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Prime Geodesic Theorem for the Picard

Manifold under the mean-Lindelof Hypothesis

Shin-ya Koyama

Abstract. The error term of the prime geodesic theorem for the Picard manifold
is improved under assuming the mean version of the Lindelof hypothesis for auto-
morphic L-functions. We obtain the bound O(X%"'s). The unconditional current
best bound is O(X 31¢) by Sarnak.

1991 Mathematics Subject Classification: 11F72, 11M41, 58F19

1. Introduction. In the mid-fifties Selberg [Se] introduced a zeta function for
a hyperbolic surface M with fundamental group I". It is called the Selberg zeta
function of T'. It is defined by an Euler product, which is analogous to the Riemann
zeta function. The product is taken over primitive hyperbolic conjugacy classes
p of I'. Each Euler factor contains the norm N(p) of conjugacy classes, which
can be viewed as 'pseudoprimes’ in the sense that they have the same asymptotic

distribution as the rational primes, namely,
7r(X) = #{p : primitive conjugacy class, N{(p) < X} ~ liX. (1.1)

It is well-known that there is one-to-one correspondence between the set of hyper-
bolic conjugacy classes of I' and the set of homotopy classes of M, and that each
homotopy class contains just one closed geodesic. Therefore (1.1) is called the prime
geodesic theorem, since the norm is equal to e/(?)) where I(p) is the length of the
geodesic corresponding to p. The formula (1.1) can be proved in an analogous way
to that of the classical prime number theorem by using the Selberg zeta function

in place of the Riemann zeta function.
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The prime geodesic theorem is different, however, from the classical prime num-
ber theorem, when we try to have a good error term. In the classical case, the
Riemann hypothesis would give us the best possible error term. But in (1.1), we
cannot have the sharp estimate, even if we prove‘ the analog of the Riemann hypoth-
esis for the Selberg zeta function. This is because of the abundance of non-trivial
zeros, which is clearly explained in [I] Section 1. Actually, even when the analog of
the Riemann hypothesis is proved, we have the error term O(X%"'e), which is far

from the conjectural term O(X3+¢).

For the purpose of improving the error term, we need to estimate a certain sum
which is taken over a set of non-trivial zeros of the Selberg zeta function. Iwaniec|]]
found for I' = PSL(2,Z) that the estimate is closely related to the mean Lindelof
hypothesis of the Rankin-Selberg L-function, and he was able to prove the bound

of O(X 35¢) for the remainder.

~Later, in the development of the theory of arithmetic quantum chaos introduced
by Sarnak [S2] we have become aware that the Lindeldof hypothesis of the L-function
is closely related to quantum ergodicity [LS]. In their paper [LS], Luo and Sarnak
have proved the mean Lindeldf hypothesis for the Rankin-Selberg L-function. As
application, they obtained O(X%'”) for I' = PSL(2,Z) as the error term of (1.1).
More recently Luo-Rudnick-Sarnak have generalized the result to any congruence
subgroup I' in PSL(2,Z) by proving the bound A; > 0.21... for the first eigenvalue

A1 of the Laplacian [LRS].

Turning our eyes to the three dimensional case, we consider arithmetic hyperbolic
manifolds with fundamental group I' C PSL(2,C). The Selberg zeta function for
I is analogously defined (See (4.1) below). In this case, the prime geodesic theorem

2
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takes the form

mr(X) ~ X2, (1.2)

The best error term obtained so far is O(X 31¢) by Sarnak[S1] for the case of I' =
PSL(2,0) with O the integer ring of an imaginary quadratic field K of class number
one. This result can be regarded as the one which corresponds with O(X%+5) in the
two dimensional case in the sense that no cancellation in the sum over non-trivial
zeros is considered.

Throughout this paper we treat the case of I' = PSL(2,Z[\/—1]). The corre-
sponding hyperbolic manifold is 3-dimensional and is called the Picard manifold.
The goal of this paper is to improve the error term by using the method of [LS],
under some assumption on an estimate of certain L-functions.

The main thoerem is as follows:

Theorem 1.1. Under assuming the mean version of the A-aspect of the Lindelof
hypothests for the second symmetric power L-function (Assumption 3.2 below), we

have for the Picard manifold
mm(X) = X2 + O(X F+9). (1.3)

It seems natural not to limit ourselves to the Picard manifold. The only reason for
the restriction is our not having the explicit form of the Kuznetsov formula for more
general cases. We have found that the extension made by Miatello-Wallach [MW]
is not explicit enough, since the Kloosterman term in their formula is expressed in
terms of the I-Bessel function which is hard to deal with. For proving Theorem
1.1, we will employ the explicit Kuznetsov formula obtained by Motohashi [M]. As
is pointed out in [M2, p.95], it is a matter of technicality to extend the result to

Bianchi groups defined over arbitrary imaginary quadratic fields. We will mention
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in Remark 4.2 below how to generalize the result to Bianchi groups once we obtain

the explicit Kuznetsov formula.

Acknowledgments. The author deeply appreciates Professors Peter Sarnak and
Wenzhi Luo for giving a detailed explanation of their beautiful ideas in the original
works [LS]. It strongly motivated the author to produce this paper. They also
closely read the earlier version of this paper and gave the author many valuable
suggestions. He also would like to send hearty thanks to Ms. Pam Pascoe for her

conscientious help with English.

2. Kuznetsov Formula. A point in the hyperbolic three-dimensional space H?
is denoted by v = 2 + yj, z = 21 + 221 € C, y > 0. Weput K = Q(\/jl_)‘and its
integer ring O = Z[v/—1]. The group I' = PSL(2,0) acts on H® and the quotient
space M = I'\H? is a three dimensional arithmetic hyperbolic manifold which' is
called the Picard manifold. The Laplacian on M is defined by
o? o o? 0
a= (G 3 o) oy

It has the self-adjoint extension on L?(M). It is known that the spectra of A is
composed of both discrete and continuous ones. An eigenfunction for a discrete
spectrum is called a cusp form. We denote it by u;(v) (7 = 1,2,3,...) with eigen-
value A;. We shall assume the u;(v)’s to be chosen so that they are simultaneous
eigenfunctions of the ring of Hecke operators and L?-normalized. The Fourier de-
velopment of u;(v) is given in [S1] (2.20):

u;(v) = Y pi(n)yKir, (2r[nly)e((n, 2)), (2.1)

n€O*

where \; = 1+ 7"]2-, (n, z) is the standard inner product in R? and K is the K-Bessel

function.
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The Kuznetsov formula was discovered by Kuznetsov[Ku] for SL(2,Z) by calcu-
lating the inner product of Poincare series in two different ways. It was generalized

by Motohashi [M] for our case:

Theorem 2.1. Let
Stmme)= S el(m,afe))e((n,a* /<))
a€(0/(c))*
with aa* = 1 (mod ¢) be the Kloosterman sum for m,n,c € O. Assume that the
function h(r), r € C, is holomorphic in the horizontal strip {r € C : [Im(r)| <
1 + ¢} and satisfies h(r) = h(—r), |h(r)] < (1 + |r])737¢ for an arbitrary fized

e > 0. Then for any non-zero m,n € O,
D+C=U+S (2.2)

holds for

—or *®  gy(n)o(m) o
C=on [ e £

6m,n + 5m,——n o
U = e /_Oo h(r)rzdr

S{m,n;e) [ r?
S=> ( o )/_w h(r)Jin(2)dr,

sinh =r
cEO*

(S

where o4(n) = Y. d°, z = 27 (7w)

——, and
d|n

Tu(z) = 27|z T3 (2) T3 (%),

where J}(z) is the entire function equal to J,(2)(5)™" with J, being the J-Bessel

function of order v.
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3. Rankin-Selberg L-function. For a Maass-Hecke cusp form u;(v) with its
Fourier development given by (2.1), we have the Rankin-Selberg convolution L-
function L(s,u; xu;) and the second symmetric power L-function L™ (s,u;) which

satisfy the following:

()2
L(s,u; uj) = Cr(2s) EXTINYE
(s ) = (29 2 TN
L(Z)(Sa‘u]') = Z ‘;% = CK(S)_IL(Sauj X uj)7

n€o*
with pj(n) = /22 ;i (n), vj(n) = v;(1)X;(n) and ¢;(n) = Fpapmy Aj(K*). It is
known that the both functions converge in Re(s) > 1. The functional equation of
L(s,u; x uj) is inherited from Eisenstein series by our unfolding the integral. We

compute that

|2L(s,u]' X uj) T(s +ir;)D(s — ir;)T(s)?
Cr(2s) 8n2eT'(2s)

i(s) = /r\m lu (0)[2E(v, 25)dv = |p; (1)

satisfies L(s) = $(s)L(1—s) where ¢(s) is the scattering determinant. We normalize

such that |Ju;]| = 1 with respect to the Petersson inner product

1 -
(f,9) = W. - f(v)g(v)dv.

The residue R; of L(s,u; % u;) at the simple pole at s = 1 satisfies

B (DI < Ry < foy ()]
From multiplicativity of Hecke eigenvalues, we have |v;(1)| # 0. The following
proposition describes how large it can be.

Proposition 3.1. The residue R; of L(s,u; X uj) at s = 1 satisfies the following
bound:
r; K R L rj

6
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In other words,

re > vi(1)| > ;. (3.1)

Proof. The right inequality is already proved in the proofs of [K2] Theorem 2.1 and
Lemma 2.2. The left one is a version of [HL]| Corollary 0.3. Although they prove

explicitly for the case of PSL(2,R), everything goes through in our case. [

In what follows, X <, Y means that |X| < CY for an implied positive constant

C depending on w. We will also denote T' < r; < 2T by r; ~ T.

Assumption 3.2 (mean-Lindel6f). The second symmetric power L-function
L (s, u; ;) attached to a cusp form uj of I' = PSL(2,0) satisfies
> ILD(w, ) < [l T
rij~T
for some § > 0, where Auj; = (1+ r?)uj and Re(w) = 3.
Remark 3.3. By standard methods [T], the Riemann Hypothesis for L (s, u;)

implies L (% + 1t uj) <. (Jtrj] +1)°.

For our future use, it would be convenient that we describe the mean Lindelof

hypothesis in terms of the Rankin-Selberg L-function:

lpj(n)[?
L(s,u; @u;) = Z ]\7’(71)3 '
neO*

Assumption 3.2 implies that if Re(w) = %, then

R T3+e )
E;Qmwmwwmu®mn< (3.2)

T~

4. Proofs. The Selberg zeta function for the group I' is defined by

() = [T TI@ - atw)**al) "~ N(p) ™), (4.1)

pEP (k1)
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where P is a certain set of primitive hyperbolic conjugacy classes and (k,1) runs
through all the pairs of positive integers satisfying that k = ! (mod m(p)) with
m(p) being the order of the torsion part of the centralizer of p. The complex number
a(p) is the eigenvalue of p with |a(p)| > 1 and N(p) = la(p)]?. The Selberg zeta

function has the determinant expression [K1] Theorem 4.4:
Zr(s) x (gamma factors) = detp(A — (2 — s)) x (Eisenstein factors),

where detp is the regularized determinant composed of discrete spectra of A. Since
detp(A — 3(2 — s)) = 0 is equivalent to s = 1 & VX — 1i for some eigenvalue A, we
see that such zeros of Zp(s) are of real part one, except for at most finite number
of zeros coming from small eigenvalues less than 1. It is shown in [EGM] that such
exceptional eigenvalues do not exist for the case at hand, viz PSL(2,Z[i]).

We have the logarithmic derivative as
A A(n)
7= L N
where

N(n)log N(p)
p)la(n) —a(n)~1f?

with n being a geodesic not necessarily prime and a power of prime p. We define

A(n) = -

the U-function as

Ir(X)= Y An).

N(n)<X

Tts explicit formula is deduced by Nakasuji. Her theorem is described as follows [N,

Theorem 6.2]:

Lemma 4.1. Let I' = PSL(2,0) where O is the integer ring of an imaginary

quadratic field of class number 1. We have for 1 <T < Xz

X? X X?
‘IIF(X)=7+ Z o "r‘O(?lOgX),
lrjl<T 7
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where s; = 1+ ir; runs over the zeros of Z(s) on Re(s) = 1 and the interval (0,2),

counted with multiplicities.
As mentioned above, in our case it holds that all s; satisfy Re(s;) = 1.

Remark 4.2. For more general Bianchi groups and their congruence subgroups, the
current best estimate of the smallest eigenvalue \; is obtained by Luo, Rudnick

and Sarnak [S3] by using the method of [LRS]:

171
A > —— = 0.872... 2
1= 106 (4.2)

The estimate (4.2) gives the bound Re(s;) < 15. Thus we have

X? X s X2
Irj|<T 5
r;ER

where s; = 1 + ir; runs over the zeros of Z(s) on Re(s) = 1, counted with multi-
plicities. Therefore our main theorem holds for general Bianchi manifolds, once we

generalize the explicit Kuznetsov formula.

It is known that the asymptotic distribution of such zeros is given by

vol(T\H3)T3'

#{.sj=l+irj : iY‘]IST}N 672

Therefore by estimating the second term in the left hand side of (4.3) roughly like

X%

L D D e B

, 53 )
| |1<T |ri |I<T

Sj

without considering any cancellation in the sum, we have the error terms
O(XT? + X2+T-1). By putting T = X'/3, we have O(X#+¢), which coincides

with Sarnak’s bound [S1].
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For improving the error term, we need a sharper estimate of the sum 5. XU,
I I<T
By the standard argument as in (I} or [LS] Section 6, the bound is the same as that
of the smooth version Y, X' exp(—r;/T).
r; >0
In the following lemma, we treat a sum involving the Fourier coefficients in order

to apply the Kuznetsov formula later.

Lemma 4.3. Let w € C®[/N,V2N]| such that its derivatives satisfy lw® (&) <«
N—P/2 (p > 0) and that Q(2) := [ w(€)édé = N. Then under the assumption
(8.2), we have

Z M :cN-i—t(T'jaN)a

sinh 77 ;
neO J
with

3 Je(ry, N)| < TN S
|rj | 2T

for some constant ¢ > 0.

Proof. We are following the proof of [I] Lemma 8. Consider the Mellin transform

Q(s) = /0 w(&)¢ e <« (1 + |7])"PN/?

for s = o + ir, by partial integration p times. We also have the inverse Mellin

transform

1 ds
ol =5 [ 20

Hence by the Cauchy theorem, we compute and put t(r;, N) as follows:

1 S
> w(in)lps(n)? = o | SUSL(5,uj @ uj)ds
n€O =T (3

i . s LY ity .
:CQ(Q)SlnlIWT]+O(N5/ | (Zji-z,u](gu])‘dt)
T 0 (1+ [t))?

= (e +(ry, N)) 22T
rj

10
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By (3.2), it follows that

Nl . oo T, l_+_ 't, & .
Y Ml Y Ao [TREERm Sl i
|r; |<T |75 1<T sinh Ty Jo (1 + [tDp

The proof is complete. [

Proof of Theorem 1.1. By Lemma 4.3 we have

LS () Y SO s ()

sinh 7r;
n€o lrj |<T J

=c 3 X' exp(~r;/T) + O(T***N7%). (4.4)
|r;|<T

Hereafter we estimate the sum over r; in the left hand side of (4.4) by using the
Kuznetsov formula.

We apply Theorem 2.1 to the test function

sinh(m + 2:8)r

sinh 7r

h(r) =
with 20 = log X + ;}— It satisfies the conditions of the theorem and for r > 0,
h(r) = Xe T 4 O(e™™).

Then the term D is equal to the relevant sum in (4.4) up to a tiny error term
which we can ignore. We need to estimate the other three terms C,U and S. The
terms C and U are easily estimated as Z < T and U < fOTX"TZdr < T2
For computing the term S, we appeal to the series representation of the J-Bessel

function [Er, §7.2.1 (2)]:

N e (—1)! 2N 2l+ir
Turlz) = ; I (ir + 1+ 1) ('2') '

We see that the series for 27" J;,.(z) converges absolutely, and uniformly for any r
and in any bounded domain of z.

11
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Thus we have

z|2r

5

Jir(z) =

© = (__l)H—m N2 sz 2m

- - . 4.5
IZ:;E::O !m!T(ir + 1+ D (er +m + 1) (2) (2) (4.5)
From the Stirling formula we have for fixed z:

N -3 = 4iy(logly|-1) -1
Tz +iy) = V2rly|*"2e™ 2 (1+0@™),
as |y} — oo. So we have
Lr+1+1)Cr+m+1) = 27r|r|l+m+1e_"|r‘+2"(1°gM_l)(l +0(r 1Y),

as |r| = oo.

Therefore

e oo 2 . ”
S = Z S(n,n,c) / i r jir(Z).‘Yllrle_lTldT

5. lc]? sinh 7r
1 S(n,m;c) o= o= (=)™ g2\ 2\
~ o cezo* |e]|? ;mzzo Ilm! (5) (5)

50 Kl
: . [EXTESY
—oo sinhmr \ |p|73

The absolute value of the last integral is less than

A fo pi=t=m <M>2"e‘%(l +O(rY))dr (4.6)

rle|

z

2r

N2
1> Xi‘r{c“l’;_l(l+0(r—l))dr

1
for some constant A; > 0. Putting ¥ = InIX2 2nd changing the variable r > &,
g o] ging Y

we see this is smaller than

A2Y2_1_m/ Tl—-l—me—Qinlogr—%(l+O((Y,r)—l))dr
0

for some constant A, > 0. The integrand has an oscillating factor e with
p(r) = 2Yrlogr. There exists the solution r = e~ of p'(r) = 0, and we see by the

saddle point method [O, Theorem 13.1] that the integral in (4.6) is bounded by

Y%—-l—mel-l—m—lfe—yq': (1 + O(Y—l ))

12
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It is exponentially small unless % <« log T, namely, N(c) > %. Thus

+m 6H»m—]

= (-1
s<y > B

=0 m=0
——Tom 3 |-m
n,n;c) N ny2™ nExi? .
Lema (1 (7 (M) avon

(]

Moy A
We will compute the contribution to the sum over ¢ in (4.7) from a general term

Y~=F (k > 0) in the (1 + O(Y 1)) part. It has a contribution which is smaller in

absolute value than

3y ldm=k g limik (n,c)d(c) )
N+ 2 X4 Z Z ——————N(C)%+l ';“" (~l.8)
N>
by the Weil bound S(n,n;c¢) < N(¢)2(n,c)d(c). Then we have if %‘(12% > 1,
_1_l4m—k
34 l4m 3_ltm N(n)X E 2
N4+ +€X' YA
o< ’ o (T2 logT
< N%+€T§+I+m—k+c‘X%—-(l+m)' (4.9)

If %%(T < 1, the sum over ¢ in (4.8) is O(1), and we have

l4+m4 I+m—k

+m— k m4k
R S & S VD LTS S @ R

1y lgm—k
1 T210gT itz 1_ltmtk
& (NX)2 T X4 2
— N%T%—{—l—}-m—-k—ksX%—(l—}-m—kk) (410)

Both (4.9) and (4.10) are largest when k& = 0. In what follows we only treat the

case of k = 0. Thus

S < N§+ET%+l+m+aX%—(l+m)_
Therefore from (4.4)

Z c—Tj/TXiTj < T3+5N~% +N%+ET%+l+m+€.X%_(l+m)
fril<T
« TiHE+e x i- 2+

13
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s m
by choosing N = —;{%ﬁ% Then we obtain
2
X2 Li42(4m) o
Up(X) = +0(X Ty ) (4.11)

+2(14m
by choosing T = X FEH . The error term in (4.11) is biggest when { = m = 0.

The standard argument leads to Theorem 1.1. O
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