where we put
_ H(s)Ck($)%ICk (5 +it)T( +1t) P T(5)?
B(s) = (47w)*Cr ()0 (s) . (3.19)

By Stirling’s formula to estimate the gamma factors and from the fact that H(o+it)

is rapidly decreasing in ¢, we can shift the integral in (3.18) to Re(s) = 1:

_ 4:R,€SSZQB(S) 2
BO =1 rmp T T P /m Bls)ds. (3.20)
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The second term in (3.20) is evaluated by Heath-Brown [H] as
1 1
Cr(5 +it) <t

for any fixed € > 0. We find that

2 / 1
—_ B(s)ds < t73te
millx (1 +8)* Jq) #) )
This corresponds to the bound (3.14).
Next we deal with the residue term in (3.20), which is more complicated. Write

B(s) as (k(£)*G(s) where G(s) is holomorphic at s = 2. Put

Ck(s/2) = :1_"12 + A0+ 0(s—2) (s—2).

In the expansion of

B(s) = (si_iz + Ag + O(s — 2)) (G(2)+G'(2)(s —2)+ O(s — 2)%),

‘the coefficient of (s —2)7! gives the residue

Resg—2B(s) = G(2)A_4 (2A0 +A_, %(2)) )

A simple calculation gives

H(2)[Cx (1L +i)D(1+it)*T(5)* _ H(2)[Ex (L +t)|”
(4mw)?Ck (2) 4k (2)

G(2) =

and

¢ il 2 k(1 +13t) n (x (1 —1t) + /(1 4+4t)  T/(1—1t)

=5 ok tat) | 2x(l—it) | 2D(1 + it) 2F(1—it)+c

with C being independent of ¢. The Weyl-Hadamard-De La Vallée Poussin bound

[T, (6.15.3)] and its generalization to Dirichlet L-functions by Landau, we have

Ch (1 44¢) logt
Cic(144t) "~ loglogt’
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This together with FT’(l + it) ~ logt gives

_ HElx L+ i) log
Res;—2B(s) = 2 (2) logt + O Toglogi)

Finally the first term of (3.20) is evaluated as

4Res,=2B(s) 2H(2)
lEx(1+at)>  (k(2)

Taking into account that

logt + O(1).

1@ = [ hn = [ B

7/3

we reach the conclusion. O

Proposition 3.3. Let F be a continuous function of compact support in X. Then

/XF(v)dut(v) ~ Qi(z) (/X F(v)dV(v)) log ¢

as t — oo.

Proof. The space of all incomplete Eisenstein series and cusp forms is dense in
the space of continuous functions vanishing in the cusp. For any € > 0, we can
find G = G + G2 with G; the finite sum of cusp forms and G5 in the space of
incomplete Eisenstein series, such that |G — F||oo < €. The difference H = G — F
is sufficiently small and rapidly decreasing in the cusp. Namely, it is majorized in

terms of another incomplete Eisenstein series

Hi(v)= Y hiy(y))
YEL o \T

Hy(v) 2 |H(v)|
satisfying
/X Hy(0)dV (v) < C(K)e
with some constant C()) depending only on the field K. Hence the conclusion. [

Propositions 2.3 implies Theorem 1.1 by standard approximation arguments.
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