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Hempel’s raven paradox, Hume’s problem of induction,
Goodman’s grue paradox, Peirce’s abduction, Flagpole problem

are clarified in quantum language1

Shiro Ishikawa 2

Abstract
Recently we proposed “quantum language” (or, “the linguistic Copenhagen interpretation of quantum me-
chanics”, “measurement theory”) as the language of science. This theory asserts the probabilistic inter-
pretation of science (= the linguistic quantum mechanical worldview), which is a kind of mathematical
generalization of Born’s probabilistic interpretation of quantum mechanics. In this preprint, we consider
the most fundamental problems in philosophy of science such as Hempel’s raven paradox, Hume’s problem
of induction, Goodman’s grue paradox, Peirce’s abduction, flagpole problem, which are closely related to
measurement. We believe that these problems can never be solved without the basic theory of science with
axioms. Since our worldview has the axiom concerning measurement, these problems can be solved easily.
Hence there is a reason to assert that quantum language gives the mathematical foundations to science1.

Key phrases: Philosophy of Science, Linguistic Copenhagen Interpretation, Probabilistic Interpretation of
Science, Raven Paradox, Problem of Induction ( ≈ the law of large numbers ), Grue Paradox, Abduction (
≈ Fisher’s maximaum likelihood method ), Flagpole problem

1 Review: Quantum language (= Measurement theory )

1.1 Quantum language is the language to describe science

Quantum language (or, “the linguistic Copenhagen interpretation of quantum mechanics”, “measurement
theory (=MT)”) is proposed as the language of science, which is not only characterized as the metaphysical
and linguistic turn of quantum mechanics but also the quantitative turn of Descartes=Kant epistemology
and the dualistic turn of statistics. Thus, the location of this theory in the history of scientific worldviews
is as follows (cf. refs.[10, 16, 20]):

Parmenides
Socrates

0©:Greek
philosophy

Plato
Aristotle

Schola-−−−−−→
sticism

1©

−−→
(monism)

Newton
(realism)

2©
→

relativity
theory −−−−−−−−−−→ 3©

→
quantum
mechanics −−−−−−−−−−→ 4©

−−→

(dualism)

Descartes
Locke,...
Kant(idealism)

6©−−−−−→

(linguistic view)

linguistic
philosophy

quantification−−−−−−−−−→
(A2)

8©

language−−−−−−→
(A1)

7©


5©−−→

(unsolved)

theory of
everything

(quantum phys.)


10©−−→

(=MT)

quantum
language
(language)

Figure 1: [The location of quantum language in the history of scientific worldviews ]
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1This preprint will be published in Journal of Quantum information science (2019) ( which may be easier to read thanthis
preprent). For the further information, see my homepage ( http://www.math.keio.ac.jp/∼ishikawa/indexe.html)
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Japan. E-mail: ishikawa@math.keio.ac.jp
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Fig. 1 says that quantum language (=the linguistic Copenhagen interpretation) has the following three
aspects

(A1) the linguistic Copenhagen interpretation is the true figure of so-called Copenhagen interpretation ( 7©
in Fig. 1), cf. refs. [5, 8, 9, 15, 18]

(A2) the scientific final goal of dualistic idealism (i.e., Descartes=Kant philosophy) ( 8© in Fig. 1),
cf. refs. [10, 16, 17, 19]

(A3) statistics (= dynamical system theory) with the concept “measurement” ( 9© in Fig. 1),
cf. refs. [6, 7, 8, 12, 13]

Hence, it is natural to assume that

(A4) quantum language proposes the probabilistic interpretation of science (= the linguistic quantum me-
chanical worldview), and thus, it is just the language to describe science. Thus, we assert that science
is built on dualism ( ≈ [“observer”+“matter”]≈ measurement ) and idealism ( ≈ metaphysics ≈ lan-
guage).

which is the most important assertion of quantum language. Also, we assume that to make the language to
describe science is one of main purposes of philosophy of science.

As criticism of philosophy of science, there is criticism that scientific philosophy is not very useful for
scientists. We agree to this criticism. However, as mentioned in the above (A1) and (A3), we say that
quantum language is one of the most useful theories in science.

Remark 1. Since space and time are independent in quantum language, the theory of relativity ( and further,
the theory of everything: 5© in Fig. 1 ) cannot be described by quantum language. We think that the theory
of relativity is too special, an exception. It is too optimistic to expect that all scientific propositions can be
written in quantum language. However, we want to assert the (A4), that is, quantum language is the most
fundamental language for almost all familiar science. We believe that arguments without a worldview do
not bring about the success of philosophy of science.

1.2 No scientific argument without scientific worldview

It is well known that the following problems are the most fundamental in philosophy of science:

(A5) Hempel’s raven paradox, Goodman’s grue paradox, Hume’s problem of induction, Peirce’s abduction,
the flagpole problem etc.

In Sections 2∼4, we clarify these problems under the linguistic quantum mechanical worldview (A4), since
we believe that there is no scientific argument without scientific worldview (or, without scientific language).
And we conclude that the reason that these problems are not yet clarified depends on lack of the concept of
measurement in philosophy of science.

1.3 Mathematical Preparations

Following refs. [8, 9, 10, 20] (all our results until present are written in ref. [20]), we shall review quantum
language, which has the following form:

Quantum language

(= measurement theory)

= measurement
(Axiom 1)

+ causality
(Axiom 2)

+
�� ��linguistic ( Copenhagen ) interpretation

(how to use Axioms 1 and 2)

(1)

which asserts that “measurement” and “causality” are the most important concepts in science.
Consider an operator algebra B(H) (i.e., an operator algebra composed of all bounded linear operators on a
Hilbert space H with the norm ‖F‖B(H) = sup‖u‖H=1 ‖Fu‖H ), and consider the triplet [A ⊆ N ⊆ B(H)] (
or, the pair [A,N ]B(H)), called a basic structure. Here, A(⊆ B(H)) is a C∗-algebra, and N (A ⊆ N ⊆ B(H))
is a particular C∗-algebra (called a W ∗-algebra) such that N is the weak closure of A in B(H).
The measurement theory (= “quantum language” = “the linguistic Copenhagen interpretation”) is classified
as follows.
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(B) measurement theory
(= quantum language)

=

 (B′
1): quantum system theory (when A = C(H))

(B′
2): classical system theory (when A = C0(Ω))

The Hilbert space method for the mathematical foundations of quantum mechanics is essentially due to von
Neumann (cf. ref. [26]). He devoted himself to quantum (B′

1). On the other hand, in most cases, we devote
ourselves to classical (B′

2), and not (B′
1). However, the quantum (B′

1) is convenient for us, in the sense that
the idea in (B′

1) is often introduced into classical (B′
2).

When A = C(H), the C∗-algebra composed of all compact operators on a Hilbert space H, the (B′
1) is

called quantum measurement theory (or, quantum system theory), which can be regarded as the linguistic
aspect of quantum mechanics. Also, when A is commutative (that is, when A is characterized by C0(Ω), the
C∗-algebra composed of all continuous complex-valued functions vanishing at infinity on a locally compact
Hausdorff space Ω (cf. refs. [22, 25, 27])), the (B′

2) is called classical measurement theory.
Also, note that, when A = C(H), i.e., quantum cases,

(B1) A∗ = Tr(H) (=trace class), N = B(H), N∗ = Tr(H) (i.e., pre-dual space),
thus,

Tr(H)

(
ρ, T

)
B(H)

= Tr
H
(ρT ) (ρ ∈ Tr(H), T ∈ B(H)).

Also, when A = C0(Ω), i.e., classical cases,

(B2) A∗ =“the space of all signed measures on Ω”, N = L∞(Ω, ν)(⊆ B(L2(Ω, ν))), N∗ = L1(Ω, ν), where
ν is some measure on Ω (with the Borel field B, thus,

L1(Ω,ν)

(
ρ, T

)
L∞(Ω,ν)

=
∫
Ω
ρ(ω)T (ω)ν(dω) (ρ ∈

L1(Ω, ν), T ∈ L∞(Ω, ν)) (cf. ref. [25]).

In Sections 2∼4 later, we devote ourselves to a compact space Ω with a probability measure ν (i.e., ν(Ω) = 1)
and thus, C0(Ω) is simply denoted by C(Ω).

Let A(⊆ B(H)) be a C∗-algebra, and let A∗ be the dual Banach space of A. That is, A∗ = {ρ | ρ is a
continuous linear functional onA }, and the norm ‖ρ‖A∗ is defined by sup{|ρ(F )| | F ∈ A such that ‖F‖A(=
‖F‖B(H)) ≤ 1}. Define the mixed state ρ (∈ A∗) such that ‖ρ‖A∗ = 1 and ρ(F ) ≥ 0 for all F ∈ A such that
F ≥ 0. And define the mixed state space Sm(A∗) such that

Sm(A∗)={ρ ∈ A∗ | ρ is a mixed state}.

A mixed state ρ(∈ Sm(A∗)) is called a pure state if it satisfies that “ρ = θρ1 + (1 − θ)ρ2 for some ρ1, ρ2 ∈
Sm(A∗) and 0 < θ < 1” implies “ρ = ρ1 = ρ2”. Put

Sp(A∗)={ρ ∈ Sm(A∗) | ρ is a pure state},

which is called a state space. It is well known (cf. ref. [25]) that Sp(C(H)
∗
) = {|u〉〈u| (i.e., the Dirac

notation) | ‖u‖H = 1}, and Sp(C0(Ω)
∗
) = {δω0 | δω0 is a point measure at ω0 ∈ Ω}, where

∫
Ω
f(ω)δω0(dω)

= f(ω0) (∀f ∈ C0(Ω)). The latter implies that Sp(C0(Ω)
∗
) can be also identified with Ω (called a spectrum

space or simply spectrum) such as

Sp(C0(Ω)
∗
)

(state space)

3 δω ↔ ω ∈ Ω
(spectrum)

In this paper, Ω and ω(∈ Ω) is respectively called a state space and a state.

Definition 2. [Essentially continuous] An element F (∈ N ) is said to be essentially continuous at ρ0(∈
Sp(A∗)), if there uniquely exists a complex number α such that

• if ρ (∈ N∗, ‖ρ‖N∗ = 1, ρ ≥ 0) converges to ρ0(∈ Sp(A∗)) in the sense of weak∗ topology of A∗, that is,

ρ(G) −−→ ρ0(G) (∀G ∈ A(⊆ N )), (2)

then ρ(F ) converges to α.

Remark 3. In quantum cases, the (2) implies that

ρ(G)(=
Tr(H)

(
ρ,G

)
B(H)

) −−→ ρ0(G)(=
Tr(H)

(
ρ0, G

)
B(H)

) (if ρ −−−−−−−−−−−−−→
weak∗ topology

ρ0)
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Thus, the (2) always hols in quantum cases. On the other hand, in classical cases, the (2) implies that

ρ(G)(= M(Ω)

(
ρ,G

)
L∞(Ω,ν)

) −−→ ρ0(G)(= M(Ω)

(
ρ0, G

)
L∞(Ω,ν)

) (if ρ −−−−−−−−−−→
weak∗ topology

ρ0 ( in M(Ω))

Thus, it does not always hold in classical cases. In this sense, the quantum system theory (B’1) is easier
than the classical system theory (B’2).

The following definition is due to E.B. Davies (cf. ref. [1]).

Definition 4. [Observable] An observable O =(X,F , F ) in N is defined as follows:

(i) [σ-field] X is a set, F(⊆ 2X ≡ P(X), the power set of X) is a σ-field of X, that is, “Ξ1,Ξ2, ... ∈ F ⇒
∪∞n=1Ξn ∈ F”, “Ξ ∈ F ⇒ X \ Ξ(≡ {x | x ∈ X,x /∈ Ξ} ≡ Ξc, i.e., the complement of Ξ) ∈ F”.

(ii) [Countable additivity] F is a mapping from F to N satisfying: (a): for every Ξ ∈ F , F (Ξ) is a non-
negative element in N such that 0 ≤ F (Ξ) ≤ I, (b): F (∅) = 0 and F (X) = I, where 0 and I is the
0-element and the identity in N respectively. (c): for any countable decomposition {Ξ1,Ξ2, . . . ,Ξn, ...}
of Ξ

(
i.e., Ξ,Ξn ∈ F (n = 1, 2, 3, ...), ∪∞n=1Ξn = Ξ, Ξi ∩ Ξj = ∅ (i 6= j)

)
, it holds that F (Ξ) =∑∞

n=1 F (Ξn) in the sense of weak∗ topology in N .

1.4 Axiom 1 [Measurement] and Axiom 2 [Causality]

Quantum language (1) is composed of two axioms (i.e., Axioms 1 and 2) as follows. With any system S, a
basic structure [A ⊆ N ⊆ B(H)] can be associated in which the measurement theory (A) of that system
can be formulated. A state of the system S is represented by an element ρ(∈ Sp(A∗)) and an observable is
represented by an observable O =(X,F , F ) in N . Also, the measurement of the observable O for the system
S with the state ρ is denoted by MN (O, S[ρ])

(
or more precisely, MN (O :=(X,F , F ), S[ρ])

)
. An observer

can obtain a measured value x (∈ X) by the measurement MN (O, S[ρ]).
The Axiom 1 presented below is a kind of mathematical generalization of Born’s probabilistic interpre-

tation of quantum mechanics. And thus, it is a statement without reality.
Now we can present Axiom 1 in the W ∗-algebraic formulation as follows.

Axiom 1 [ Measurement, the probabilistic interpretation of science ]. The probability that a measured
value x (∈ X) obtained by the measurement MN (O :=(X,F , F ), S[ρ]) belongs to a set Ξ(∈ F) is given by
ρ(F (Ξ)) if F (Ξ) is essentially continuous at ρ(∈ Sp(A∗)).

Remark 5. Recall Remark 3. In quantum cases (i.e, the cases that ρ ∈ Sp(Tr(H))) ⊆ Tr(H), F (Ξ) ∈
B(H)), the probability ρ(F (Ξ))(=

Tr(H)

(
ρ, T

)
B(H)

= TrH (ρT )) is always defined (cf. (B1)). That is, the
F (Ξ) is always essentially continuous at any ρ ∈ Sp(Tr(H))). On the other hand, in the classical cases
(i.e., the cases that ω ∈ Ω, F (Ξ) ∈ L∞(Ω, ν)), it is not guaranteed that F (Ξ) is essentially continuous
at ω (∈ Ω)). Thus, put Fω0 = {Ξ ∈ F : F (Ξ) is essentially continuous at ω0 }. If Fω0 = F , the
measurement ML∞(Ω,ν)(O :=(X,F , F ), S[ω0]) makes the sample probability space (X,F , [F (·)](ω0)), which
is usual in statistics. Thus, roughly speaking, statistics starts from “sample probability space”, on the other
hand, quantum language starts from “measurement”.
(ii): Axiom 1 is the quantitative realization of the spirit: “there is no science without measurements”. And,
we think that Axiom 1 means the probabilistic interpretation of science since it is a kind of mathematical
generalization of Born’s probability interpretation of quantum mechanics.

Example 6. [Exact measurement] Consider a basic structure [C(Ω1) ⊆ L∞(Ω1, ν1) ⊆ B(L2(Ω1, ν1))],
where Ω1 = [0, 2] is the state space (where the closed interval in the real line R). and the ν1 is the Lebesgue
measure on the Borel σ-field BΩ1 , that is, the smallest σ-field that contains all opensets in Ω1. Define the
exact observable Oe = (X(= Ω1),BΩ1 , Fe) in L∞(Ω1, ν1) such that

[Fe(Ξ)](ω) = 1 (ω ∈ Ξ ∈ BΩ1 , = 0 (ω /∈ Ξ ∈ BΩ1 .

Thus, we have the measurement ML∞(Ω1,ν1)(Oe = (X,BΩ1 , Fe), S[ω0
0 ]
). Then we have the following statement
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• Let D(⊆ X = Ω1) be any open set such that ω0
0 ∈ D. Then Axiom 1 says that the probability that

the measured value x(∈ X) obtained by the measurement ML∞(Ω0,ν0) (Oe = (X,F , Fe), S[ω0
0 ]
) belongs

to D is given by 1.

This implies that x = ω0
0 , since D is arbitrary open set such that ω0

0 ∈ D. Also, it should be noted that
Fe(Ξ) is not essentially continuous at ω0

0 if Ξ = [0, ω0
0 ]. Thus, (X,F , [Fe(·)](ω0

0)) is not always a probability
space.

Next, we explain Axiom 2. Let [A1,N1]B(H1) and [A2,N2]B(H2) be basic structures. A continuous linear
operator Φ1,2 : N2 (with weak∗ topology) → N1(with weak∗ topology) is called a Markov operator, if it
satisfies that (i): Φ1,2(F2) ≥ 0 for any non-negative element F2 in N2, (ii): Φ1,2(I2) = I1, where Ik is
the identity in Nk, (k = 1, 2). In addition to the above (i) and (ii), we assume that Φ1,2(A2) ⊆ A1 and
sup{‖Φ1,2(F2)‖A1 | F2 ∈ A2 such that ‖F2‖A2 ≤ 1} = 1.

It is clear that the dual operator Φ∗
1,2 : A∗

1 → A∗
2 satisfies that Φ∗

1,2(S
m(A∗

1)) ⊆ Sm(A∗
2). If it holds

that Φ∗
1,2(S

p(A∗
1)) ⊆ Sp(A∗

2), the Φ1,2 is said to be deterministic. If it is not deterministic, it is said to
be non-deterministic. Also note that, for any observable O2 :=(X,F , F2) in N2, the (X,F , Φ1,2F2) is an
observable in N1.

Definition 7. [Sequential causal operator; Heisenberg picture of causality] Let (T,≤) be a tree like
semi-ordered set such that “t1 ≤ t3 and t2 ≤ t3” implies “t1 ≤ t2 or t2 ≤ t1”. The family {Φt1,t2 :
Nt2 → Nt1}(t1,t2)∈T 2

5
is called a sequential causal operator, if it satisfies that

(i) For each t (∈ T ), a basic structure [At ⊆ Nt ⊆ B(Ht)] is determined.

(ii) For each (t1, t2) ∈ T 2
5, a causal operator Φt1,t2 : Nt2 → Nt1 is defined such as Φt1,t2Φt2,t3 = Φt1,t3

(∀(t1, t2), ∀(t2, t3) ∈ T 2
5). Here, Φt,t : Nt → Nt is the identity operator.

Now we can propose Axiom 2 (i.e., causality). (For details, see ref. [20].)

Axiom 2[Causality]; For each t(∈ T=“tree like semi-ordered set”)), consider the basic structure:

[At ⊆ Nt ⊆ B(Ht)]

Then, the chain of causalities is represented by a sequential causal operator {Φt1,t2 : Nt2 →
Nt1}(t1,t2)∈T 2

5
.

1.5 The linguistic Copenhagen interpretation (= the manual to use Axioms 1 and 2)

It is well known (cf. ref. [4] ) that the Copenhagen interpretation of quantum mechanics has not been
established yet. For example, about the right or wrong of the wave function collapse, opinions are divided
in the Copenhagen interpretation. Thus, the Copenhagen interpretation is often called “so-call Copenhagen
interpretation”. However, we believe that the linguistic Copenhagen interpretation of quantum language (B)
(i.e., both quantum (B′

1) and classical (B′
2)) is uniquely determined. For example, for the quantum linguistic

opinion about the wave function collapse, see ref. [15] or §11.2 in ref. [20]. As mentioned in (A1), we believe
that the linguistic Copenhagen interpretation is the true figure of so called Copenhagen interpretation.
Now we explain the linguistic Copenhagen interpretation in what follows. In the above, Axioms 1 and 2 are
kinds of spells, (i.e., incantation, magic words, metaphysical statements), and thus, it is nonsense to verify
them experimentally. Therefore, what we should do is not “to understand” but “to use”. After learning
Axioms 1 and 2 by rote, we have to improve how to use them through trial and error. We may do well
even if we do not know the linguistic Copenhagen interpretation (= the manual to use Axioms 1 and 2).
However, it is better to know the linguistic Copenhagen interpretation, if we would like to make progress
quantum language early. We believe that the linguistic Copenhagen interpretation is the true Copenhagen
interpretation, which does not belong to physics.

The essence of the manual is as follows: In Fig. 2, we remark:
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Figure 2: [Descartes Figure]: Image of “measurement(= x©+ y©)” in mind-matter dualism

•

observer
(I(=mind))

system
(matter, measuring object)

�
-

[observable]
[(=measuring instrument)]

(body)

[measured value]
x©interfere

y©perceive reaction

[state]

(C1) x©: it suffices to understand that “interfere” is, for example, “apply light”.
y©: perceive the reaction.

That is, “measurement” is characterized as the interaction between “observer” and “measuring object (=
matter)”. However,

(C2) in measurement theory (=quantum language), “interaction” must not be emphasized.

Therefore, in order to avoid confusion, it might better to omit the interaction “ x© and y©” in Fig. 2.
After all, we think that:

(C3) it is clear that there is no measured value without observer (i.e., “I”, “mind”). Thus, we consider
that measurement theory is composed of three key-words: “measured value”,“observable”,“state” (cf.
§ 3.1(p.63) in [20]).

measured value
(I, observer, mind)

, observable (= measuring instrument )

(body(= sensory organ), thermometer, eye, ear, compass )

, state
(matter)

,

Hence, quantum language is based on dualism, i.e., a kind of mind-matter dualism.
The linguistic Copenhagen interpretation says that

(D1) Only one measurement is permitted. And therefore, the state after a measurement is meaningless
since it cannot be measured any longer. Thus, the collapse of the wavefunction is prohibited (cf. ref.
[15]; projection postulate ). We are not concerned with anything after measurement. Strictly speaking,
the phrase “after the measurement” should not be used. Also, the causality should be assumed only
in the side of system, however, a state never moves. Thus, the Heisenberg picture should be adopted,
and thus, the Schrödinger picture should be prohibited.

(D2) “Observer”(=“I”) and “system” are completely separated in order not to make self-reference propo-
sitions appear. Hence, the measurement MN (O :=(X,F , F ), S[ρ]) does not depend on the choice of
observers. That is, any proposition (except Axiom 1) in quantum language is not related to “ob-
server”(=“I”), therefore, there is no “observer’s space and time” in quantum language. And thus, it
does not have tense (i.e., past, present, future).

(D3) there is no probability without measurements ( cf. Bertrand’s paradox (in § 9.12 of ref.[20]))

(D4) Leibniz’s relationalism concerning space-time ( e.g, time should be regarded as a parameter), (cf. ref.
[19]).

(D5) A family of measurements { MNi(Oi :=(X1,Fi, Fi), S[ρi]) : i = 1, 2, 3, ...} is realized as the paralell

measurementM⊗∞
i=1Ni

(⊗ ∞
i=1Oi :=(×∞

i=1 X1,�∞
i=1Fi, ⊗ ∞

i=1Fi), S[⊗∞
i=1ρi]

) (cf. Definition 9 later).

For details about the tensor product “⊗ ∞
i=1”, see ref. [20].

and so on.
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Remark 8. (i): In ref. [5] (1991), we proposed the mathematical formulation of Heisenberg’s uncertainty
relation. However，so-called Copenhagen interpretation is not firm (cf. ref. [4]). Thus, in order to un-
derstand our work (i.e., Heisenberg’s uncertainty relation) deeply, we proposed the linguistic Copenhagen
interpretation (= quantum language) as the true Copenhagen interpretation. For details of Heisenberg’s
uncertain relation, see §4.3 in ref. [20].
(ii): We consider that the above (D1) is closely related to Kolmogorov’s extension theorem (cf. ref. [21]),
which says that only one probability space is permitted. For details, see §4.1 in ref. [20].
(iii): The formula (1) says that scientific explanation is to explain phenomena in terms of “measurement”(
Axiom 1 ) and “causality” (Axiom 2). If we are allowed to use the famous metaphor of Kant’s Copernican
revoloution, to do familir sciences is to see this world through colored glasses of measurement and causality
(cf. [19]), or to use the metaphor of Wittgenstein’s saying, the limits of quantum language are the limits
of familir science. Therefore, the explanation problem of scientific philosophy is automatically clarified in
quantum language.
(iv): Violating the linguistic Copenhagen interpretation (D2), we have many paradoxes of self-reference type
such as “brain in a vat”, “five-minute hypothesis”, “I think, therefore I am”, “McTaggart’s paradox”. Cf.
ref. [19] or §10.8 in ref. [20].
(v): We want to understand that Zeno’s paradox is not a problem concerning geometric series or spatial
division, but the problem concerning the worldview. That is, “Propose a certain scientific worldview, in
which Zeno’s paradox should be studied !” That is because we think that there is no scientific argument
without scientific language (≈ scientific worldview). And our answer (cf. § 14.4 in ref. [20]) is “If Zeno’s
paradox is a problem in science, it should be studied in quantum language”. That is because our assertion
is “Quantum language is the language of science”. Also, Monty Hall problem, two envelope problem, three
prisoners problem etc. are not only mathematical puzzles but also profound problems in quantum language
(cf. refs. [13, 20]).

As the further explanation of parallel measurement in the linguistic Copenhagen interpretation (D5), we
have to add the following definition.

Definition 9. [Parallel measurement (cf. [20])] Though the parallel measurement can be defined in both
classical and quantum systems, we, for simplicity, devote ourselves to classical systems as follows. Let
[C(Ω) ⊆ L∞(Ω.ν) ⊆ [L∞(Ω, ν)] be a classical basic structure, where we assume, for simplicity, that Ω
is compact space and ν is a measure such that ν(Ω) = 1 and ν(D) > 0 (∀open set D ⊆ Ω). Consider
a family of measurements {ML∞(Ω,ν)(Oi := (Xi,Fi, Fi), S[ωi]) | i = 1, 2, ..., N}. However, the linguistic
Copenhagen interpretation (D1) says “Only one measurement is permitted”. Therefore, instead of the family

of measurements, we consider the parallel measurement
⊗N

i=1 ML∞(Ω,ν)(Oi := (Xi,Fi, Fi), S[ωi]), which is
defined by

N⊗
i=1

ML∞(Ω,ν)(Oi := (Xi,Fi, Fi), S[ωi])

=M
L∞(×N

i=1 Ω,
⊗N

i=1 ν)
(⊗ N

i=1Oi := (
N

×
i=1

Xi, � N
i=1Fi, ⊗ N

i=1Fi), S[(ω1,ω2,...,ωN )])

where ×N
i=1 Ω is the infinite product compact space of Ωs,

⊗N
i=1 ν is the infinite product probability of νs.

Also, � N
i=1Fi (⊆ P(×N

i=1 Xi)) is the infinite product σ-field, i.e., the smallest σ-field that includes{ N

×
i=1

Ξi| Ξi ∈ Fi

}
And further, define the observable

⊗N
i=1 Fi in L∞(×N

i=1 Ω,
⊗N

i=1 ν) which satisfies that

[(⊗ N
i=1Fi)((

N

×
i=1

Ξi)](ω1, ω2, ..., ωN ) =
N

×
i=1

[Fi(Ξi)](ωi) ∀Ξi ∈ Fi, ωi ∈ Ω

Then, Axiom 1 [measurement] says that

(D6) the probability that a measured value obtained by the parallel measurement
⊗N

i=1 ML∞(Ω,ν)(Oi :=

(Xi,Fi, Fi), S[ωi]) belongs to ×N
i=1 Ξi is given by ×N

i=1[Fi(Ξi)](ωi), if Fi(Ξi) is essentially continuous
at ωi (∀i = 1, 2, ..., N).
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Remark 10. The above finite parallel measurement can be generalized to the case that the index set Λ is
infinite. That is,⊗

λ∈Λ

ML∞(Ω,ν)(Oλ := (Xλ,Fλ, Fλ), S[ωλ])

=M
L∞(×λ∈Λ Ω,

⊗
λ∈Λ ν)

(⊗ λ∈ΛOλ := (×
λ∈Λ

Xλ, � λ∈ΛFλ, ⊗ λ∈ΛFλ), S[(ωλ)λ∈Λ])

The existence of the parallel measurement is guaranteed in both classical and quantum systems. Cf. §
4.2 in ref. [20]. It is not so difficult to extend the above finite parallel measurements to infinite parallel
measurements for mathematicians. However, in this paper, we are not concerned with the infinite parallel
measurement. That is because our concern is not mathematics but foundations of philosophy of science.

Here we add the following definition, which will be used in [Step (III)] in Section 2.2.

Definition 11. [Implication: cf. refs. [6, 20]] Consider a basic structure:

[A ⊆ N ⊆ B(H)]

Let O1 = (X1, F1, F1) and O2 = (X2, F2, F2) be observables in N . Let O12 = (X1×X2, F1 � F2, F12)
be an observable such that F1(Ξ1) = F12(Ξ1×X2) and F2(Ξ2) = F12(X1×Ξ2) (∀Ξ1 ∈ F1,Ξ2 ∈ F2). Let
ρ ∈ Sp(A∗), Γ1 ∈ F1, Γ2 ∈ F2. Then, if it holds that

ρ(F 12(Γ1×(X2 \ Γ2))) = 0

this is denoted by

[O1; Γ1] =⇒
MN (O12,S[ρ])

[O2; Γ2] or, equivalently [O1;X1 \ Γ1] ⇐=
MN (O12,S[ρ])

[O2;X2 \ Γ2]

That is because the probability that a measured value (x1.x2) obtained by the measurement MN (O12 :=
(X1×X2, F1 �F2, F12), S[ρ]) belongs to Γ1 × (X2 \ Γ2) is equal to 0.

Remark 12. [Syllogism] Using Definition 11, we showed that

• Syllogism always holds in classical systems (cf. ref. [6])

• Syllogism does not always hold in quantum systems (cf. ref. [11], § 8.7 in ref. [20])

1.6 Inference; Fisher’s maximum likelihood method

We begin with the following notation:

Notation 13. [ML∞(Ω,ν)(O, S[∗])]: Consider a measurement ML∞(Ω,ν) (O:=(X,F , F ), S[ω0]) formulated in
the basic structure [C(Ω) ⊆ L∞(Ω, ν) ⊆ B(L2(Ω, ν))]. Here, note that

(E1) in most cases that the measurement ML∞(Ω,ν) (O:=(X,F , F ), S[ω0]) is taken, it is usual to think that
the state ω0(∈ Ω) is unknown.

That is because

(E2) the measurement ML∞(Ω,ν)(O, S[ω0]) may be taken in order to know the state ω0.

Therefore, when we want to stress that we do not know the state ω0, the measurementML∞(Ω,ν) (O:=(X,F , F ),
S[ω0]) is often denoted by ML∞(Ω,ν) (O:=(X,F , F ), S[∗])

Theorem 14. [Inference; Fisher’s maximum likelihood method (cf. ref. [7] or §5.2 in ref. [20]] For simplicity,
assume that X is finite set. Assume that the measured value x(∈ X) is obtained by the measurement
ML∞(Ω,ν) (O:=(X, 2X , F ), S[∗]). Then, the unknown state [∗] can be inferred to be ω0(∈ Ω) such that

[F ({x})](ω0) = max
ω∈Ω

[F ({x})](ω)

8

KSTS/RR-19/002 
September 12, 2019



Proof. It is an easy consequence of Axiom 1 (cf. §5.2 in ref. [20]).

Remark 15. [ Inference and Control cf. §5.2 in ref. [20]] The inference problem is characterized as the
reverse problem of measurements. That is, we consider that

(F1) (state ω0, observable O)
ML∞(Ω,ν) (O:=(X, 2X , F ), S[ω0])−−−−−−−−−−−−−−−−−−−−−−−−−→

measurement (Axiom 1)
measured value x0

On the other hand

(F2) (measured value x0, observable O)
ML∞(Ω,ν) (O:=(X, 2X , F ), S[∗])−−−−−−−−−−−−−−−−−−−−−−−−→
inference ( reverse Axiom 1)

state ω0

Thus, (F1) and (F2) are in reverse problem.
Also, we note, from the mathematical point of view, that inference problem (F3) and control problem (F4)
are essentially the same as follows.

(F3) [Inference problem; statistics]: when measured value x0 is obtained, infer the unknown state ω0!

and

(F4) [Control problem; dynamical system theory]: Settle the state ω0 such that measured value x0 will be
obtained!

Thus, we think, from the theoretical point of view, that statistics and dynamical system theory are essentially
the same. Thus, we consider that statistics (= dynamical system theory) is the mathematical representation
of classical mechanical worldview. On the other hand, quantum language is regarded as the mathematical
representation of quantum mechanical worldview.

2 Hempel’s raven paradox in the linguistic quantum mechanical
worldview

2.1 What is Hempel’s raven paradox?

Although all results mentioned in this paper hold in both classical and quantum systems, we, for simplicity,
devote ourselves to classical systems.
In this section we discuss Hempel’s raven paradox (cf. ref. [3]) in the linguistic quantum mechanical
worldview. There may no consensus among philosophers on the problem “What is Hempel’s raven paradox?”.
Some people may even think there is no paradox in Hempel’s raven problem. Thus, we mention our opinion
about “What is Hempel’s raven paradox?” in what follows. Let U be the unversal set of all birds. Let
B(⊆ U) be a set of all black birds. Let R(⊆ U) be a set of all ravens. Thus, the statement: “any raven is
black” is logically denoted by

(G1) “Any raven is black” : (∀x )[x ∈ R −→ x ∈ B] i.e., R ⊆ B ⊆ U,

Its contraposition is denoted by

(G2) “Every non-black bird is a nonraven” : (∀x )[x ∈ U \B −→ x ∈ U \R] i.e., U \B ⊆ U \R

Of course, the two (G1) and (G2) are equivalent. However, If (G1) and (G2) are equivalent, then we have
the following questions (i.e., raven problem):

(G3) Why is the actual verification of (G2) much more difficult than the actual verification of (G1)?

(G4) Why can the truth of “(G1): any raven is black” be known by (G2), i.e., without seeing a raven also
at once?

9

KSTS/RR-19/002 
September 12, 2019



Some may think that these are nonsense questions. However, in this section, we clarify the true meaning
of (G3) and (G4) in the linguistic quantum mechanical worldview. And further, we conclude that Hempel’s
raven paradox may suggest the importance of measurement in science, that is, the language of science is not
logic but quantum language.

Remark 16. Throughout this section, we assume that U (the universal set of all birds) is finite, i.e.,
][U ] < ∞ ( where ][S] is denoted by the number of elements of a set S). Some may misunderstand that
the questions (G3) and (G4) are due to the fact such that ][R] � ][U \ B] ≈ ∞. This is wrong. That is,
as shown in the next section, the questions arise even in the case that ][U \ B] � ][R]. In order to avoid
misunderstanding, we assume that U is a finite set.

2.2 The measurement theoretical answer to the raven paradox

Although most results mentioned in Sections 2∼4 hold in both classical and quantum systems, we, for
simplicity, devote ourselves to classical systems:
Let U be the universal set of all birds. Let B(⊆ U) be a set of all black birds. Let R be the set of all ravens.
Assume that U is finite. Thus, “Any raven is black” is logically denoted by

(H1) R ⊆ B ⊆ U, i.e., (∀x )[x ∈ R −→ x ∈ B]; “any raven is black”

This is logically equivalent to the following (H2) and (H3): (i.e., (H1) ⇔ (H2) ⇔ (H3) )

(H2) [U\B] ⊆ [U\R] ⊆ U, i.e., (∀x )[x ∈ U \B −→ x ∈ U \R]; “every non-black bird is a nonraven”

(H3) R
∩
[U \B] = ∅, i.e., (¬∃x )[[x ∈ R] ∧ [x ∈ U \B]]; “a non-black raven does not exist”

In what follows we try to explain the measurement theoretical (i.e., dualistic ) representations of the logical
(or set theoretical ) statements (H1), (H2) and (H3):
Let Ω be the state space. Without loss of generality ( and, for simplicity ), the state space Ω is assumed to
be a compact space. Let ν be a measure on Ω such that ν(Ω) = 1 and ν(V ) > 0 (∀ open set V (⊆ Ω)). Thus
we have the following classical basic structure:

[C(Ω) ⊆ L∞(Ω, ν) ⊆ B(L2(Ω, ν))]

Consider the state subspaces ΩR(⊆ Ω) and ΩB(⊆ Ω) such that ΩR ⊆ ΩB . And define the state map
ω̃ : U → Ω, that is, the state of a bird t(∈ U) is denoted by ω̃(t)(∈ Ω). And further assume that

ω̃(R) ⊆ (ΩR)
◦, ω̃(B \R) ⊆ (ΩB \ ΩR)

◦, ω̃(U \B) ⊆ (Ω \ ΩB)
◦, (3)

where D◦ is the interior of D(⊆ Ω), i.e., D◦ ≡
∪
{O | O ⊆ D(⊆ Ω), O is open}. This condition is necessary

for “essentially continuity” in Axiom 1 (also, see Remark 5).

Remark 17. Without loss of generality, we can assume that Ω = {ω1, ω2, ω3} (with discrete topology),
ΩR = {ω1}, ΩB = {ω1, ω2} and

ω̃(t) = ω1 (t ∈ R), = ω2 (t ∈ B \R), = ω3 (t ∈ U \B)

However, we devote ourselves to the above general situation.

[Step (I)] The measurement theoretical representation of (H1); “Any raven is black”
Now let us study the measurement theoretical representation of (H1): “Any raven is black”. Define the
observable OB = (X, 2X , F ) in L∞(Ω, ν) such that

X = {b, b}, [F ({b})](ω) = 1 (if ω ∈ ΩB), [F ({b})](ω) = 0 (if ω ∈ Ω \ ΩB),

[F ({b})](ω) = 1− [F ({b})](ω) (ω ∈ Ω) (4)

where “b” and “b” means “black” and “non-black” respectively.
Now, for any t ∈ R(≡ {r1, r2, ..., r][R]}), we have the measurement ML∞(Ω,ν)(OB := (X, 2X , F ), S[ω̃(t)]),

i.e., the measurement of whether the raven t(∈ R) is black. Axiom 1 [ measurement] says that, for any (=
arbitrary ) raven t(∈ R),
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(I1) the probability that a measured value obtained by the measurementML∞(Ω,ν)(OB := (X, 2X , F ), S[ω̃(t)])
is equal to b(∈ X) is given by 1 (≡ [F ({b})](ω̃(t)) = 1).

This is one of the measurement theoretical representations of the statement: “Any raven is black”.
However, the above term “for any raven” is too logical and not concrete. Thus, we may, by using the parallel
measurement (cf. (D6) in Definition 9), rewrite the (I1) to the following:

(I2) the probability that a measured value (xt)t∈R(≡ (xi)
][R]
i=1 ∈ XR) obtained by the parallel measurement⊗

t∈R ML∞(Ω,ν)(OB := (X, 2X , F ), S[ω̃(t)]) is equal to (b)t∈R(≡ (b)
][R]
i=1 ∈ XR) is given by 1

(≡×t∈R[F ({b})](ω̃(t)) = 1)

which is a formal (i.e., measurement theoretical ) expression of the (H1). Also, this may mean “All ravens
are black” rather than “Any raven is black”. For completeness, note that “any (=arbitrary)” and “all” are
distinguished in quantum language.

[Step (II)]; The measurement theoretical representation of (H2); “Every non-black bird is a
nonraven”
Here let us study the measurement theoretical representation of (H2); “Every non-black bird is a nonraven”.
Define the observable OR = (Y, 2Y , G) in L∞(Ω, ν) such that

Y = {r, r}, [G({r})](ω) = 1 (if ω ∈ ΩR), [G({r})](ω) = 0 (if ω ∈ Ω \ ΩR),

[G({r})](ω) = 1− [G({r})](ω) (∀ω ∈ Ω) (5)

where “r” and “r” means “raven” and “nonraven” respectively. Now, for any t ∈ U \ B, we have the
measurement ML∞(Ω,ν)(OR := (Y, 2Y , G), S[ω̃(t)]), i.e., the measurement of whether the non-black bird t ∈
U \B is a nonraven. Axiom 1 [ measurement] says that, for any non-black bird t ∈ U \B,

(J1) the probability that a measured value obtained by the measurementML∞(Ω,ν)(OR := (Y, 2Y , G), S[ω̃(t)])
is equal to r(∈ Y ) is given by 1 (≡ [G({r})](ω̃(t)) = 1).

This is one of the measurement theoretical representations of the statement: “Every non-black bird is a
nonraven”. However, the above term “for any non-black bird” is too logical and not concrete. Thus, we
may, by using the parallel measurement (cf. (D6) in Definition 9), rewrite the (J1) to the following:

(J2) the probability that a measured value (yt)t∈U\B(∈ Y U\B) obtained by the parallel measurement⊗
t∈U\B ML∞(Ω,ν)(OR := (Y, 2Y , G), S[ω̃(t)]) is equal to (r)t∈U\B is given by 1,

which is a formal (i.e., measurement theoretical ) expression of the (H2). Also, this may mean “All the birds
non-black are nonravens” rather than “Any non-black bird is a nonraven”.

Note that the argument of [Step(I)] and that of [Step(II)] are essentially the same (i.e., the role of R and
the role of U \B are symmetrical ). However, the following [Step(III)] is different from them.

[Step (III)]; The measurement theoretical representation of (H3); “A non-black raven does not
exist”
Let OB := (X, 2X , F ) and OR := (Y, 2Y , G) be as in [Step (I)] and [Step (II)] respectively.
Define the observable OBR := (X×Y = {(b, r), (b, r), (b, r), (b, r)}), 2X×Y ,H) in L∞(Ω, ν) such that, for
any ω ∈ Ω, 

[H({(b, r)})](ω) = [F ({b})](ω) · [G({r})](ω) = [G({r})](ω)
[H({(b, r)})](ω) = [F ({b})](ω) · [G({r})](ω)
[H({(b, r)})](ω) = [F ({b})](ω) · [G({r})](ω) = 0

[H({(b, r)})](ω) = [F ({b})](ω) · [G({r})](ω) = [F ({b})](ω)

Then we see:

(K1) Let t be any bird in U . Assume that a measured value (x, y) ∈ X×Y is obtained by the measurement
ML∞(Ω,ν)(OBR := (X×Y, 2X×Y ,H), S[ω̃(t)]). Axiom 1 [measurement] says that the probability that

(x, y) = (b, r) is equal to 0 (≡ [H({(b, r)})](ω̃(t)) = 0). When we paraphrase, Axiom 1 [measurement]
says that the probability that (x, y) ∈ {(b, r), (b, r), (b, r)} is equal to 1.
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This, of course, means “A non-black raven does not exist”. Or, using Definition 11 [implication], we can
describe

[OB ; {b}] =⇒
ML∞(Ω,ν)(OBR,S[ω̃(t)])

[OR; {r}] or, equivalently [OB ; {b}] ⇐=
ML∞(Ω,ν)(OBR,S[ω̃(t)])

[OR; {r}] (∀t ∈ U)

However, the above term “Let t be any bird” is too logical and not concrete. Thus, we may, by using the
parallel measurement (cf. (D6) in Definition 9), rewrite the (K1) to the following:

(K2) Assume that a measured value (xt, yt)t∈U ∈ (X×Y )U is obtained by the parallel measurement⊗
t∈U ML∞(Ω,ν)(OBR := (X×Y, 2X×Y , H), S[ω̃(t)]). Axiom 1 [measurement] says that the probability

that (xt, yt) ∈ {(b, r), (b, r), (b, r)} (∀t ∈ U) is equal to 1.

which is a formal (i.e., measurement theoretical ) expression of the (H3). Also, as shown in the following
[Step(IV)], this (K2) is the best compared to (I2) and (J2).

[Step (IV)]; Answers to Hempel’s problems (G3) and (G4)
Although (H1), (H2) and (H3) are equivalent, the measurements (I2), (J2) and (K2) are not equivalent.
In (I2) of [Step (I)], we consider the parallel measurement

⊗
t∈R ML∞(Ω,ν)(OB := (X, 2X , F ), S[ω̃(t)]),

which includes ][R] measurements. However, in (K2) of [Step (III)], we consider the parallel measurement⊗
t∈U ML∞(Ω,ν)(OBR := (X×Y, 2X×Y ,H), S[ω̃(t)]), which includes more measurements than the parallel

measurement
⊗

t∈R ML∞(Ω,ν)(OB := (X, 2X , F ), S[ω̃(t)]). Thus, some people think that the actual verifica-
tion of (H1) ( or, (H2)) may be more easier than that of (H3). However, this is not true. That is because if
the (I2) asserts “all ravens are black” ( R ⊆ B), we have to prove that R is the set of all ravens. That is,

(L1) Before the measurement (I2), we have to prove that R is the set of all ravens, namely, we have to obtain
the measured value (yt)t∈U by the parallel measurement

⊗
t∈U ML∞(Ω,ν) (OR := (Y, 2Y , G), S[ω̃(t)]),

and we define R (the set of all ravens) by {t ∈ U | yt = r}. And further, we take the parallel
measurement

⊗
t∈R ML∞(Ω,ν)(OB := (X, 2X , F ), S[ω̃(t)]) in (J2).

This procedure (L1) is realized by the parallel measurement
⊗

t∈U ML∞(Ω,ν)(OBR := (X×Y, 2X×Y ,H), S[ω̃(t)])
in(K2) of [Step (III)] (if it is proved that U is the set of all birds). That is, in any of the three cases ((I2),
(J2) and (K2)), it is discussed under the premise that “U is the set of all ravens” is known. Summing up,
we conclude that

(L2) If “(G1); R ⊆ B(⊆ U)” means “All ravens are black”, we have to prove “R is the set of all ravens”,
not just define it. To do so, we have to examine all the birds (∀t ∈ U). That is, we have to prove that
U(≡ {b1, b2, ..., b][U ]}) is the set of all birds. However, it is usually difficult to prove that U is the set
of all birds as there may be some birds in unexplored land. Therefore, in most case, it is impossible to
be convinced of “All ravens are black”. Similarly, to assert “ every non-black bird is a nonraven” or
“a non-black raven does not exist”, we have to examine all the birds (∀t ∈ U). This is impposible in
most cases.

Therefore, we can completely understand the questions (G3) and (G4). As the answer to the (G3) and
(G4), some may directly find the (L2) without quantum language ( and thus, without the arguments
[Step(I)∼Step(IV)]). If so, they may be somewhat excellent. However, it is not worth so much. That is
because we think that the reason why Hempel’s problem is famous is that many researchers know the (L2)
(i.e., the difference between definition and proof ) unconsciously. Thus, we think that to solve Hempel’s
raven problems (G3) and (G4) is to answer the following:

(L3) Propose a worldview! And further derive the assertion (L2) from the axioms of its worldview!

As shown above [Step(I)∼Step(IV)], we derived the (L2) from Axiom 1 [measurement] in the linguistic
quantum mechanical worldview.

Remark 18. (i): As seen in the above, the logical implication “−→” has various interpretation in quantum
language. In this paper we are not concerned with Axiom 2 [ Causality], which is also related to “implica-

tion”. That is because [“state at time t1”
t1<t2−−−−−−−−−−−−→

Axiom 2 [causality]
“state at time t2”] can be regarded as a kind of

implication. But it’s a little unreasonable to regard causality as an implication. For example, consider the
following famous puzzle:
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(L4) Describe the contraposition of “If he is not scolded, he does not study”!

This is not so difficult as puzzle. Also, some may associate temporal logic. But, we think, from the quantum
linguistic point of view, that this puzzle is unnatural. That is because we consider that the language of
science is not logic but quantum language.
(ii): For the sake of completeness, we sum up and add the following correspondence:

(H1): R ⊆ B ⊆ U
any raven is black

←−−−−−−−−−−−−
simplified form

(I2):
⊗

t∈R ML∞(Ω,ν)(OB := (X, 2X , F ), S[ω̃(t)])

measured value: (b)t∈R∥∥∥
(H2): [U \B] ⊆ [U \R] ⊆ U

every non-black bird is a nonraven
←−−−−−−−−−−−−
simplified form

(J2):
⊗

t∈U\B ML∞(Ω,ν)(OR := (Y, 2Y , G), S[ω̃(t)])

measured value: (r)t∈U\B∥∥∥
(H3): R

∩
[U \B] = ∅

a non-black raven does not exis
←−−−−−−−−−−−−
simplified form

(K2):
⊗

t∈U ML∞(Ω,ν)(OBR := (X×Y, 2X×Y ,H), S[ω̃(t)])

measured value: (xt, yt) ∈ {(b, r), (b, r), (b, r)} (∀t ∈ U)

(6)

2.3 Falsification test

As seen in the above (L2), in most case, it is impossible to be convinced of “All ravens are black”. Thus,
our next problem is to answer the problem ”How do we believe it ?”. For example, assume that

(M1) It was found that one hundred ravens were black continuously.

What we can do is to reject the null hypothesis of the (M1). For instance, it is usual to assume the following
null hypothesis:

(M2) Non-black ravens can be observed at 7 time of a rate to 100 times.

A simple calculation shows that this null hypothesis (M2) is represented in quantum language as the mea-
surement ML∞(Ω,ν) (O′

B := (X, 2X , F ′), S[ω̃(r)]), (where ω̃ : U → Ω is the state map (cf. the formula (3))
such that ω̃(r) ∈ Ω◦

R (∀r ∈ R)) where

X = {b, b}, [F ′({b})](ω) = 93

100
(if ω ∈ ΩR), 0 ≤ [F ′({b})](ω) ≤ 1 (if ω ∈ Ω \ ΩR),

[F ′({b})](ω) = 1− [F ′({b})](ω) (∀ω ∈ Ω)

which is a slight modification of the formula (4). And thus, under the null hypothesis (M2), we calculate,
by Axiom 1 [measurement], that

(M3) the probability that a measured value (xi)
100
i=1(∈ X100) obtained by the parallel measurement⊗

r∈{r1,r2,...,r100}⊆R ML∞(Ω,ν) (O
′
B := (X, 2X , F ′), S[ω̃(r)]) satisfies that xi = b (i = 1, 2, ..., 100) is given

by (93/100)100(< 0.048). That is, the probability that (M1) is realized ( i.e., we meet one hundred
black ravens continuously ) is less than 0.048 (> (93/100)100)).

Thus, we may reject the null hypothesis (M2) since probability 0.048 is quite rare.

Remark 19. Note that the above argument is popular as statistical hypothesis testingin in statistics, though
statistics does not have the concept of “measurement”. In our worldview (i.e., linguistic quantum mechanical
worldview), we consider that Popper’s falsificationism (cf, ref. [24]) and statistical hypothesis testing are
almost the same. However his theory was supported by philosophers rather than scientists since his proposal
was not proposed under a certain scientific worldview.
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3 Hume’s problem of induction and falsification tests

3.1 Problem of Induction in the linguistic quantum mechanical world view

Although David Hume (1711-1776), British experimentalist, suspected the justification of induction, in this
section we show that the justification is easily solved in our worldview. If we expect a scientific answer to
Hume’s problem, we must start with the scientific definition of “the uniformity principle of nature”, i.e., the
following Definition 20 [ The uniformity principle of nature]. Some may feel that the uniformity principle
of nature (i.e., the condition in Definition 20) is too strong. However, we think that it is impossible to
propose the different quantitative definition of the uniformity principle of nature that leads to a result like
Theorem 21 [Inductive reasoning] ( i.e., If similar measurements are performed, the similar measured values
are obtained ).

Definition 20. [The uniformity principle of nature] Let [C(Ω) ⊆ L∞(Ω, ν) ⊆ B(L2(Ω, ν))] be a classi-
cal basic structure such that Ω is compact and ν(Ω) = 1. A family of measurements {ML∞(Ω,ν)(Oi :=
(X,F , Fi), S[ωi]) | i = −n,−n + 1, ...,−1, 0, 1, 2, ..., N} is said to satisfy the uniformity principle of nature
(concerning µ), if there exists a probability space (X,F , µ) such that

[Fi(Ξ)](ωi) = µ(Ξ) ∀Ξ ∈ F , ∀i = −n,−n+ 1, ...,−1, 0, 1, 2, ..., N

Under this definition, we assert the following theorem, which should be regarded as the fundamental theorem
in philosophy of science.

Theorem 21. [Inductive reasoning, the quantum linguistic solution of Hume’s problem of induction]. Let
[C(Ω) ⊆ L∞(Ω, ν) ⊆ B(L2(Ω, ν))] be a basic structure such that Ω is compact and ν(Ω) = 1. Assume that
a family of measurements {ML∞(Ω,ν)(Oi := (X,F , Fi), S[ωi]) | i = −n,−n + 1, ...,−1, 0, 1, 2, ..., N} satisfies
the uniformity principle of nature ( concerning µ). Let (x−n, x−n+1, ..., x−1, x0, x1, ..., xN ) ∈×N

i=−n X be a

measured value by the parallel measurement
⊗N

i=−n ML∞(Ω,ν) (Oi := (X,F , Fi), S[ωi]). Then, we see that

]{k | xk ∈ Ξ, k = −n,−n+ 1, ...,−1, 0}
n

≈ µ(Ξ)(= [Fi(Ξ)](ωi))
(
Ξ ∈ F , i = −n,−n+ 1, ...,−1, 0, 1, 2, ..., N

)
(7)

where n is sufficiently large. Here ][Θ] is the number of elements in a set Θ.

Proof. Let Ξi ∈ F (i = −n,−n+1, ...,−1, 0, 1, ..., N). Axiom 1 [measurement] says that the probability that

a measured value (x−n, x−n+1, ..., x−1, x0, x1, ..., xN ) obtained by the parallel measurement
⊗N

i=−n ML∞(Ω,ν)

(Oi := (X,F , Fi), S[ωi]) belongs to ×N
i=−n Ξi is given by ×N

i=−n[Fi(Ξi)](ωi) = ×N
i=−n µ(Ξi). Thus, the

sequence {xi}Ni=−n can be regarded as independent random variables with the identical distribution µ.
Hence, using the law of large numbers, we can immediately get the formula (7). Also, this theorem is a
direct consequence of the law of large numbers for parallel measurements (cf. refs. [7], or § 4.2 in ref.[20]).

Remark 22. (i): Recall that the law of large numbers (which is almost equivalent to Theorem 21) says that

“frequency probability” = “the probability in Axiom 1” (cf. ref. [7])

though the probability in Axiom 1 has the several aspects. Also, note that the law of large numbers in
statistics (cf. ref. [21]) has already been accepted as the fundamental theorem in science. Therefore, even if
Theorem 21 ([Inductive reasoning]+(7)) is called the fundamental theorem in philosophy of science, we don’t
think it’s exaggerated. We believe that our proposal (i.e., Theorem 21) is completely true in our worldview.
Thus, we think that the solution of Hume’s problem of induction was practically already found as the law
of large numbers. In the framework of our worldview, we are convinced that the above is the definitive
solution to Hume’s problem. However, there may be another idea if some start from another worldview.
Hence, as described at the end of this paper, we hope that many philosophers propose various mathematical
foundations of scientific philosophy, in which Hume’s problem of induction are discussed from the various
viewpoints.
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(ii): In Definition 20 [The uniformity principle of nature] and Theorem 21 [Inductive reasoning], we consider
the family of measurements {ML∞(Ω,ν)(Oi := (X,F , Fi), S[ωi]) | i = −n,−n + 1, ...,−1, 0, 1, 2, ..., N}. This
may be too general. Usually, it suffices to consider that {ML∞(Ω,ν)(Oi := (X,F , F ), S[ωi]) | i = −n,−n +
1, ...,−1, 0, 1, 2, ..., N}, i.e., F = Fi (−n ≤ ∀i ≤ N).

(iii): It may be understandable to consider two measurements:
⊗0

i=−n ML∞(Ω,ν) (O := (X,F , Fi), S[ωi])

and
⊗N

i=1 ML∞(Ω,ν) (O := (X,F , Fi), S[ωi]). The reason that we do not consider two measurements is due
to the linguistic Copenhagen interpretation (D1), i.e., only one measurement is permitted.

Example 23. [Coin tossing]. Let us discuss the unfair coin tossing as the most understandable example
of Theorem 21 [Inductive reasoning]. Consider a basic structure [C(Ω) ⊆ L∞(Ω, ν) ⊆ B(L2(Ω, ν))]. Let
{ωi}Ni=−n be a sequence in Ω, where ωi is the state of i-th coin tossing (i = −n,−n + 1, ..., 0, 1, 2, 3, ..., N).
Let O = (X, 2X , F ) be an observable in L∞(Ω, ν) such that

X = {H,T}, ( where H: head, U : tail) ,

[F ({H})](ωi) = µ({H}) = 2/3, [F ({T})](ωi) = µ({T}) = 1/3 (∀i = −n,−n+ 1, ...,−1, 0, 1, 2, ..., N)
(8)

That is, a family of measurements {ML∞(Ω,ν)(O := (X, 2X , F ), S[ωi]) | i = −n,−n + 1, ...,−1, 0, 1, 2, ..., N}
satisfies the uniformity principle of nature (concerning µ). Let (x−n, x−n+1, ..., x−1, x0, x1, ..., N) ∈×N

i=−n X

be a measured value obtained by the parallel measurement
⊗N

i=−n ML∞(Ω,ν) (O := (X, 2X , F ), S[ωi]), i.e.,
infinite coin throws. Here, Theorem 21 [Inductive reasoning] say that it is natural to assume that, for
sufficiently large n,

(x−n, x−n+1, ..., x−1, x0) = (T H H T H H H T T ..... T H H︸ ︷︷ ︸
n+1

) (9)

( where the number of Hs ≈ 2n/3, T s ≈ n/3)

Then we can believe that we see that xi = H with probability 2/3 [ resp. xi = T with probability 1/3] for
each i = 1, 2, ..., N . It should be noted that even without knowing (8), we can conclude that if we know (9).

Example 24. [Induction concerning raven problem]. Let R ⊆ B ⊆ U be as in Section 2.2. Consider a basic
structure [C(Ω) ⊆ L∞(Ω, ν) ⊆ B(L2(Ω, ν))]. Let OB = (X, 2X , F ) be an observable in L∞(Ω, ν) such as
defined in the formula (4), that is,

X = {b, b}, [F ({b})](ω) = 1 (if ω ∈ ΩB), [F ({b})](ω) = 0 (if ω ∈ Ω \ ΩB),

[F ({b})](ω) = 1− [F ({b})](ω) (∀ω ∈ Ω)

Let {ωi}Ni=−n be a sequence in Ω◦
R(⊆ Ω). Clearly, a family of measurements {ML∞(Ω,ν)(OB := (X, 2X , F ), S[ωi])

| i = −n,−n+ 1, ...,−1, 0, 1, 2, ..., N} satisfies the uniformity principle of nature (concerning µ) such that

[F ({b})](ωi) = µ({b}) = 1, [F ({b})](ωi) = µ({b}) = 0, ( i = −n,−n+ 1, ..., 0, 1, 2, 3, ..., N)

Let (x−n, x−n+1, ..., x−1, x0, x1, ..., xN ) ∈×N
i=−n X be a measured value obtained by the parallel measure-

ment
⊗N

i=−n ML∞(Ω,ν) (OB := (X, 2X , F ), S[ωi]), We see, of course, that xi = b (i = −n,−n + 1, ..,−1, 0).
And thus, we can believe, by Theorem 21 [Inductive reasoning], that x1 = x2 = ... = xN = b.

3.2 Grue paradox cannot be represented in quantum language

If our understanding of inductive reasoning ( mentioned in the above ) is true, we can solve the grue paradox
(cf. ref. [2]). Let us mention it as follows.
Consider a basic structure [C(Ω) ⊆ L∞(Ω, ν) ⊆ B(L2(Ω, ν))]. Let Ωg,Ωb,Ωo be the subsets of the state
space Ω such that Ωg ∩Ωb = ∅ and Ωo = Ω \ (Ωg ∪Ωb). Let O = (X ≡ {g, b, o}, 2X , F ) be the observable in
L∞(Ω, ν) such that

[F ({g})](ω) = 1 (ω ∈ Ωg), = 0 (ω ∈ Ω \ Ωg) [F ({b})](ω) = 1 (ω ∈ Ωb), = 0 (ω ∈ Ω \ Ωb)

[F ({o})](ω) = 1− [F ({g})](ω)− [F ({b})](ω) (ω ∈ Ω) (10)
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where “g”, “b”, “o” respectively means “green”, “blue”, “others”.
Let {e−n, e−n+1, ..., e−1, e0, e1, e2, ..., eN} be the set of (green) emeralds. And assume that ωi(∈ Ω◦

g) is the
state of emerald ei (i = −n,−n+ 1, ...,−1, 0, 1, 2, ..., N).
A family of measurements {ML∞(Ω,ν)(Oi := (X, 2X , F ), S[ωi]) | i = −n,−n + 1, ...,−1, 0, 1, 2, ..., N} clearly
satisfies the uniformity principle of nature, that is, there exists an probability space (X, 2X , µ) such that

[F (Ξ)](ωi) = µ(Ξ) ∀Ξ ∈ 2X , ∀i = −n,−n+ 1, ...,−1, 0, 1, 2, ..., N

where µ({g}) = 1, µ({b, o}) = 0.

Let (x−n, x−n+1, ..., x−1, x0, x1, ..., xN ) ∈×N
i=−n X be a measured value obtained by the parallel measure-

ment
⊗N

i=−n ML∞(Ω,ν) (O := (X, 2X , F ), S[ωi]). We see, of course, that xi = g (i = −n,−n + 1, ..,−1, 0).
And thus, we can believe, by Theorem 21 [Inductive reasoning], that x1 = x2 = ... = xN = g. For the sake of
completeness, note that we can predict x1 = x2 = ... = xN = g only by the data x−n = x−n+1 = ... = x0 = g.
This is usual arguments concerning Theorem 21 [Inductive reasoning].

On the other hand, Goodman’s grue paradox is as follows (cf. ref. [2]).

(N1) Define that Y has a grue property iff Y is green at time i such that i ≤ 0 and Y is blue at time i such
that 0 < i. Suppose that we have examined the emeralds at −n,−n + 1, ... − 1, 0, and found them
to all be green (and hence also grue ). Then, “so-called inductive reasoning” says that emeralds at
1, 2, ..., N have the grue property (and hence blue) as well as green. Thus, a contradiction is gotten.

However, we think that this (N1) cannot be described in quantum language. If we try to describe the (N1),
we may consider as follows.

(N2) Let {e−n, e−n+1, ..., e−1, e0, e1, e2, ..., eN} be the set of emeralds. Let ωi(∈ Ω◦
g) be the state of emerald

ei (i = −n,−n + 1, ...,−1, 0), and let ωi(∈ Ω◦
b) be the state of emerald ei (i = 1, 2, ..., N). However,

it should be noted that a family of measurements {ML∞(Ω,ν)(Oi := (X, 2X , F ), S[ωi]) | i = −n,−n +
1, ...,−1, 0, 1, 2, ..., N} does not satisfy the uniformity principle of nature. That is because

[F ({g})](ωi) = 1 (i = −n,−n+ 1, ..., 0), [F ({g})](ωi) = 0 (i = 1, 2, ..., N)

Hence Theorem 21 [Inductive reasoning] cannot be applied.

Or,

(N3) Let {e−n, e−n+1, ..., e−1, e0, e1, e2, ..., eN} be the set of emeralds. And let ωi(∈ Ω◦
g) is the state of

emerald ei such that ω = ωi (i = −n,−n + 1, ...,−1, 0, 1, 2, ..., N). Let Oi = (X, 2X , Fi) be the
observable (i = −n,−n+1, ...,−1, 0, 1, 2, ..., N) such that Oi is the same as O(= (X ≡ {g, b, o}, 2X , F ))
in (10) (if i = −n,−n + 1, ...,−1, 0), and Oi = (X, 2X , Fi) (if 0, 1, 2, ..., N) is defined by Fi({g}) =
F ({b}), Fi({b}) = F ({g}), Fi({o}) = F ({o}). However, in this case, it should be noted that a family
of measurements {ML∞(Ω,ν)(Oi := (X, 2X , Fi), S[ωi]) | i = −n,−n + 1, ...,−1, 0, 1, 2, ..., N} does not
satisfy the uniformity principle of nature. That is because

[Fi({g})](ωi) = [F ({g})](ωi) = 1 (i = −n,−n+ 1, ..., 0),

[Fi({g})](ωi) = [F ({b})](ωi) = 0 (i = 1, 2, ..., N)

Hence Theorem 21 [Inductive reasoning] cannot be applied.

Therefore Goodman’s grue paradox (N1) cannot be described in quantum language.

Remark 25. We believe that there is no scientific argument without scientific worldview. Thus, we can
immediately conclude that Goodman’s discussion (N1) is doubtful since his argument is not based on any
scientific worldview. In this sense, the above arguments (N2) and (N3) may not be needed. That is, the
confusion of grue paradox is due to lack of the understanding of Hume’s problem of induction in the linguistic
quantum mechanical worldview, and not lack of the term “grue” is non-projectible (cf. ref. [2]). Thus, we
think that to solve Goodman’s grue paradox is to answer the following:

(N4) Propose a worldview! And further formulate Hume’s induction as the fundamental theorem in the
worldview! In this formulation, confirm that Goodman’s paradox is eliminated naturally.

What we did is this.
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4 The measurement theoretical representation of abduction

4.1 Deduction and abduction in “logic”

A typical example of deduction is as follows:
(
In the following, (O′

1) and (P′
1) are often omitted.

)
(O1) All the beans in this bag B1 are white: [bag B1 −→“w”(≈ white)]

(O′
1) All the beans in that bag B2 are white or black fifty-fifty (or generally, the ratio of white beans to

black beans is p/(1− p) where 0 < p < 1): [bag B2 −→“w”(≈ white) or “b”(≈ black)]

(O2) This bean is from this bag B1: [bag B1]

(O3) Therefore, this bean is white: [“w”(≈ white)]

It is, of course, obvious and ordinary.
On the other hand, C.S, Peirce (cf. ref. [23]) proposed abduction. The example of abduction is as follows:

(P1) All the beans in this bag B1 are white: [bag B1 −→“w”(≈ white)]

(P′
1) All the beans in that bag B2 are white and black fifty-fifty (or generally, the ratio of white beans to

black beans is p/(1− p)): [bag B2 −→“w”(≈ white) or “b”(≈ black)]

(P2) This bean (from B1 or B2) is white: [“w”(≈ white)]

(P3) Therefore, this bean is from this bag B1 : [bag B1]

This is wrong from the logical point of view. However, the abduction ( abductive reasoning ) is known as
one of useful tools to find a best solution. Also, note that [(O2)−→(O3)] and [(P2)−→(P3)] are in reverse
relation.

4.2 The measurement theoretical representation of deduction and abduction

In this section, we show that the abduction [(P1)-(P3)] can be justified in quantum language. Consider the
state space Θ = {θ1, θ2} with the discrete topology, and the classical basic structure [C(Θ) ⊆ L∞(Θ, ν) ⊆
B(L2(Θ, ν))], where ν({θ1}) = ν({θ2}) = 1/2. Assume that

θ1 ≈ the state of the bag B1, θ2 ≈ the state of the bag B2,

Assume that 1000 white beans belong to bag B1, and further, 500 white beans and 500 black beans belong
to the bag B2. Thus we have the observable O = ({w, b}, 2{w,b}, F ) in L∞(Θ, ν) such that

[F ({w})](θ1) = 1 [F ({b})](θ1) = 0

[F ({w})](θ2) = p [F ({b})](θ2) = 1− p (0 < p < 1)

where “w” and “b” means “white” and “black” respectively.
Thus, we have the measurement ML∞(Θ,ν)(O := ({w, b}, 2{w,b}, F ), S[θi]), i = 1, 2. For example, Axiom 1 [
measurement] says that

(Q1) [measurement]: The probability that the measured value w is obtained byML∞(Θ,ν)(O := ({w, b}, 2{w,b},
F ), S[θ1]) is equal to 1

This is the same as the deduction (i.e., (O1)–(O3)).
Next, under the circumstance that bags B1 and B2 cannot be distinguished, we consider the following
inference problem:

(Q2) [inference problem]: When the measured value w is obtained by the measurement ML∞(Θ,ν)(O :=

({w, b}, 2{w,b}, F ), S[∗]), which do you infer, [∗] = θ1 or [∗] = θ2?
Theorem 14 [Fisher’s maximum likelihood method] says that [∗] = θ1, since

max{F ({w})](θ1), F ({w})](θ2)} = max{1, p} = 1 = [F ({w})](θ1)

This implies (P3).
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Therefore, the above (Q2) is the measurement theoretical representation of abduction (i.e., (P1)–(P3)). For
the sake of completeness, note that (Q1) and (Q2) are in reverse problem (cf. Remark 15). That is, we have
the following correspondence:

[(O1),(O
′
1),(O2) −→(O3)]
deduction

−−−−−−−−−−−−
simplified form

(Q1): measurement
(Axiom 1)yreverse yreverse

[(P1),(P
′
1),(P2) −→(P3)]
abduction

−−−−−−−−−−−−
simplified form

(Q2): inference
(Fisher’s maximum likelihood method)

(11)

Thus, the scientific meaning of abduction can be completely clarified in the translation from logic to quantum
language.

5 Flagpole problem

Let us explain the flagpole problem as follows. Suppose that the sun is at an elevation angle α◦ in the sky.
Assume that tanα◦ = 1/2. There is a flagpole which is ω0

0 meters tall. The flagpole casts a shadow ω0
1

meters long. Suppose that we want to explain the length of the flagpole’s shadow. On Hempel’s model, the
following explanation is sufficient.

(R1) 1. The sun is at an elevation angle α◦ in the sky.
2. Light propagates linearly.
3. The flagpole is ω0

0 meters high.
Then,
4. The length of the shadow is ω0

1 = ω0
0/ tanα

◦ = 2ω0
0

This is a good explanation of ”Why is that shadow 2ω0
0 meters long?”

Similarly, we may consider as follows.

(R2) 1. The sun is at an elevation angle α◦ in the sky.
2. Light propagates linearly.
3. The length of the shadow is ω0

1

Then,
4. The flagpole is ω0

0(= (tanα◦)ω0
1 = ω0

1/2) meters tall.

However, the above is not sufficient as the explanation of ”Why is the flagpole ω0
0(= ω0

1/2) meters tall?”
The confusion between (R1) and (R2) is due to the lack of measurement. In what follows, we discuss it.

For each time t = 0, 1, consider a basic structure [C(Ωt) ⊆ L∞(Ωt, νt) ⊆ B(L2(Ωt, νt))], where Ω0 = [0, 1]
is the state space at time 0 (where the closed interval in the real line R), Ω1 = [0, 2] is the state space at
time 1 and the νt is the Lebesgue measure. Since the sun is at an elevation angle α◦ in the sky, it suffices to
consider to the map φ0,1 : Ω0 → Ω1 such that φ0,1(ω0) = 2ω0 (∀ω0 ∈ Ω0). Thus, we can define the causal
operator Φ0,1 : L∞(Ω1)→ L∞(Ω0) such that (Φ0,1f1)(ω0) = f1(φ(ω0)) (∀f1 ∈ L∞(Ω1), ω0 ∈ Ω0).

Let Oe = (X,F , Fe) be the exact observable in L∞(Ω1, ν1) (cf. Example 6). That is, it satisfies that
X = Ω1,F = BΩ1 (i.e., the Borel field in Ω), [Fe(Ξ)](ω1) = 1 ( if ω1 ∈ Ξ), = 0 ( otherwise).

Thus, we have the measurement ML∞(Ω0,ν0)(Φ0,1Oe = (X,F ,Φ0,1Fe), S[ω0
0 ]
). Then we have the following

statement

(S1) [Measurement]; the probability that the measured value x(∈ X) obtained by the measurementML∞(Ω0,ν0)

(Φ0,1Oe = (X,F ,Φ0,1Fe), S[ω0
0 ]
) is equal to 2ω0

0 is given by 1.

which is the measurement theoretical representation of (R1). That is, we consider that the (R1) is the
simplified form ( or, the rough representation ) of (S1). Also,

(S2) [Inference]; Assume that the measured value ω0
1(∈ X) is obtained by the measurementML∞(Ω0,ν0)(Φ0,1Oe =

(X,F ,Φ0,1Fe), S[∗]). Then, we can infer that [∗] = ω0
1/2

which is the measurement theoretical representation of (R2). That is, we consider that the (R2) is the
simplified form ( or, the rough representation ) of (S2).

Thus, we conclude that “scientific explanation” is to describe by quantum language.
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6 Conclusion; To do science is to describe phenomena by quantum
language

6.1 Logic (in ordinary language), statistics, quantum language

“What is science ?”is the main question of philosophy of science. For example, we have the following
answers:

(]1) Science is to describe phenomena by logic

(]2) Science is to describe phenomena by statistics

(]3) Science is to describe phenomena by quantum language

In what follow, let us examine the above three:

[(]1):Logic]: Some may say “Science is to describe phenomena by logic”, which may be due to the logical
positivism ( or, the tradition of Aristotle’s syllogism). However, as seen in Sections 2∼4, Hempel’s raven
paradox, Hume’s problem of induction, Goodman’s grue paradox , Peirce’s abduction and flagpole problem
are related to the concept of measurement (= inference), and thus, these problems cannot be adequately
handled by logic alone. Thus, we think that logic is the language of mathematics, and not the language of
science. As seen throughout this paper, we believe that the representation using “logic” is rough in most
cases.

[(]2): Statistics; the classical mechanical world view ]: Statistics are used everywhere in science, and
thus, statistics may be the principle of science. Therefore some may say “Science is to describe phenomena
in the classical mechanical worldview (≈ statistics ≈ dynamical system theory)”. This answer may be
somewhat better as follows.

(T1) economics is to describe economical phenomena by statistics ( it is usual to regard economics as the
application of dynamical system theory (≈ statistics ))

(T2) psychology is to describe psychological phenomena by statistics

(T3) biology is to describe biological phenomena by statistics

(T4) medicine is to describe medical phenomena by statistics (i.e., medical statistics)

Also, since dynamical system theory is considered as a kind of mathematical generalization of Newtonian
mechanics, we may be allowed to say:

(T5) Newtonian mechanics is to describe classical mechanical phenomena by statistics (= dynamical system
theory). Also, it is clear that dynamical system theory plays a central role in engineering.

though Newtonian mechanics is physics, and thus, it belongs to the realistic worldview in Fig. 1.
However, statistics (≈ dynamical system theory (cf. Remark 15)) is too mathematical. Hence, “Science is
to describe phenomena in the classical mechanical worldview (≈ statistics ≈ dynamical system theory)” is
almost the same as “Science is to describe phenomena using the mathematical theories of probability and
differential equation”. And thus, the framework of the classical mechanical worldview is ambiguous. Since
statistics (≈ dynamical system theory ) does not have clear axioms, we think that it is a little unreasonable
to say that statistics is the language of science.

For example, we don’t know how to attack Hempel’s raven problem (G3) and (G4) from the statistical
point of view, since statistics does not have the concept of measurement. As seen below, the relationship
between science and statistics is revealed by quantum language ( cf. 9© in Fig. 1).

[(]3): Quantum language; the linguistic quantum mechanical worldview]: We choose quantum
language (i.e., the linguistic quantum mechanical worldview, or the probabilistic interpretation of science),
and we assert “Science is to describe phenomena by quantum language”. That is, in a similar sense of
(T1)-(T5), we say that

(U1) economics is to describe economical phenomena by quantum language
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(U2) psychology is to describe psychological phenomena by quantum language (cf. Chapter 18 in ref [20])

(U3) biology is to describe biological phenomena by quantum language

(U4) medicine is to describe medical phenomena by quantum language

(U5) Newtonian mechanics is to describe classical mechanical phenomena by quantum language ( in the
same meaning as the (T5), also recall the history: 2© −→ 7© −→ 10© in Fig. 1 ). Also, it is clear that
classical system theory (= dynamical system theory, cf. (B′

2)) plays a central role in engineering.

(U6) statistical mechanics is to describe statistical mechanical phenomena by quantum language (cf. ref.
[14])

(U7) quantum mechanics (i.e., quantum information theory) is to describe quantum mechanical phenomena
by quantum language (cf. (A1)).

(U8) As mentioned in the (iv) and (v) of Remark 8, a lot of paradoxes (e.g., Bertrand’s paradox, McTaggart’s
paradox, Zeno’s paradox, Monty Hall problem, etc. (cf. refs. [20, 13, 19])) are clarified in quantum
language.

(U9) As shown in Sections 2∼4, fundamental problems in philosophy of science (i.e., Hempel’s raven paradox,
Hume’s problem of induction, Peirce’s abduction, the flagpole problem, etc.) are easily solved in
the linguistic quantum mechanical worldview. Therefore, quantum language guarantees that these
problems are scientific. On the other hand, Goodman’s grue paradox (N1) cannot be described by
quantum language. Thus, it is not scientific. Also, it should be noted that these results are consequences
of Axiom 1 [measurement].

etc. Quantum language has the advantage of having the concept of “measurement”. And thus, as seen in
this paper, “logic” can be paraphrased in detail in terms of measurement, and thus, precise expression is
obtained.

Remark 26. [Can logic and statistics be regarded as kinds of worldviews?] Logic and statistics has respec-
tively various aspects. However, when we say roughly, logic is the language of mathematics, and statistics
is a quite useful mathematical theory. If so, how can we regard logic and statistics as kinds of worldviews?
In this paper, we see that logic and statistics respectively has aspects such as simplified forms of quantum
language. That is,

logic

statistics

 simplified form−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
elimination of dualism (≈ measurement)

quantum language

(e.g. see (A3) in Fig. 1 and the formulas (6), (11)). If so, logic and statistics are scientific as simplified
forms of quantum language.

6.2 Summing up; Quantum language is the language of science

In this paper, we clarify the following unsolved problems in the linguistic quantum mechanical worldview:

• Hempel’s raven paradox in Section 2, Hume’s problem of induction in Section 3.1, Goodman’s grue
paradox in Section 3.2, Peirce’s abduction in Section 4, the flagpole problem in Section 5

That is, we sum up as follows:

(V1) [Hempel’s raven paradox in Section 2]: Hempel’s raven problem (i.e., (G3) and (G4)) is related to
measurement and not logic. Thus it is not solved if the concept of measurement is not clarified.
Therefore, it is easily solved in the linguistic quantum mechanical worldview since it includes Axiom 1
[measurement].

(V2) [Hume’s problem of induction in Section 3.1]: In the linguistic quantum mechanical worldview, Hume’s
problem of induction (= Theorem 21 [Inductive reasoning]) is essentially the same as the law of large
numbers (which is the most basic theorem in science). It may be reasonable. That is because Hume’s
problem of induction should be the most basic claim in science if there is the answer to this problem.
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(V3) [Goodman’s grue paradox in Section 3.2]: We believe that if Hume’s problem of induction is solved,
Goodman’s grue paradox is immediately solved as its corollary. In fact, Goodman’s grue paradox
can be easily solved as the corollary of Theorem 21 [Inductive reasoning] in the linguistic quantum
mechanical worldview. Thus, Goodman’s grue paradox is due to the lack of the understanding of
Hume’s problemof induction.

(V4) [Peirce’s abduction in Section 4]: As shown in the formula (11), Peirce’s abduction is characterized as
the simplified form of Fisher’s maximum likelihood method in quantum language.

(V5) [The flagpole problem in Section 5]: The confusion concerning the flagpole problem is due to relying
only on “logic”, and not using quantum language.

Hence we conclude that the reason that these problems are not yet clarified depends on lack of the worldview
with the concept of measurement in philosophy of science. Again we emphasize the importance of worldview
in science. That is because, if we do not have the worldview, we do not know what to rely on to proceed with
the discussion. Therefore, it is no exaggeration to say that there is no science without a scientific worldview.

As mentioned in Remark 1, quantum language does not cover all sciences. However, we consider that
familiar sciences are described by quantum language. And further, we believe that quantum language (i.e.,
the probabilistic interpretation of science ) plays a central role in almost familiar sciences. That is, we believe
that quantum language gives the mathematical foundations to science.

However, the answer to ”What is science?” may not necessarily be determined uniquely. If so, we
feel like knowing other interpretations (i.e., other scientific worldview) besides ours (i.e., the probabilistic
interpretation of science ). Thus, we hope that various mathematical foundations (e.g., category theoretical
approach, modal logic approach, etc. ) of scientific philosophy will be proposed. And we expect that
fundamental problems such as raven problem, problem of induction, grue paradox, etc. will be investigated
in these interpretations. And we hope that philosophy of science will progress with such competition.
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[22] Prugovečki, E. (1982) Quantum mechanics in Hilbert space, Academic Press, New York.

[23] Peirce. C.S. (1958) Collected Papers of Charles Sanders Pierce, Harvard Univ. Press.

[24] Popper, K.R. (1959) The logic of Scientific Discover, London Hutchinson

[25] Sakai, S. (1971) C∗-algebras and W ∗-algebras, Ergebnisse der Mathematik und ihrer Grenzgebiete (Band 60),
Springer-Verlag, Berlin, Heidelberg, New York

[26] von Neumann, J. (1932) Mathematical foundations of quantum mechanics Springer Verlag, Berlin

[27] Yosida, K. (1980) Functional analysis, Springer-Verlag (Sixth Edition)

22

KSTS/RR-19/002 
September 12, 2019

http://www.scirp.org/journal/PaperInformation.aspx?PaperID=19884
http://www.scirp.org/journal/PaperInformation.aspx?PaperID=19884
http://www.scirp.org/journal/PaperInformation.aspx?PaperID=18861#.U9-VQPl_vw8
http://www.scirp.org/journal/PaperInformation.aspx?PaperID=18861#.VKevmiusWap
http://www.scirp.org/Journal/PaperInformation.aspx?PaperID=62464 
http://www.scirp.org/Journal/PaperInformation.aspx?PaperID=62464
http://www.math.keio.ac.jp/academic/research_pdf/report/2017/17004.pdf
http://www.math.keio.ac.jp/academic/research_pdf/report/2017/17004.pdf
http://www.scirp.org/Journal/PaperInformation.aspx?PaperID=76391
http://www.scirp.org/Journal/PaperInformation.aspx?PaperID=76391
http://www.scirp.org/Journal/PaperInformation.aspx?PaperID=76391
http://www.scirp.org/Journal/PaperInformation.aspx?PaperID=80813 
http://www.scirp.org/Journal/PaperInformation.aspx?PaperID=80813
https://www.scirp.org/Journal/PaperInformation.aspx?PaperID=87862
https://www.scirp.org/Journal/PaperInformation.aspx?PaperID=87862
https://www.scirp.org/Journal/PaperInformation.aspx?PaperID=87862
http://www.math.keio.ac.jp/academic/research_pdf/report/2018/18002.pdf
http://www.math.keio.ac.jp/academic/research_pdf/report/2018/18002.pdf
http://www.math.keio.ac.jp/academic/research_pdf/report/2015/15001.pdf
http://www.math.keio.ac.jp/academic/research_pdf/report/2015/15001.pdf
http://www.math.keio.ac.jp/academic/research_pdf/report/2016/16001.pdf
http://www.math.keio.ac.jp/academic/research_pdf/report/2016/16001.pdf
http://www.math.keio.ac.jp/academic/research_pdf/report/2017/17007.pdf
http://www.math.keio.ac.jp/academic/research_pdf/report/2017/17007.pdf


Department of Mathematics
Faculty of Science and Technology

Keio University

Research Report

2018

[18/001] Shiro Ishikawa,
Leibniz-Clarke correspondence, Brain in a vat, Five-minute hypothesis, McTaggart’s
paradox, etc. are clarified in quantum language,
KSTS/RR-18/001, September 6, 2018 (Revised October 29, 2018)

[18/002] Shiro Ishikawa,
Linguistic Copenhagen interpretation of quantum mechanics: Quantum Language
[Ver. 4 ],
KSTS/RR-18/002, November 22, 2018

2019

[19/001] Sumiyuki Koizumi,
Contribution to the N. Wiener generalized harmonic analysis and its application to
the theory of generalized Hilbert transforms ,
KSTS/RR-19/001, August 2, 2019

[19/002] Shiro Ishikawa,
Hempel’s raven paradox, Hume’s problem of induction, Goodman’s grue paradox,
Peirce’s abduction, Flagpole problem are clarified in quantum language,
KSTS/RR-19/002, September 12, 2019

KSTS/RR-19/002 
September 12, 2019


	title_19-002-2
	RR_19_002
	1  Review: Quantum language (= Measurement theory ) 
	1.1 Quantum language is the language to describe science
	1.2 No scientific argument without scientific worldview
	1.3 Mathematical Preparations 
	1.4 Axiom 1 [Measurement] and Axiom 2 [Causality] 
	1.5 The linguistic Copenhagen interpretation (= the manual to use Axioms 1 and 2) 
	1.6 Inference; Fisher's maximum likelihood method

	2  Hempel's raven paradox in the linguistic quantum mechanical worldview
	2.1 What is Hempel's raven paradox?
	2.2 The measurement theoretical answer to the raven paradox
	2.3 Falsification test

	3 Hume's problem of induction and falsification tests
	3.1 Problem of Induction in the linguistic quantum mechanical world view
	3.2 Grue paradox cannot be represented in quantum language

	4 The measurement theoretical representation of abduction
	4.1 Deduction and abduction in ``logic"
	4.2 The measurement theoretical representation of deduction and abduction

	5 Flagpole problem
	6 Conclusion; To do science is to describe phenomena by quantum language
	6.1 Logic (in ordinary language), statistics, quantum language
	6.2 Summing up; Quantum language is the language of science 


	list-19_002_3



