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LP~CURVATURE AND THE CAUCHY-RIEMANN
EQUATION NEAR AN ISOLATED SINGULAR POINT

ADAM HARRIS AND YOSHIHIRO TONEGAWA

Abstract: Let X be a complex n—dimensional reduced analytic
space with isolated singular point z¢, and with a strongly plurisubhar-
monic distance function p : X — [0, c0) such that p(z¢) = 0. A smooth
Kahler form on X \ {20} is then defined by i89p. The associated met-
ric is assumed to have L}, —curvature, to admit the Sobolev inequality
and to have suitable volume growth near zo. Let E — X \ {zo} be
a Hermitian-holomorphic vector bundle, and § a smooth (0, 1)-form
with coefficients in £. The main result of this article states that if £
and the curvature of E are both L7, then the equation du = ¢ has a
smooth solution on a punctured neighbourhood of zo. Applications of
this theorem to problems of holomorphic extension, and in particular
a result of Kohn—Rossi type for sections over a C R-hypersurface, are
discussed in the final section.

Running title: LP—curvature near an isolated singularity
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1. INTRODUCTION

During the 1960s the theory of L?-cohomology for complex man-
ifolds underwent a programme aimed at establishing the Hodge de-
composition for manifolds with boundary. In the work of Kohn [11},
Hormander [10], Andreotti-Vesentini [1] and others, abstract meth-
ods from the study of bounded linear operators on Hilbert space were
again fundamental, and from this point of view it was necessary to
work with a complete Riemannian or Kahler metric on the manifold.
Reduced complex spaces with singularities were initially on the periph-
ery of this development, although a theorem of Grauert [8] had shown
that explicit construction of a complete Kéhler metric on V' \ {0} is
certainly possible when V C €V is an analytic subvariety with isolated
singularity at the origin. For the case of isolated singularities the ap-
proximation theorem of Artin had moreover demonstrated the existence
of a projective algebraic variety for which the germ at a singular point
is isomorphic to that of (V,0). It was from the perspective of inter-
section theory that the study of L?-cohomology on punctured varieties
consequently received a new impetus, when Goresky and MacPherson
[7] conjectured that these groups and the intersection cohomology of
the variety are canonically isomorphic with respect to some complete
metric on the punctured variety. The general proof of this conjecture
and the associated problem of defining Hodge structures on the inter-
section cohomology of Kéhler varieties has subsequently been taken up
in the work of Ohsawa [14], [15] and Saper [16].

The present article is concerned with the solvability of the equa-
tion Ou = ¢ when £ is a (0,1)form taking values in a Hermitian-
holomorphic vector bundle E. Let X be a reduced complex n—dimensional
analytic space with isolated singularity zo € X, and let p : X —[0, 00)
be a strongly plurisubharmonic “distance” function, i.e., an exhaustion
function such that p(z) = 0 if and only if # = zo. Here a Kahler metric
g on X \ {zo} will be provided by the positive real form w = i00p, and
for a fixed r > 0, w will be assumed to satisfy the following conditions
on Xo,={z€X |0<p(z)<r}:

(Z)/ |Ry|™ < 00 (22)/ w" <o(p)* forall 0<p<r,
XO,r Xo‘p

where R, denotes the canonical curvature form associated with g. It
will further be assumed that the Sobolev inequality holds with respect
to this metric, i.e.,

n—1

(ii7) ( S, if|%—“—1w“) s <eln) [ VI
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for smooth compactly suported functions f. Throughout our discussion
Xo,» will be understood to be connected, i.e., the local affine embedding
of X is irreducible. Analogous assumptions were introduced by Bando,
Kasue and Nakajima [3] in their proof of a removable singularities the-
orem for Einstein orbifold metrics. Part of the analysis used in their
argument (cf. [3], lemmata 5.8, 5.9) was further applied by Bando in
his proof of removable singularities for Hermitian-holomorphic vector
bundles E,initially defined over the punctured ball in C [2]. In this
case the metric on the base manifold was simply the Euclidean metric
on @, for which the conditions (¢) — (7%¢) are satisfied automatically. It
remained then to make the single condition that the Hermitian metric
on E has L?-curvature in order to obtain a locally free extension of
E across the origin. Embedded in the proof is Bando’s solution of the
Cauchy-Riemann equation for (0, 1)-forms on the punctured ball in C.
His method requires a combination of the ~Neumann and Dirichlet
conditions for solution of the Laplace-Beltrami equation on an annular
region, before taking the uniform limit of this solution as the radius
of the inner (Dirichlet) boundary goes to zero. Standard methods for
extracting curvature terms from the complex Hodge Laplacian of E are
fundamental in obtaining the “basic estimate” necessary for existence
and regularity of solutions. As a means of solving the Cauchy-Riemann.
equation via Laplace’s equation, Bando’s method is analogous to the
theory of Kohn and Hoérmander for manifolds with strictly pseudo-
convex boundary [11]. On a punctured domain, however, additional
techniques from [3], as mentioned above, are required. Moreover, by
contrast with the methods of Andreotti—Vesentini, or the main results
of Ohsawa and Saper, the property of metric completeness is not used.
In obtaining a previous removable singularities theorem for Hermitian—
holomorphic vector bundles, defined initially on the complement of
an analytic subset A of an n-dimensional complex manifold [9], the
authors of the present article verified a straightforward extension of
Bando’s method to the solution of the Cauchy-Riemann equation on
a punctured ball in (¢, where d > 2 corresponds to the complex codi-
mension of A. The main result of the following sections is a similarly
straightforward extension of this method to the punctured neighbour-
hood of an isolated singular point. It should be remarked, however,
that since the base metric is not smoothly defined at a singularity,
we pass to a situation in some respects resembling that of [3]. For
affine-analytic or projective varieties V the most natural examples of
a strongly plurisubharmonic distance function p are provided by the
restriction of |z|? or log(1 + |2|?) from the ambient C'. In the first
instance w then corresponds simply to the standard Kahler form on
3
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Euclidean space restricted to V, while in the second w corresponds
to a local restriction of the Kahler form associated with the Fubini-
Study metric on (Pu,;. For any V ¢ €V the restriction of the Eu-
clidean metric is area minimizing (cf. [6]), hence conditions (22) and
(131) above are satisfied at once. The curvature R, of the restricted
metric corresponds to 3 A §*, where 3 denotes the second fundamen-
tal form of the embedded variety. It is an easy computation to show
that fynp(,) |8|* < co when, for example, V : 2* = f(z,y) is an an-
alytic surface in ©C such that 2 < k < Ord;(0). Hence in this case
|Ry| belongs to L?*(V N B(r)). On the other hand surfaces defined by
an equation of the form 2*¥ = zy, which constitute a special class of
orbifold singularities (cf., e.g., [5]), do not satisfy condition (i) with
respect to the restricted ambient metric. For any singular space X
of this type, corresponding to the quotient of C* by a finite subgroup
of SU(n), the most natural choice of p is that induced by |z|? on the
Euclidean covering space, since the associated orbifold metric is flat.
In sections two and three of the present article, we make the neces-
sary modifications of Bando’s method in order to treat the case of a
reduced singular space X. For p satisfying conditions (z) — (z22) with
both £ and the curvature of the Hermitian metric of E belonging to
" (X), it is shown that the equation du = ¢ admits a smooth solu-
tion on Xo,. Applications of this result to problems of holomorphic
extension are discussed in section four. In particular, an extension the-
orem of Kohn-Rossi type [11], [12] for d,—closed sections of E defined
initially on the C'R-hypersurface corresponding to {p = r} is obtained.
The authors would like to express their gratitude to Professors S.
Bando and K. Miyajima for their helpful discussions with us at different
stages of this research. Special thanks are due also to Professor T.
Ohsawa for the insights and suggestions he has kindly shared with us
(in particular those discussed at the end of this article). The author
(Harris) moreover gratefully acknowledges the kindness and hospitality
of Professor Y. Maeda during a research fellowship at Keio University,
supported by the Japan Society for the Promotion of Science.

2. WEITZENBOCK FORMULAE AND THE NEUMANN/DIRICHLET
CONDITION

Let X be an n—dimensional reduced complex analytic space with
isolated singularity zo € X, equipped with a strongly plurisubharmonic
exhaustion function p : X — [0, 00) such that p(z) = 0 if and only if
z = xo. A smooth Kahler metric g on X \ {zo} will then be assumed

to correspond to the positive, real closed form w = i89p. Consider a
4
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holomorphic vector bundle E — X \ {zo} equipped with a Hermitian
metric h, and for ¢ > 0 define X., = {z € X | ¢ < p(z) < r}. Given
£ € C°(Xo,, W% (E)) such that 9 = 0, our aim will be to solve the
Cauchy-Riemann equation for £ by way of the Laplace equation when

n n
< .
wa 1€ |"w o0

The essential tool for obtaining the required estimate for existence and
regularity of solutions will be the Weitzenbock identity, together with
certain related formulae for the Laplace-Beltrami operator. Though
the derivations of these formulae are a rather standard application of
integration by parts, we will present them in outline here, both for the
reader’s convenience and for use in the next section. We begin with
@0 € C°(X.,, 0% (E)) satisfying the &-Neumann/Dirichlet conditions
(™), e,
(05, dp)p |(p=ry= (05, dp)0¢ |(p=r}= 0 ,

and ¢ |{,=c}= 0, where o denotes the principal symbol (cf. [11]). If gi
and h,; represent g and h in local holomorphic frames of T'X. , and F
respectively, then the volume form corresponds to

W = (5)det(g)d(z) Ad(2) ,
and for any smooth section ¢ we have
PP
a ke
(SpaaEd) / ¥Y; 9 hoeﬁ a det( )

Integrating by parts, and notlng that the conditions (*) eliminate the
boundary integral, it follows that

~ 0 - ng Ohes | o= -0log det(g)
Ot = — : ki o ba Ty e k EY p oy _ & ki
e = —5,9 t¥ag (g™ ) (5 o ——h7) — ¢ - a—
and hence
a3 Ok 8 a ki 2
(Op0pp)r = T PRy + 59" For+ ¢39 g~ Ry

62 0z

where R and F denote the curvature forms of T X, . and F respectively.
Here and in the following explicit use is made of the Kahler condition,
and the fundamental fact that at any point of Xo, holomorphic normal
frames may be chosen for T'X and FE.

Conversely

_ o S A2
2 _ YY¥a (ki vk s _ v
9l = [ Fo-(6" 0 — g e hap = det()

5
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from which we obtain

S 5 %1 0*p¢
Op0pp)r= —2 2 :
( E E'QQ)I 02,;0%; + 02,07
and hence
(D” o _];A _ baR k:R ki pra
50)1—-—2 or— 059 Ryq + 679" Ry + 079" For -
Given ¢ = O"p, we may rewrite this last expression in the simplified

form

DNp=2F, - —2tryR, - o+ 2tryRy - o — 26 (1) .
Now let Vo1 : Q%' (E) — Q%' ® Q%'(E) denote the connection corre-
sponding to the complex conjugate of the Chern connection on Qy°
hence in local coordinates

0p$ dg’®
VO,I o= T2 - o .
( So)kz 62/: + gji azk ¥a

Integrating by parts once again, and noting that with respect to holo-
morphic normal coordinates the first derivatives of g and g~' may be
neglected in the adjoint of V%!, we have

VO el? = < V%p,a(VO, dp)p >
O0Xe r

8299? 0 Aagﬁ o\ uk ui
/er (azuafk + a_Z:(gji afk )90&) g9 hagtp,,det(g) )

Now
dp? agj& L 7
< V% o(V>, d >=/ h 2T o) gk iR 5
'/;Xe,f‘ (’9 U( p)s‘o axz,r 6216 +gJ 82]: Lpa g g '882”99

8 09" gk v, Op g
— Ot Vih -t 5
8X..r (azz + i 8‘ g9 ""aé,fo
due to the fact that
Ovf 09\ 00 4k iy 7
0 =< o(9g, dp)0p, ¥ >|(p=c}uip=r)= (.;2 — oK) =g g Rl -

m

Hence, recalling that w = i83p, it follows that

£ ?p 3p e
< VO,I , Vo'l,d — _/ o uk vip B v
/BX“ @, 0( p)p > L PRI"g hag( 207,77 + 5z, 821)
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noting also that 5%3;@% g"F = o(d, dp)p, which vanishes on the bound-
ary due to (*). For the second term of (2), we have

0%ps o, 086\
J (Bzuafk T 92,9z, )%) 99" hapoldet(g)

= O | e T, ) 7 hosebdet
X( Do + ¢59 W) «gPrdet(g)

so that
(@"¢,¢) = 10p¢ll® + 1050l

= [Vl +(trRy - ,0) + (P go0) + [ lol (3)

where troRy - o = tryRg - ¢ — try Ry - ¢ + 939 “kR,,w Finally let the
connection V1? : QSN E) — Q%° ® O%'(E) be induced by the Chern
connection Jg, and suppose 0 < n < 1 is a smooth function with
compact support in {p < 2§ < r}, which is identically equal to one on
{p < &8} for some § > ¢. From the Bochner-Kodaira-Nakano identity,

we see that

IV (o) |I? = 10e(ne)lI> = (T'(ne), n9)

= (O"(n), 1) +i([A, Fh](n¢)snp)
where A denotes the adjoint of w A -. Thus from (3) we have

IV () |* = VO ()| +0* (tro R0, @) 40" (Firip, ) H(A(ERA(10)), 1) -
Now, for arbitrary ¥ € C®(X.,, 0% (E)),

a c vd A\ vi A i
< Fahp,w N >= F2 079 (9”9 — g g”)ha@gwl/’?

i c' a o a o] -{ B
=799 UFL 708 — F2305)9 hogtth -
Hence
IA(Fy Ang) = ng™ (2308 — Faqpd) implies
(ng" Faz05, 1) + i(A(Fy A nso),n@) = (g Fa0%,0)
ie.,
IV mo)ll? = IV (n)lI* + n*(tro Ry - @, 0) + 0 (trFi - 0, 0) (4)-

In the following section these identities will be used to obtain the nec-
essary estimates for solving both the Laplace and Cauchy-Riemann

equations on Xj, via the method of Bando.
7
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3. EXISTENCE AND REGULARITY OF SOLUTIONS

As in [9], the following is simply an expanded version of Bando’s
argument [2], here taking account of additional curvature terms from
the Kahler metric. From this point it will be assumed that

? Ry|" < o0 and/ Fpl* <
@) [, IRl Bl < oo,
and that moreover the Sobolev inequality holds with respect to w, i.e.,
2n n—1
. i) < \V/ 2, .n
) (f, W)= <eln) [ 199

for any compactly supported, smooth E-valued (0,1)-form %, where
V = V04 VO For the last part of the proof it will also be necessary
to assume that

(44%) / W' < o(p™) forall 0<p<r.
Xo,p
Theorem 1. For any ¢ € L™ N C®(Xo,, Q%' (E)) such that 9 = 0,
there exists u € L’NC*°(Xo,., E) such that Ou = €, and ||u||2 < ||€]|z2-

Proof. Consider hg = he X7 for K fixed independently of ¢ in the
following, noting that F,, = Fj, + K00p.

Lemma 1. (¢f. [2, Lemma 2]) There exist K > 0, ¢¢ > 0 and 6 > 0
independent of € > 0 such that, for all smooth (0,1)-forms ¢ satisfying
the Dirichlet-O-Neumann condition, we have

(@"¢, @) = ||0¢|* + ||0"¢||?
2o (llellP+ [_ ol + 191+ [ [96f?).
p=r e<p<é

Proof. We split the term [ |V?1p|? = 1 [ |[V1p|? X 2 and subsequently
omit 1 [ |V%p|? + [ _. |¢|* from equation (3) . Thus,
1
(O, ) 2 5/ [VOlo? + (Fhy - ¢, 0) + (troRy - 0,0).

Let 0 < 1 <1 be a smooth function with compact support in {p < 26}
which is equal to 1 on {p < é}. The radius § > ¢ will be fixed in the
following independently of €. Now

[V me)l < 2 [ (1901l + 1920 Inf)
<2 [ (190l +[V**l?) , hence

" 1 2
(@, ¢) 2 Z/(|V0’1(<P77)|2 = 2[0n*el*) + (Frgps ) + (troRy - ¢, ).
8
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From (4) it follows that

/ VO (ne)* = / |V2(no) 2 — (Ptr Fagp, ) — (ntroRy - ¢, 0).

Thus from
LI 2 o IV ) 2 o [ 192 )+ 1V )
—Z;l((n?tthK% ) + (n*troRyp, ¢)),
we have
@¢.0) > 1 [ IV =5 [ 1n?lel*~ (Pt Faip, ) (PR 0, 9))

H(Fhiepy©) + (troRy - 9, 0)-
Next, using the fact that Fj, = Fp+ K1,00p and trFy, = trFy+nKI,
at the origin of any holomorphic normal coordinate system, where the
trace is taken over the form-indices, it follows that

@eue) 2 o [ IV + [ (GK - 51008 ) P

1 4n -1
—Z;(n2t7‘Fh<P,99) + (Fh- @, 9) + (troRy - @, ).
Since n¢ has compact support, the Sobolev inequality applies to ny

and | s X
(g0 < o) ([ nel®0) T ([ 1Rr)”
supp7

<) [V ([ 181"

Moreover, writing (Fi - ¢,¢) = (1 — n?)Fa - ¢, ¢) + (0’ Frp, ) and
(troRy - 0, ) = (1 — n)troRy - @, 0) + (N*troRy - ¢, ) we may apply
the Sobolev inequality to the second term of each expression similarly.
Thus

1
— - (1"trFup, @) + (Fh P —L(trRy - 4,9)

— [ IVa)P (2em)( [ BN+ c'(n)( [ IR

4n —1
H(L=n*)Fh-p,0) + y (1 = p)troRy - 0, 0).

We choose 4 so that 2¢(n)(fouppn |Fa|™)Y™ + ¢ (n)(/. suppn | Bal” )n <&,
thus (O"¢,¢) >

o 19+ [ (35 - H0nt - a1l 1D ) ol

9
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Choose K large so that the second term is larger than [|¢|?, and
recalling that we omitted ; [ |[V®'@|?>+ f, .- [¢|*, we obtain the desired

estimate with ¢, = é];. O

Lemma 1 shows that the kernel of (J” is trivial, hence there exists a
unique L2(B?)-solution to the equation 0", = € with ||p.|| < ||€]| due
to the standard existence theorem for self-adjoint operators. Regularity
of solutions follows from the basic estimate of the above lemma applied
near p = r and p = ¢ respectively (cf. [11, theorem 2.1.7]). Now take
the uniform limit of these solutions as € — 0. It is important to note

that [x |<,o|n_211_l < oo due to the estimate of Lemma 1 and the Sobolev
inequality. If we have 8*9¢ = 0 on Xp,., then we may set u = 0*p and
obtain the desired solution for the Cauchy-Riemann equation. First
we need

Lemma 2. (¢f. [3], lemmata 5.8, 5.9) Suppose that smooth nonneg-
ative functions f € L"(Xo,) and u € L7-1(X,,) satisfy the equation
Au > —fu on Xo, for some s > 1. Then, u € LP(Xy,) for all p > 1.
Also, one may replace the condition u € L1 (X,,) by Jx,, u* < o(p?)
for some s > 1.

(Since an outline of the proof of this result is also discussed in [9], it
will be omitted here.) Now

Algl? = 2(del” + el Alpl) = 2(Re < Dy, > +|Vel|*)

and hence it is a simple consequence of the Cauchy—-Schwarz inequality

that
Re < Dy, >

o]
Inserting the expression for Ay from equation (1) and applying once
again the Cauchy-Schwarz inequality to < A, ¢ > we obtain

Alp| Z =2(|Fi| + n|Rq|) || — 2[¢]

on Xp,. Using the Lemma above with u = |p|+1, f = 2(|Fx|+n|Ry|+
|€]) and s = 2, we conclude that |p| € LP(Xo,) for all p > 1. Next,
with n € CY(Xo,), we write

d 1
[ @)= [ (slin ol + S Vel - j2dn @ — 50Vl
suppn

Alp| >

)
<5 [1nflel + 3 [ 1< e, 00> |

<5 [ ldnPlf® + (n) /1<0th| + 0l Ry + ¢ ol?
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n—1

< (fran)" ([ wel®) "
selm) ([ QP+ niml 4160 ([ et )

For 1 > 2p > 2p' > 0, choose n such that
() n(e) = n(p(2)),
(1) n = 0 for p(z) > 2p and p(z) < p’, and 7 =1 on p > p(z) > 20/,
(112) |dn| < 2/p on 2p > p(z) > p and |dn| < 2/p" on 20" > p(z) > p'.
We may let p’ — 0 since on,zpl |dn|?™ < ¢(n). Since |¢| € LP(Xo,) for
2n—-5)

3=

any p > 1, the Holder inequality shows [, lgolnzTnl < o(p for any
& > 0. Thus, the above inequality shows that [y |Vo|* < o(p?("=D-%)
for any § > 0. For n > 3, we see 0*0p = 0 as follows. Let n be a
smooth function with n = 1 on p(z) > 2p, n = 0 on p(z) < p. Since
0 = 0p = 00" = 000y,

[ 0880l = (&3¢, °5¢) = (3, (n*TDp))

_ _ o - 1 o
= 2(Bp,ndn A 8Dp) < 4 [ 100 Plan? + 5 [ Indel”.

Since |dn| < O(p~!) and [ |Ve|? < o(p?) for n > 3, by letting p — 0, we
may conclude the proof. For n = 2, the equation Alacp! > ——c(n)(IFh| +
|R,|)|0p| and Jxo,, [Vel'® < o(p?) implies |0p| € LP(X,,) for allp > 1
by Lemma 2, thus we may proceed in a manner similar to the case

n >3 to obtam 0*9p = 0. This completes the proof of the theorem.
O

4. APPLICATIONS TO HOLOMORPHIC EXTENSION

Let s be a holomorphic section of E in a small coordinate neigh-
bourhood U around z; € Xo,, and consider ¥ a cut—off function with
compact support in U, which is identically equal to one near ;. ¥s may
then be regarded as a smooth section of E on Xo,, with £ = 9(Js) cor-
responding to a d—closed (0, 1)-form which vanishes identically near ;.
Now 1 = 2nd log || is a compactly supported function on U which is
plurisubharmonic near z(z,) = 0, and extends smoothly to Xo - \ {z1}.
It follows that i00% is locally bounded below, and hence that Kp+1 is
plurisubharmonic for K sufficiently large. Now repeat the solution of
the & -Neumann problem for Ju = ¢ with respect to hx = he™(Ket¥)]
noting that the potentially difficult term —n?tr(89y) will vanish if we
define supppNU = Q. Moreover, the fact that { = 0 near z, implies that

l€ll» < oo, while the basic estimate above implies that ||ul|z2 < ||€][L2
11
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(cf. [11]). Hence u(z;) = 0 and ¥s — u is a holomorphic section of F
on Xo, which agrees with s at ;. An argument identical to the one
given by Bando in lemmata 7 and 8 of [2] may then be used to embed
E |x,,— €V for sufficiently large N, and thus to obtain a reflexive
sheaf extension F — X via Hartogs’ theorem. In summary,

Corollary 1. Let X™ be a reduced complex space with isolated singu-
larity at zo € X, and p : X —[0,00) a smooth, strongly plurisubhar-
monic ezhaustion function centred at ro which satisfies the conditions
(1) — (i12) above. If E — X \ {xo} is a Hermitian—holomorphic vector
bundle with L}, —curvature, then there exists a reflexive sheaf F — X
such that F |x\(z0)= O(E).

Remark: In particular, if E has rank one, then the divisor corre-
sponding to ¥9s — u = 0 extends to X by the Remmert—Stein remov-
able singularities theorem. It follows that any line bundle with L}, -
curvature extends freely and uniquely across xo.

A further consequence of the solubility of the ~Neumann problem on
Xo,, is the solvability of the equation du = F},, which implies existence
of a holomorphic connection on E — X, (cf. [9]). The extension
argument of [4], theorem 2.2 will then automatically imply the following

Corollary 2. Let X™ be a reduced analytic space with isolated singular-
ity £o € X and strongly plurisubharmonic function p : X —[0,00) sat-
isfying conditions (i)—(iii). Consider m:Y — X to be a surjective holo-
morphic map from a complex manifold Y such that m~'(zo) has codi-
mension greater than one. If E — X\{zo} is a Hermitian—holomorphic
vector bundle with L} .—curvature, then there exists a unique holomor-
phic vector bundle V =Y such that V' |y\r-1(z)= 7°E.

A natural instance of this result occurs when m corresponds to a
quotient of @ under the action of a finite group G C SU(n), i.e.,
X has an orbifold singularity at zo. Another potential class of ex-
amples corresponds to isolated singularities with “small resolution”.
Explicit examples of such singularities, with X a hypersurface in C
and 77 Y(z) = (PP, were presented in [13]. At present an example
which admits a strongly plurisubharmonic function p of the required
type is not known to the authors, however.

Our final application concerns the problem of holomorphic extension
from the strictly pseudoconvex C R-hypersurface S, C X correspond-
ingtop =r. Let 0 : S, — E be a section of E — X \ {zo}, such that o
is closed with respect to the tangential Cauchy-Riemann operator on
E |s,,i.e., 0,0 = 0 (cf. [11]). Let s : Xo, — E be a smooth extension of

o, with support in an arbitrarily small neighbourhood of S,. From the
12
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standard theory of the tangential Cauchy-Riemann complex for S,, we
note that dyo = 0 if and only if the (n,n — 1)~form £ = 9* % § satisfies
the 0— Neumann conditions (*), where * denotes the Hodge operator
on forms ([11], Proposition 5.2.2). The essential idea of the extension
technique of Kohn and Rossi [12] is to obtain a solution to the equa-
tion 0*u = ¢ such that u again satisfies the conditions (*), and this
is done in a manner entirely analogous to the theory of the equation
du = € for a (0,1)—form ¢. Moreover, u satisfies (a)d(s —+u) = 0 and
()1 |s,= 0, hence s —* is a holomorphic extension of o. For the case
of Xo, corresponding to the punctured neighbourhood of an isolated
singularity our adaptation of Bando’s method is applied to this end.
The argument here also is essentially a dualised version of the method
of the previous sections, and goes through with only minor alterations
which will be outlined below.

For (n,n — 1)~forms ¢ = @;dz A dz[i] the inner product in any local
frame will be made up of cofactors of the matrix g~! where g represents
the metric on T'X as usual. Hence we may write

< dz A dz[i), dz A dz[j] >= det(g)%g;; -

If it is assumed that ¢ satisfies the 0-Neumann/Dirichlet conditions
(*), then via integration by parts we obtain

1 ) v o i v o
(@%); = —ZA% — @aRi + iByg + @ Fog + (—1) TR FO

Similarly
VOly = %, (%‘gi + gﬂ%g;f - aﬁga‘;:ig)@?) dz A d3[i] ® dzy
and hence
IVl = —(5 8¢ = ealt — iB0) — [ Il

From here we proceed to solve the Laplace equation for £ as before. The
remainder of the argument is almost identical, apart from the obvious
requirement that it is the term 09*p which must be shown to vanish
in this context. Note that

/ [n00"¢|* = (88"p,n*¢) — (89", n*9"0p)

= (0"p,0"(n%€)) — (8(n*007¢), 0¢) ,
since the Neumann conditions imply that ¢(9*, dp)n*¢ and o(0, dp)0y
must vanish on S,. Moreover, if it is assumed that

supp(s) Nsupp(l —n) =0,
13
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then 9%(n%€) = 0 implies
_ _ _ _ 1 _
[ 188"l = —2(ndn £ 85", dp) < 4 [lanP1vel+ 7 [ Indarel .

The argument may then be completed as before, with u = Op. In
conclusion

Corollary 3. Let X™ be a reduced analytic space with isolated singular-
ity xo, and let p : X —[0,00) be a strongly plurisubharmonic function
satisfying the conditions (i)-(ii1). If E — X \ {zo} be a Hermitian-
holomorphic vector bundle with L} —curvature, and o a dy-closed sec-
tion of E |s,, then there exists a unique holomorphic extension of o as
a section of E on Xo,, and hence as a section of the reflerive sheaf F
on X,

Remark: The uniqueness follows from an idea suggested to us by
Ohsawa. Let s and s’ be two such holomorphic extensions of o, so that
s — &' corresponds to a holomorphic section on Xy, which vanishes on
S,. In an open neighbourhood of any point x € X which also lies on
S, s — s’ may be viewed as a vector— valued holomorphic function,
such that the restriction of s — s’ to any holomorphic curve which cuts
S, transversely at z may be Schwarz-reflected to a local holomorphic
extension on both sides of the boundary. It follows that s — s’ must
vanish identically along the curve, since by assumption it vanishes on
the subset of real codimension one corresponding to the intersection of
the curve with S,. Hence s — s’ must vanish identically on Xg .

Ohsawa has also pointed out to us that the problem of holomor-
phic extension may be approached directly through the solution of
the Cauchy-Riemann equation, rather than through the dual problem.
With respect to a modified metric of the form § = g — 89 log(r — p),
which effectively pushes S, to infinity, one may expect to find a so-
lution of the equation Ou = 8s, for a smooth compactly supported
extension s via the method of [15]. Provided the curvature of E is
sufficiently regular (eg., L7.), u should be in L? with respect to g, and
will consequently vanish on S,.
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