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ABSTRACT
We shall intend to contribute to the theory of Generalized Harmonic Analysis ( G.H.A.)
in addition to the hypothesis as for existence of the following limit

T
(C,) c1=£%-£fjf(x)e'i”dx (Vreal A4)
-7

and present here fine and advanced forms and results. This hypothesis is very natural
since it correspond to the existence of the Fourier coefficients in the theory of Fourier

series and almost periodic functions.

Chaptet 1. We shall intend to prove three Theorems A4, B and C. Along to the work of

Prof N.Wiener[ 1 ], we shall introduce several classes of functions and Generalized
Fourier Transform (G.F.T.) as follows.

Hilbert space W?: The class of function f that helongs to 2. and exists the

following integral

ILdr<oo
1+x*

The Generalized Fourier Transform (G.E.T) of function f(x)is defined by the

following formula
S(u; f)——-——J‘f(x)—‘——ldx+lzm——{f+T } (x)————dx

and we have



2sinex

_ AT .
s(u+s,f)-s(u—e,f)_zm.@_Lf(x)—x—e dx .

ClassS,: The class of function f that belongs to I, and exists the following

integral
T

.1 )
;I_fgoﬁnj;lf(x)[ dx.

Class S : The class of function f that belongs to L,zoc and exists the following integral

(%, f)=lim %TT F(x+t)f(t)dt (¥ real x).

The function@('x; f ) is called the auto-correlation function of f(x).
Class S’ : The class of a function f that belongs to the class.S and its auto-correlation

function ¢(x; f)is continuous for allx. Itisclear that
S'cScS,cw’.

Then we shall prove Theorems 4, B and C as follows.

1.1.The Relevant Theorems of G.H.A. and Theorem A.

We shall start function f(x) that belongs to the class >, Applying the N.Wiener
General Tauberian Theorem in this case the so-called Wiener formula one obtains the
following theorem (c.f. N.Wiener[ 1 1,pp.138~140)

Theorem W, Let us suppose that f(x) belongs to the space’ . Then we have

T Iy
lim % I | f(x) P = i{rggﬁ; l |S(u+e:f)-s(u—e;: f)Pdu

in the sense that if either side exists, the other side exists and assumes the same value.
Then, we shall prove the necessary and sufficient condition for the hypothesis(C, ) to

be true. That is as follows.
Theorem A Let us suppose that function f(x) belongs to the classS;. Then we have

for each and all real A

Ate

_[ {s(u+£;f)—s(u——s;f)}du

A~g

1 1
lim— xJe” P dx = lim
T 2_’[‘:’;']‘-( ) &0 2o /2”

in the sense that if either side exists, the other side exists and assumes the same value.
Proof of Theorem A . Now let us suppose the hypotheses (C, ). Then after N.Wiener,



we should use the identity

4ab=la+bf —|a-b[ +ila+ib[* —ila-ib[ =Y wla+wbl

wel)

where (= {il, ii}. It might be realized the role to represent the inner product as the

sum of norms as follows. Then we have

f(x)e™™ = f(x)e™ = -Z | f(x)+ ™ P

men

and inversely the term | f(x)+we™ [° could be expanded as follows

| f(x)+@we™ =] f(x)f +af(x)e™ +of(x)e™ +| 0™ 1.
Therefore we have

Lemma 4, Let us suppose that function f(x) belongs to the classS,. Then the

hypothesis (C,) and the statement f(x)+we”™ €S, (Vwe ) are equivalent to

each other for each and all real A.

Next we shall consider the G.F.T. of f(x)+we™, (Vo € Q). First of all we have by
the elementary calculation

p
N2 (A-g<u<Ad+eg)

s(utse™)-s(u—g;e™ )= < 2r/2 (u=Ate)

0 (u<i-g, ,1+£<u)_

\,

Then applying Theorem W0 , we have

ltm—————j S ol f(x)+oe™ [ d

T 2T aJEQ

=l2mhm———!|s(u+s f+we® )—s(u—g; f+we™ ) du
4axe £—0 ﬂ-g

—lzmmf > o|{s(u+e;f)-s(u- ef)}+(o{ (u+ge™ )—s(u-— s,,e""")}l du

£—-0 47[3 meﬂ
o

=lz‘m—-!— {s(u+a;f)—s(u—a;f}{s(u+s;e""")—s(u—s,‘e“"’“")}du

£0 47 3.




A+e

_E'l—”ng‘\/_ fg{s(u+s;f)s(u—s;f)}du

It is easily verified that by the Theorem #¥ ,the estimation of inverse direction is also

true. Therefore we have

Lemma 4, Let us suppose that function f(x) belongs to the classS,. Then the

proposition f(x)+we™ €S, (Vo e Q) and the existence of the limit

Ats

z:z_rzgzg\/_AJ‘E{s(u-i-e;f)ms(u-a‘;f)}du

is equivalent for each and allreal A.

Thus combining two Lemmas 4, and 4, , we have proved Theorem A.

Next we shall state the N.Wiener theorem as a more fine and advanced forms.

Theorem ¥, Let us suppose that function f(x) belongs to the classS,. Then we

have
hm--jf(x+:)f(r)dt—hm Ie"‘"|s(u+a F)-s(u—g; f) du

in the sense that if either side exists, the other side exists and assumes the same value.
In the first we shall state the following result.

Lemmal#; Let us suppose that function f(x) belongs to the classS,. Then the two

propositions f € S and f(x+t)}+wf(t)eS, (Vo eQ, Vreal x) are equivalent to

each othenr.
Let us suppose thatf(x+t)+ wf(t)esS, (Vm € Q, Vreal x).Since we have

zzm—-jf(x+r)f(t)dr_—hm IZwlf(x+t)+wf(t)] dr

—T wefl
we shall conclude that f(x) belongs to the classS.
On the other hand let us suppose that f(x} belongs to the classS . Since we have

1 2
imap [| S+ +of (OF dr

r T
m%_jrlf(x+r)|2dr+5£%§%£f(x+r)ﬁyt



1% — 2, 1% 2
+wgg§°§?£f(x+t)f(tﬂf + o) j{gvgjﬁ_firlf(x)l dt,

we shall conclude that f(x+¢)+ @ f(t)eS,(Voef2).
Proof of Theorem ;. Let us suppose that f(x) belongs to the classS and let us
consider the G.ET. of f(x+¢)+ @ f(t). Let us denote after N.-Wiener (c.£I 1], p.156)

—itt —IHI

Sx(u,-f)z—J;—_x—j[f(x+t)~m—}dt+llm——-—-———-I:I ‘[} (x+t)

Then applying Theorem W, ,we have

T
I (17 0r ()

hm—_’-|s(u+g f(x+t)+of(t)-s(u—s f(x+t)+of(t))} du

&0

= lim [ ((s.ure; f)=s.(ume: f )+ O(s(u+8;f)—s(u—e; f ) du

=0 dge

and we have

lzm—jf(x+t)f(t)dt-——hm——_[ S ol f(x+t)rof(t)l dt

- @S2

—lzm—_[Zcol(s (u+e; f)—s(u—g fh+o(s(ute f)~s(u—g; ) du

450 47g —op L2

-lzm—j(s (u+e; f)—s(u—¢e f)s(utre f)—s(u—g; f))du

-0 471,
Now we shall quote the N.Wiener result (c.f. [ 1], p158). Thatisif f(x) belongs to

the space W? then we have
%J.|(Sx(u+8:f)—Sx(u—8;f))—ei“(S(u+€»‘f)*S(u“8;f))l2 du=0(s")
7E 7,
as £—0.

Then applying the Minkowski inequality we have

]

lz'm—l— {s;(ute f)—s,(u—c f)}s(u+e; f)—s(u—g; f)idu

£-0 471z

—lzm—l— e |s(u+e; f)-s(u—e; )] du

Therefore we have



17 — 1 7,
lim — x+1)f(t)dt =lim—— | & |s(u+e; f)~s(u—e; f)I du
sz_fo( )f ()t = lim— _L |s(u+e; f)-s(u=e:1)|
On the contrary, let us suppose that a function f(x) belongs to the classS; and the

following limit

lim-l—m e |s(u+e f)—s(u—g f)ff du

0475 -
exists for all x.

First of all let us remark that the following identity

1 i

" Y ole”+of.
weD

Then we shall estimate the following formula

L'{le"‘“‘+a)|2]S(u+é:;f)—s(u—.‘:;f)|2 du .
dre =,

er’/’lx =

Here we shall quote one more the same estimation as for s, (u+&;f)—s.(u—g,f)

and applying the Minkowski inequality, we have

-1—]2|e"“"+¢:o[2|S(u+¢¢;;f)—s(u—f:;f)|2 du
dre 2,
=LT|(e"’”‘ v )(s(u+e; f)—s(u—g; f) du
4rg =,

=LT|Sx(u+€:'f)"3x(u"‘8,‘f)—ei"x(s(u+€;f)-s(u—g;f))+
dre =,
He™ +o)(s(ure f)-s(u—g; f) du +O(&*)
=Ij;T|(sx(u+8:f)—sx(u—s;f))+w(s(u+g,-f)-s(u—e,-f))|2 du+0(g*)

=ﬁT|(5("““"»'f(’“”‘)+a)f(l‘))—S(u—f,‘,'f(x+z‘)+cuf(t))|2 du+0(&*)

as € >0.
Therefore we have by the Theorem W,

lz’m——l—J‘le’”" +of|s(u+e; f)-s(u—g f)f du
047 7

—tim L [l s(ut s f(x 1)+ 0 () ~s(u=5; f(x+1) 30 /(0 )F du

¢=0 d7z¢

1 r
=7i 2
_£m2T£|f(x+t)+mf(t)[ dt

forall x and V@ 2. Then we have by the identity to be stated above



lzm—l- e |s(u+e; f)—s(u—g; ) du
a‘—)04;1—

=-lzm““,[20’|3w+f0| |s(u+e:f)~s(u—e: f)F du

4 e-0 47z _,,men

1

=—lim— @lf(x+t)+af(t dt—llm——— x+t)f(t)dt
4T%2T§T; f(x+t)+af(1)f Jf( )F(t)e

Thus we have proved the N.Wiener Theorem such as a more fine and advanced form.
It should be remarked that the half part is the N.Wiener Theorem (¢.£.[ 1], Theorem 27,

p.158) and the remaining half part is due to by the author.

1.2. The Relevant Theorem of G.H.A. and Theorem B.
Let us define the G.T.T. of the auto-correlation function ¢@(x, f) of f(x) asfollows

o(4;9) = jco(x, =i [I I]¢(x,'f)%dx

As for the spectral analysis of the N.Wiener class S, we shall need to know the
properties of o(u,; ¢ ). We shall present here the more detailed properties of c(u, @)
after the same method of N.Wiener[ 1 ] with the assistance of properties of o, (%, @,)
(£ >0) that is defined by the following formula.

Let us denote
]- T fux
05 f)=7— [ & |s(u+8: f)=s(u=s5:f)F du
7Ee 2,

and its G.F.T.

1 1
o (U9, )= (%) )——dx-{-l:m— + (%) —dx
¢ Jz—fw f mzﬂ_[{jco /)
Then it is clear that the function @, (u, f) is of positive definite in the sense of

S.Bochner| 3 ] and it is represented as

p.(5: /)= [ N, (w)

and by the theorem of the Levy inversion formula we have
1 % e
Ay(u)=PV.—— [ g,(x)
27 _J; —

On the other hand from the definite formula of ¢_(x; f) we have directly that

1 r L e )
Aufn) == £|s(v+s,f) s(v—g; f)[av



Therefore we have

1 F g™ —1
PV —= Xx;
\/Zr‘ _J; ¢E( f) "*‘ix

1 I . _ e 2
dx-zgm_!]s(v+s,f) s(v—g&; f)Pdv

and

) 1
( ) O'g(u,@b.)— 28\/—2;

where the constant term C, in this formula may readily be verified by the limiting

le(v+8;f)—s(v—8;f) |2dv—C£, ae. u

value

14 e

-4 1

as the A tends to infinity through a sequence {A j} . Here we shall quote the same

method used in the proof of the F. Riesz-Fischer theorem in the theory of I? -space.
Since @,(x;f) tends to @(x;f) boundedly as £ >0 and @ (x;f)/(—ix) tends

in the mean to ¢(x,; f)/(—ix} as &€ -0 over any range of X to be not containing

the origin. From these facts we shall conclude that
o(u;p)=limao, (u;0,) (L)
&30

on any finite range of #.Because we have by the Plancherel theorem

I[crs(u:cos)—a(u;wlz du 5%(I|¢g(x;f)“¢(x;f)ldx] + j "og(x"f);‘”(x"f)' dx -0

Wt *

as £ =0 forany N >0.
It is remarked that definition of o, (u; @, ) on the set of measure 0 may be permitted
to move. Hereafter we shall quote the o, (u,;@,) asthe above formula(*) for allu.

Now we shall quote the Lemma due to Paley-Wiener (c.f.[2], pp.134~5).
Lemma(Paley-Wiener). If we have a sequence of monotone functions { f,,} tending to

a function f(x) in the mean, then we have

J(x) = f(x) ae. (n—>w)
Then applying the Paley-Wiener LLemma to the sequence of {c:"_9 (u; @, )} we shall

conclude that



o(u, @)= Iing c.(u;@p,) aeu

Furthermore we shall intend to consider the more detailed properties of o(u; ¢ )with
the assistance of those of & (u, ¢, ).

Let us denote the set [ of u where the sequence o, (%, @, )is convergent and the
set £ of u# where it is not convergent or to be not defined. Then we have DU E=
(—c0, 4+0) and m(E)=0.

It is remarkable that hereafter we shall denote o(u)ando,(u) instead ofo(u; )

and o, (u;@,) respectively for the sake of simplicity.

We shall also define as follows
o(u)=supo(v), o(u)=info(v) and of(u)= ‘—’(")*2'0'(11) _
Vy<u ey

Then we could define o(u) everywhere and it is a bounded, monotone increasing

function of # and first of all we shall prove that it satisfies the following properties
o(u-0)=c(u) and 0'(u+0):5'—(u)
at any point #. Then we shall prove the following results.

(i) On the case of E(u)~g(u)=0 at a point «.

We have the ling o.(u) existand

o(u—-0)=cf(u+0)=c(u).

Then it is continuous there.

(ii) On the case of 5(u)—g(u)>0 at a point #.

We have the ling o.(u) does not exist there and
£

o(u+0)—o(u—0)=c(u)-o(u)>0.

Then we shall conclude that it is discontinuous of the first kind there and has
magnitude of jump that states it above.

Now we shall intend to prove the following
Theorm B . Let us suppose that function f(x) belongs to the classS, then the

following limit

l ute

2621 IIS(V+g,-f)—S(v—s,'f) |2dv:£i_;);g(a-g(uig)_o.g(ig))

lim
=0

9



exists and equals to
o(ut0)-o(+0)
for any point z respectively.

We shall start to prove several properties of o,(u) and o(u). We shall prove them
by the elementary calculation of Real Analysis. However since it shares of a role of
essential part of Theorem C, therefor we shall prove it for the sake of completeness.

Lemma B,. The o(u) satisfies at any point

o(u—0)=c(u) and o(u+0)=0(u)

respectively.
Proof. Since o(u) is bounded, monotone increasing function we have for any pair of

(u',u") suchas u'<u”

¥

w<y wev'an” u'ev<u
v'eD v'eD v'el el

o(u')=info(v')= inf (V)< sup o(v')=supo(v')=g(u").

Therefore we have proved for any pair of (v,u) suchas v<u,
a(v)<o(v)<a(u)
and so

o(v)=

tz(v);rc?(V)Sg(u)

Then we shall take the limit such as v T u , we have
o(u-0)<gf(u)
Next we shall intend to prove the inverse inequality. Since o (%) is a bounded
monotone increasing function, for any pair (#’#") suchas u'<u"” <u,we have
ofu)<cfu").
Then we shall take the limit such as «" T« , we have
o(u)<o(u-0)
and so we have

o(u)=supo(u)<o(u-0).

Therefore we have
ofu-0)=c(u).
Similarly we shall prove

o(u+0)=0o(u).

10



Lemma B, (i) In the case of E( u)=o(u) atapoint #. Thepoint # belongs to

the set D and o(u)} is continuous there.

(ii) We have at any point % of the set E

o(u)<ofu).

Proof. (i) Since o,(u#} is bounded and monotone increasing function of #, we have
any pairof £,'>0
o(u—g)<o (u)<o (utg).

Since the measure of the set E js ( and so there exist a sequence of points {u Te '}

such that u+&'e D and {8'} 1 0. In the first we shall intend {5‘} 4 0, then we have
o(u~¢)<limo,(u) S%o;(u) <ofu+e).

Next we shall intend {5"} 4 0. Then we have

o(u) <limo,(u) <limo,(u) < o(u)
0 =0

£

Since o(u-0)=c(u), o(u+0)= o(u) by the Lemma B,, we shall conclude that

ling o.(u)=0o(u) exist and we have
£

o(u—o)=c(u)=ocf(u+0)

and o(u) iscontinuous there.

(ii) Let us suppose that o(u)= E( u} atapoint u of the set E.Then repeating the

same argument as the case (i), we shall conclude that ling o (u)exists. It lead to the
£~

contradiction. Therefore

we have
o(u)-o(u)>0 (Yuek).
Now we have proved

(a) In the case o(u)=o(u). The limit

11



a(u):lingo;.(u)

exist and continuous at the point #. The set of point uis subset of Dand we shall

denote it as D,

(b) In the casec(u) > o(u). The point u# belongs to the set £ or D—D, we have

o(u+0)—o(u—0)=c(u)—o(u)>0.

Therefore o(u)is discontinuous of the first kind and the set (D-D,)U Eis at most

countable.
Author suppose that the set D = D,. However this problem is open at present and he

leave it to the reader. Therefor hereafter we shall treat our theory in the case
DUE=(-0,0),m(E)}=0 only for the sake of simplicity. Author suppose that this

hypothesis does not never lose the essential part of the theory.
Proof of Theorem B. Let us remark that the following formula
1 ute

28\/% IIS(V+3,'f)—S(V—g"f)|2 dv=0'5(ui£;¢’3)_(7£(i£,'§0€)

and so without loss of generality we shall prove it at a point # = (. That is as follows

limo, (+8;,) = o(£0;9)

(i) In the case of a point 0 € D. Since the sequence {O's (u )} is a bounded monotone

increasing function of #, for any pair (o,u) and €>0 suchas o<g<u,ucD,we

have
o.({0)so.(+e)s0.(u).

Then in the first tending £ 40 , we have

G(O)Sli_mag(+a)sii—r;z;a£(+a)s o(u)

e—=0
In the second we take the least lower bound ofo(u ) as for w € D such as 0 <wu .since

we have o(0)=0(+0) and we have

linga£(+£)=0'(+0)

We have gimilarly

12



lima,(~&) =(-0)

(ii) In the case a point 0 € £ . We have defined o(0) as follows.
o(-0)+c(+0)
2
Let usAput o(+0)—o(—0)=d >0 and define
o (u)=c(u)—dh(u)

where A(u} isthe Heaviside operator, that is as follows
J 1 (4>0)
1
hu)=2 — (u=0)

2
0 (u<0).

Since we have by the definition
o (+0) =o(+0)—dh(+0) = o(—0)
o (-0)=c(-0)—dh(-0)=c(—-0)
o (0)=0(0)-dh(0)=0(-0)

respectively. Then o (u) is continuousat % =0.

o(0) =

Now let us put
o1(u)=0,(u)—dh(u)
and consider the sequence { 0'; (u )} instead of {O'_9 (u )} then it is continuous at a point
u € D. Because we have
lingcr:(u) :limoag(u)-dh(u)z o(u)—dh(u)=0 (u)
£ £
and o (u) is continuous. Then applying the results of (i) to 0'; (u), we have
lim0;(+8) =0 (+0)
50
where
o.(+e)=0 (+&)—dh(+e)=0,(+g)~d and o (+0)=0(-0)
Therefore we have
limo_(+&)= lim()';(+8)+ d
£—0 =0
=0 (+0)+d =0(-0)+d = o(+0)

13



Similarly we have
limol(~£)=0"(-0)
where
o.(-g)=0,(~¢)~dh(-g)=0,(-¢) and o (-0)=0(-0)

Therefore we have

limo,(-¢)=0(-0)

In general we shall prove by the same argument as above

lingo‘s(uig)=0'(u10)

at any point # respectively. Thus we have proved the Theorem B .

1.3. The Decomposition Theorem on the class.S and TheoremC.
Applying Theorem A and Theorem B to function jf(x)that belongs to the classS,

we have
Theorem C . Let us suppose that function f(x) belongs to the classS and satisfy the
hypothesis (C, ). Then we shall decompose
f(x)=g(x)+h(x)
with functions g,h that satisfies the following properties.
(i) g(x)is a B*-almost periodic function in the sense of A.S.Besicovitch. Let us

denote its Fourier series expansion such as
. 1 % )
— idx = Ty —— ~idx —
g(x) Z:cne ) c, iﬂzy‘_-[ng(x)e dc  (n=0123.)

Then we have

2z

T . _ )
tin— [ g(x) Fds = Y|, < 20 O(010),
-T n

(i) A(x) belongs to the classS and we have

jim L ]:I h(x) P = Z{a(l,, +0;0)—a(A, ~00) . Iz}z.
-0 2T =, ~ NG
Moreover let us suppose that the function f(x) belongs to the class.S’.Then we have
Ax)=0 ae x and f{x)=g(x) ae x.
Proof of Theorem C . Let us suppose that a function f(x) belongs to the class.S and
the hypothesis(C, )is satisfied. Then we have

14



lzm4— j:s|s(u+£,f) s(u—e,f)du= “(’1+0’¢3/;_"(’1_0’¢) (Vreal A).
£—0 T

by the Theorem B, We have the following formula

Ate

17 s N
cA=£273°—Ef£f(x) dx = lmgz \/_Jg(s(uw,f) s(u—¢; f))du

by hypothesis(C, ) and Theorem 4.
Then we have by the Schwartz inequality

At+e

e, P=llim~ J—AIS(S(”J“"" F)—s(u=-z; f Daul

14 5 o(A+0;0)-c(A-0;0)
<lzm-———— s{u+g; s(u—g; du =
lim— j |s(u+8; f)=s(u=2; )] =
Therefore we have
Step (i).If ue D, the o(u) iscontinuous at #=A.Wehave ¢, =0.

Step (ii).If u € E, sincethe o(u) isabounded and monotone increasing function,

the set E is at most countable and we shall present it as follows
E={4} (n=0123,.) and ¢, (=c,,say),(n=0,1,2,3,....)

where A; =0 and ¢, =0 may be permitted.
We have by the Schwartz inequality

Ate

¢, P={tim— J—Aj;{s(u+s,f)—s(u—8,f)}du i

A+ . _N-
<hm—j|s(u+g £)=s(u—z;f)du= C’(’”O’q’f/;_"” 09).
50 T

and

ZI e, |2S Z o-(;t’n +0,§D)—0'(/1” _0’¢) < O'(CD,(D)""O')“CO,(D) <0
n n aY 27 N2m
Then there exists the B, -almost periodic function g{x) and its Fourier series

expansion is as follows

g(x)~Y c,e™

15



(c.f. A.S. Besicovitch [6],pp.91~112). By the hypothesis (C,),we have
15 : 17
lim — x Je " dx = lim — e dx Yreal 1).
lim j f(x) lim— j g(x) (Vreal 1)

(c.f. ibid.V, 2nd ed. p.129).
Step(iii) Then if we put f(x)—g(x)=h(x) say. Then we shall prove that the
function A(x) belongs to the class S. Since functions f(x) and g(x) both belong

to the class S and we have

lim 515‘"_{,.”(” {R(Et = lim [{7Gwt)=stx N5
- lim ;_l;if(x +1)F (0t~ lim %jf;f(x +t)g(dt

1% - 1k ——
—lim— x+t}f(t)dt + lim— x+it)g(t)de
tim—— _ITg( VI (tHe+ lim — _frg( Jg(1)a
and since g(x)}is B’-almost periodic function, we have also

.1 = —_ o1k S—
lim f S(x+t)g(e)dr=lim— j g(x+t)f(t)dt

T
=t [ Cx g0 = Ble, P e
{c.f. ibid. IV, pp.105~108). Therefore we have
17 — 1% — . 17 —
?{ﬁggih(x+t)h(t)dt = =m-2?_£f(x+r)f(r)dt —?{ﬁ—z—fig(x-}-t)g(t)dt.

Thus we have proved that a function #(x) belongs to the classS.

Step (iv) We shall consider auto-correlation functions@(x; f),w(x;g), x(x;h)of
f.g,h and their G.FT. o(u;9),o(u;w),o(u; x) of @,y respectively.

Then we have

o(x; f)=w(x;g)+x(x;h) and o(u;@)=c(wy)+o(uy)

respectively.
We have already proved that the o(u; @) is bounded monotone increasing function.

The o(u;yw) is G.ET. of w(x,/g) and w(x;g) is the auto-correlation function of

B, -almost periodic function g(x), then we have

[ V2zYle, b (u=i,)
Ay <tl
o(uip)= A
sz(z|cn|’+1|c,,,|2J (u=A,)
L Ay < 2

16



and so o(u; )} is bounded monotone increasing function.
Since of(u;y) is represented as the difference of the two bounded, monotone

increasing functions o(u;¢) and o(u;y ), it is a function of bounded variation and

we have
1 x 2 1 T )
-2—T_Irlz(x;h)|dxsz(o,.h)=m§l|h(x)|azx, (¥ T)

by the N.Wiener theorem( 1} (c.f. Theorem 25, p. 154).
Therefore we could apply the N.Wiener theorem[ 1 ] (c.f. Theorem 24, pp.146~149) to
the function y('x;%)and we have

1k o(4, +0;0) (4 ~0;p) }2

lim —— x; ) Pdx = E 2 e, .

T»wz'r_j,n"‘( /! { 2z |
In particular if o(u;¢) is continuous everywhere ,then it lead to

< o( % +0;0)-0(4,~0;0) _ 0 (n=0,123..)

B Var

le,
and we have
1 k )
Iim— x;h)Fde=0.
lim— IT | 2(x;h)|
Now let us notice that we have

Tla(xh)! N U TP
Ldes(l+2ﬂ)£%§?:["];g(x,h)|dx

by the N.Wiener theorem( 1] (c.f. Theorem 20, p.138) and we have y(x;h)=0,ae. x..

Moreover if a function f(x)} belong to the class §’', then since we have proved that
1§ —— 1§ s 1t —
lim— | h(x+1t)h(t)dt = lim— x+£)f(t)dt — lim— x+t)g(t)dt
MZT_jT( Jh(1)d T_*mZT“ITf( )F(t) MZT_jTg( Jg(t)d
and then y(x; % )is continuous everywhere and we shall conclude that y(x;4)=0 for

all x.Thus we have proved
1 X _
mﬁyh(x)] dx= y(0;h)=0.

Then applying the N.Wiener theorem|[ 1 ] (c.f Theorem 20, p.138) to /#(x) again ,we

have
T1A(x)! 1 2

Thus we have
h(x)=0 ae x and f(x)=g(x) ae x.

Thus we have proved Theorem C.

17



Author suppose that N.Wiener might consider the decomposition theorem of function
f(x) on the classS in the research of his first stage. Therefore hereafter Theorem C

should be called the Paley-Wiener decomposition on the theory of G.H.A.

Remark (1) Let us suppose that f('x) belongs to the classS and satisfies the
hypothesis(C, ). Then we have for any constant a,
AvE

lzm——_[[s(u+s f)-s(u—g; f)—za, |} du

£-0 477

_0(A+0:0)-a(A~0;p)
2z

and therefore the value of this integral attains to minimum if and only if @, =¢, and

—le, & +le, —a; &

we have

1 At ﬂ,, 0; N A_._.O,-
li s 15wt &:1) =s(u=e:1))- 2z, | au=22F @f@i:( ?)

Since ofu)is bounded and monotone increasing function, there exists the set E of

|2

countable points A=A4,, (n=0,1,2,.... ) at which o(u;¢) has jump and continuous

elsewhere. Thus we have the following results.
(i)If Ae D, then we have

o _0(A+0;0)-0(A-0;9)

lzm—— s(u+&; s(u—¢g; f)IPd ¢, =0
lim— j| (u+s; f)=s(u=s;[)fdu Nz -le
(ii)If AeE, thatis A=4,, (n=0,1,2,3,...), then we have

1 ke (A +0)—c(A —0)
lim—— s(tu+e, f)—s(u—g, f N =2mc [F du=—2 h —le,
81"04775,1,,_.;'{(“ f)—=s( f} | Tin le, |

(c.f. ibid. VI, 3rd ed. pp.141~143)

Chapter 2. Generalized Hilbert Transforms

This theory had been constructed by the author (c.f. 8.Koizumil[10]) about more than
fifty years ago. Let us suppose that a function f{x) belongs to the Hilbert space w2,
Then Generalized Hilbert Transform of order 1{G.H.T.) of f(x)is defined by the

following formula

~ i) F a
f](x)=P.V.(x;’)jf(” ‘

Jotviox—t
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Here we should be remarked that it has been introduced already for the purpose of the
different research by H.Kober (c.f. Research Report I, pp.2~3). Then it can be written as

x+i soE+i x—t
and then ?1 (x) belongs to the space W *and so G.F.T. of 3"‘1 ( x }is well defined.

Let us rewrite the multiplier x+i=(¢+i)+(x—1), then it can be written formally

as follows

Fi(x)=PV.~ j'f(t)dHPVlTMdt Fex)+ A1),
7[—00

t+i

where _? is the ordinary Hilbert transform of f.
2.1 Relevant theorems of G.H.A. and advanced results.

We shall intend to estimate remainder terms # (%, f) and r(u; f) in Theorem K.

For r(u, f),if f(x) belongs to the space W2, then
1 &
(R) —[In(u+sif)F du=0(z), (2-0).

(c.f. Research Report I, p.19).
As for r(u; f), we shall set the following condition('R, ): There exist a constant
a( f) such that

(R) oo [In(uref)-\[a(f)F >0, (s-50)

This condition should be indispensable to reconstruct the theory of G.H.T. under the
assistance of hypothesis (C, ). Then we shall obtain many rich results as follows.
Theorem 1. Let us suppose that f € S, and the hypothesis (C, ) and the condition

(R,) are satisfied. Then we have f; €S, and the following equality

lzm—flf(x)l dh = lzm—jlf(x)F dx+|a(f)+ic, [ =]y [

(c.f. ibid. VI, 3rd ed. Theorem B/, pp.148~9)
Proof. We shall intend to estimate the following formula
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=:171r;I]s(u+s;ﬂ)—s(u—g;fl)|2 du .
Then by the Theorem K,, we have

I..Z-j;—j |(~i)signu){s(u+e&f)—s(u—g; f)} [ du

|e|ze
+4— [ li{s(u+8; f)—s(u—g; f)}+2n(u+e f)+2n(u+e f)f du
ul<e
=1, +1,,5ay. Asforl, we have

=—I|s(u+8,f) s(u—g f)du.

47e e

As for I, ,we have by the Minkovski inequality ,

1 .
L= [Vi{su+ & f)=s(u—g fh+25(u+e f)Pdu + of1) (£-0)
e
lulse
and by the use of the condition(R, ) and applying the Minkovski inequality again, we

have

21;;“]" {stu+g; f)=s(u-g& f)}+2ra(f)f du + o(1) (£0).

|ul<g

Moreover we have

__j|s(u+g F)=s(u—g; f)Pdu +i g(jlj s(u+e; f)—s(u-g f)}du

4ne |v<e fuse

i Tt f)=stu=s:Fjduslat)f + o) (s0),

Here we shall notice that

£

= g |l |t ) st

-

by Theorem A4, then we have

L=—— [ Istu+e; f)=stu=s:f)fdu+la(f)+ic,F =|e, F + o(1) (5-0).

47[ |u|se

Therefore we have that
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hmmf|s(u+g,f) s(u—g; £ ) du

-0

‘gg?ngIS(u+8 F)=s(u=e:f)F du+la(f)+ic | ~[c .

Since f(x) belongs to the classS,, then if we apply Theorem#, to the above formula,

we have proved that a function fl (x) belongs to the classS, and we have

1T .17 .
;{ﬁfilﬂ(x)lzdx=1{1_{g§_j;lf(x)lz detla(f)+ic P =le .

If we apply Theorem A to the results of Theoreml, we have obtained directly the
following Corollary.
Corollaryl.1. Let us suppose that f belongs to the class S, and satisfies hypothesis

(C, ) and condition( R, ). Then we shall prove that ?, satisfies the hypothesis

T
(¢,) %‘l’,’i;‘;f" jT F(x)e™dx=¢, (Vreal A)

Proof. The existence of the following limit

At

lgr_rzg2&/_A‘L{s(uﬂ-s,jﬂq)-—s(u—e,ﬁ)}du (Vreal A)

is derived as follows.
We shall apply Theorem X, to this problem. If 4 # 0, we have

5%25\/_416{3(“4-8 ) —s(u— sf)}du—(wrszgn/?.)hm ,{L sfu+e, f)—s(u— sf)}

and if A =0, we have

it_;r)a:z)zg\/_j{s(u+8 f)-s(u— gf)}du hﬁz J_j' s(u+e,f)-s(u—s,fNduta(f)
Therefore if we apply Theorem 4 to fl( x) then we have proved that hypothesis

(C+) is derived and we have

)((-—1‘.5'ig11/1)c,1 (A#0)
A I YRR
Ca—jlf_ﬁif:[“ﬁ(x)e dx =

\La(f)+ico (A=0)

21
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Theorem 2. Let us suppose that f € § and hypothesis (C,) and condition (R,)

are satisfied. Then we have fl € § and the following equality

o0

lsz e |s(u+e,f)—s(u— g, f )} du

047¢

«Q

=lim—2 [ & | stu+s, f)=s(u~g, £ )P du—|c, | +|, P
=0 41

where E:; =ic,+a(f). Moreover we have
limi]:f(x+t)f(t)dt=limiff(x+t)f(t)dt—fc P +[& [
T 2T 471 ! re 2T 9 0 0
That is to say, we have

o(u; Ji)=o(w; f )+ & F —|c, [
(c.f. ibid. IT, Theorem ¥, pp.25~29).

In particular result of Theorem 1 could be rewritten as follows
hm—— If(x)l dx~hm—ij)| d—lc, [+l .

Furthermore we have
Theorem 3. Let us suppose that f e S’and the bypothesis (C,) and the condition

(R,) are satisfied. Then we have that 7"1 €S’ and we have
limlm]:f(xﬂ)f(t)dt:lim——LTf(xﬂ)f(t)dtu[c F+1é [
T—=w 2T e ! 1 T—a QT Z 0 0
where E;=ico+a(f).

Proof. By the Theorem 2, we have ?‘1 {(x)} tobelong to the class S . Then applying

the theorem of N.Wiener[ 1] (¢.f. Theorem 28, p. 160) and Theorem K,,, we have

Aow 0 d e

zzmlzm—[j+T :’|s(u+8 Fo)-s(u—zf)F du
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A= 530 4 re

A
—lzmlzm——{ I:lls(u+8;f)—s(u—8;f)|2du

~n A
=0
Thus we have proved that 71 (x) belongs to the classS'.

We have also
Theorem 4. Let us suppose that f(x) isa B’ -almost periodic function and

satisfies condition (R, ). Let us write its Fourier series expansion as follows
f(x)~2 e
n

Then its G.H.T. £ (x) isalso a function of B?-almost periodic and has its Fourier

series expansion as follows
fi(x)~ 3 &%
where
( (—isignd, Je, (n=1,2,3,..)
&= &

\lt_ ic,+a( f) (n=0).
(c.f. ibid. VI, 3 ed. TheoremC" , p.151).

Remark (2 ) Let us suppose that f(x) belongs to the classS; and satisfies the

hypothesis(C,; ) and the condition('R, }. Then we have by the Corollary of Theorem 1,

its G.H.T. }'] (x) belongs to the classS, and satisfies hypothesis( Ci ).

In the case A=0. Then we have for any constant g,

hm—fl(s(we,fl) stu—g; 1, ) ~2ma, [ du

£-0 4417

_lzm—-—j|(s(u+e,f) s(u—-e;f)—2ma, ! du

g0 4,

_o(+0:p)=0(~0;p)

2z

—le [ +le—a F,
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where ;1; =ia, + af f ). Therefore the value of the integral attains to minimum if and

only if @, =¢,,ie. a; =¢, and ¢, =ic, +a(f). Then we have

lzm---j|(s(u+g F)-s(u-g:f,))-2ze, F du

&0

~—lzm—_[](s(u+.€,f) s(tu—g; f))- \/_cﬂl du

&0 47g

= O.('l'O; @) _ O‘(—O,’ ¢) _ ! c |2
2z '

In the case A # 0. Then we have for any constant a,

Ate

b e j \(s(u+e;f)-s(u—8;F ) ~~2zas | du

e>04me 2
l Atre
=tim— [ |(s(u+&;f)-s(u-& f))-\2ra, [ du
&0 470 e

_o(A+0;0)~0(A-0;p)
2z

where d, = (—isigni)a,. Therefore the value of the integral attains to minimum if and

2 2
~le, " +]e,—a; [,

onlyif a, =¢; and we have

A+E

zzm——j|(s(u+s T )=stu-e:7))-2mci P du

>0 dgre

Ate

= lim—— j \(s(u+&; f)—s(u—zg; f))~~2me, | du

e204re

_ 0'(/'1‘.+0;q0)—0'(}u——0;q0)_|
= T )
where ¢, =(—isigni )c;. Therefore we shall conclude that
(i) AeD. Then we have

IZ

AtEg

lim—— j |s(u+s;7)—s(u—¢;f,)[du

£-20 4 e
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lin (15t 63 /) =s(us; /) P = SOTXOEODO o

(ii) AekE,if A=4,(n=1,273,..). Then we have

Ap+E

lmg% \(s(u+g;f,)-s(u—e; ], ))—2xe, | du
&> P
1 A,+e
= lim— |(s(u+e;f)—s(u—g;f))—2xc, | du
e=0 4re P

_0(4,+0,p)-0o(4, —-O;go)_IC
N27 !

where ;:: = (—isignA, )c,.

|2

If A=A, (n=0). Then we have

lim—— J (s(u+8;F,)—s(u-g;F,))~2zc, [ du

&0 47

_o(+0:p)~0(~0:p)
N

where ¢, =ic, +a(f ). (cf. ibid. VI, 3 ed pp.143~145)

T2 2
+eg [ =16 |

2.2 The Decomposition Theorem of G.H.T. 3’:( x) onthe classS.

Let us suppose that f(x) belongs to the class S and satisfies the hypothesis(C), )
and the condition ('R, ). Then by the Theorem 1, Corollary 1 and Theorem 2, we proved

that its G.H.T. z( x) belongs to the class S and satisfies hypothesis (Cs ). Then with

the assistance of Theorem C, we have the decomposition of G.H.T. z( x) as follows.

Let us denote
f(x)=g(x)+h(x)
as the decomposition of f(x) in TheoremC ,then as for G.H.T. of them we have

Fitx)=g(x)+h(x)

and it gives the required decomposition of z( x ) .Therefore we have
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Theorem 5. Let us suppose that f('x)belongs to the class S and satisfies hypothesis
(C, )and condition ('R, ). Let us set the decomposition of f(x) asin the TheoremC

J(x)=g(x)+h(x).
Then we have the decomposition
Hi(x)=g(x)+h(x)

and it satisfies the same properties of f(x)as in the TheoremC'.

Proof. The proof can be done by the same argument as Theorem C . By Theorem 4 the

,E; (x) is B*- almost periodic with Fourier series expansion

g(x)~ Y ce™

where

o

=l
T2 2T

7]

r r
— ) 1 L~ )
idyx — I —i2x —
Lf(x)e dx_izj)i—:ZT:['g](x)e dx {n=0,1,2,3,.)
and

(—isignd, je, (n=123.)

=

ic+a(f) (n=0)

Then we have
1R~ o
fim o7 | &(x)F de=3 e,

(4, +0;,0)~0(4, ~0;,0) 0(0;0)—0(~0;0)
2 Vo T

where

-
o(A4,+0,0)-0(4,-0,¢) =1,2,3
N (n=123,..)
(4, +0;0)—-0(3,~0:p) _
N
a(+0; "’f,; YO) G -1af  (n=0).

S

Therefore since }":( x) belongs to the N,Wiener class.S, then E (x) does too by the
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same argument as Theorem C'.

Now let us denotes@(x )} = ¢(x,ﬁ),y7(x) =y/(x,§:) and }(x)= Z(x,fz;) as the
auto-correlation function of fl, §] and E respectively and o(u,¢),o(u, ) and
o(u, ) astheir G.F.T. respectively. Then we have

o(xf)=w(x%g )+ x(xh) and o(u@)=oc(uy)ro(ui)
In particular we have
N TP 1 b~ D U T
fimog JACoT ds= fim - [ &(x)F st fims [ V(o) P e
Let us remark that E (x) belongs to the classS, o(u; q; ) and o(u; t,l’; ) are both

bounded increasing as a function of #.Then o(u, } J=o(u; :;;9 )—of u,‘t;7 ) isa

function of bounded variation and its magnitude of jumps are as follows
(i) If A€ D, wehave

G(A+0;0)—0(A—~0;0)=0 and o(A+0;)—c(A-0;)=0
then we have

o(A+0;x)~0(A-0;7)=0

(ii) If AeE={4,}(n=0123,..)
We have inthe case n=1,2,3,...

o(4, +0:0)—0(4,-0:0) =0(4, +0;,0)- (4, ~0;0)

o(4,+0p)-0(4, -0yw)=\2xc, =2z |c,
and

o4, +0;7)=0(A4,~0;7)
={o(4,+0:0)~0(4,~0:0)} ~{o(4, +0:0)-0(4, - 0:p )}

={o(4,+0:0)=0(4, ~0;0)} 27 |c, .
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We have in the case n=0

o(+0;0)~0(~0;0) = o(+0; 0)~ o (~0; ) + V27 (I ¢, [ —| ¢, [')
o(+0;y ) o(-0;p) =27 |, |
and
o(+0; 2)—o(-0; )
={o(+0;9)-0(~0;p)} ~{o(+0;¥ )~ o(~0;y )}
={o(+0;0)-o(-0;¢0)} 27 |, |

Therefore we have

~ ~ 2
17 o~ o(4,+0;,¢)—0(4,-0,p) ~,
lim— x; ldx = L —-|ec,
MZT_j;Ix( B)| Z{ - e

oA r0e) oA -0e) L)
-p{EAee o}

by the N.Wiener theorem[ 1] (c.f. Theorem 24, pp146~149)
In particular, ifo(u, @ }is continuous everywhere, then we have

N T
;ﬂfiw(x,h)l dx=0.

and moreover we have
T x(x k)L 1% ~
S e < (1427 ) lim— | | x(x:hy )P de =0
J,, T ( )TﬂZT_J;[Z( k)l

by the N.Wiener theorem[ 1 l(c.f. Theorem20,p.138). Thus we have

;g(x,l;;) =0 ae x.
In addition, if f(x) belongs to the class.S’, then since z( x) and ;7:( x} are both
belong to the class S, E (x) does too. Then since y( x;iz ) is continuous everywhere

we have ¥( x,;z; )=0 for allx and in particular we have
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1 o~
{im —- x) dx= (0 )=0
mzr_f,"“ )P de=z(0:k)
and repeating the same arguments as above we have by the N.Wiener Theorem|[ 1 l(c.f.
Theorem?20, p.138)

E(x)=0 ae. x.
and we have

E(x)=;g:(x) ae. x

Thus Theorem5 has proved .

Chapter 3. Generalized Harmonic Analysis on the upper-half plane.

We shall reconstruct the theory of Generalized Hardy Space(G.H.S.) in the upper - half
plane as another application of G.H.A. As for the Theory of ordinary Hardy Space, it
should be refered to E.C.Titchmarsh (3].

Generalized Hardy space H’ and Relevant Theorems.
We shall denote it by H and it is defined by the set of a function F(z), (z=x+iy)
that is analytic in the upper half-plane y >0 and the integral

o -
_{,I F(1x++;§))| L <
exists uniformlyin y > 0.

Generalized Cauchy Integral (G.H.T.}. We shall denote it by C,(z; F)and it is
defined for a function F'(x ) that belongs to the space W? by the following formular
z+i ]’i F(t) dt
27i 2 f+it-z

-0

C(z; F)=

where z=x+iy, y>0.

Then along just the same arguments as Hardy space H* (c.f. E.C.Titchmarsh [3],Chap.
V, pp.119~132) we had been proved the several theorems.
Theorem K, . Let F'( z )be analytic in the upper half-plane y >0 and belongs to the
class H, ]2 . Then we shall find out the boundary function at y =0 to be denoted it by
F(x).Then we have
(i) We have

lingF(x+iy)=F(x), ae. x
=

where if we write f(x) asthe Real Part of F(x),then Imaginary Part of F(x)is
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F.(x) andwe have F(x)= f(x)+if (x).

(ii) It belongs to the space W and we have

lim
»-0 1+ x*

(iii) The F(z)is represented as the G.C.I. of F(x )}, that is
Zz+i T F(t) dt

2xi Y t+it—-z

-2

JLRCe)=FOl 4 o,

F(z)=C(z;F)=

where z=x+iy, y>0.

We shall prove that the inverse theorem is also true as follows,
Theorem X,,. Let us suppose that f(x )belongs to the space W* and let us define

F(x)= f(x)+if,(x) and F(z)=C/(z;F).Then we have

(i) The F(x) belongs to the space > and F(z) belongs to the class H.
(ii) The F(x) isthe boundary function of F(z) in the following sense

lingF(x+iy)=F(x), ae x
y—r

and

lim >
-0 1+x

Theorem X, . Let F(z),(z=x-+iy) be analytic in the upper ~half plane y >0
and belongs to the class A, lz . Let us denote by F(x) its boundary functionat y=20.

JLEELIEClin

Then we have for any given positive number &
(i) if |u[>¢, then
s(u+& F(z))—s(u—g;F(z))

_ (1 signu) 32"3””) e {(s(u+&:F)~s(u~sF)+r(u,y,F )}

where

.1
tim=— | n(u.3.5;F) du=0

lul>e
forevery y >0,
(ii) if |u|<g,then
s(u+e, F(z))—s(u—e; F(z))= in(u+e; Fl+in(u+e Fi+n(u+ey F)
where

in(u+e; F)+in(u+e F)=s(u+e F)—s(u—-gF)
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hm— [1n(u+e;F)P du=0 and lim [in(u+ey,: F)P du=0

£—>0
|u\ <g luj<&

for every y>0.
(c.f. S.Koizumi[10 ] and Research Report III, pp. 46~52).

Let us suppose that a function /'(z) is analytic in the upper-halfplane y >0 and

belongs to the class H; . Then by the Theorem X, there exists the boundary function at
y =0 and we shall denote it by F(x) . Then it is represented as follows

F(x)=f(x)+if\(x)

where f(x)isthe real part of F(x)and ?1 (x) is the imaginary part of F(x)and

GHT.of f(x).

Furthermore we have

z+i T F(t) dt
2mi o t+i z—t
Here we shall quote the skew reciprocal formula of G.H.T.

F(z)=C(z;F)=

(z=x+iy, y>0)

Hix) _pp 1 If(t) oyl Ifl(r) d___f(x)

x+i t+i x—t t+i x—t¢ x+i

and it is derived from that of the Ordinary Hilbert Transform.(c.f.E.C.Tichmarshf 31,
Chap.V, Theorem91, pp.122~128), (c.f. S.Koizumi[11],Theorems36,37,pp.192~3) and
(c.f. Research Report ITI,pp. 50~51 and 63~64).
Then we have
F(z)=2C(zf)
with f(x) the real part of F(x).
Now we shall denote
A(2)=C(z f).
Then we should remark that F(z)=2f(z) and this enable us to argue with f{(z)

instead of F(z) and to set hypothesis(C, ) and condition(R, ) on f(x).

Now we shall going to construct the theory of spectral analysis and synthesis of G.H.S.
and the Decomposition Theorem of F('z). We shall state them step by step steadily for
the sake of completeness.

Theorem 6 Let us suppose that F(z) belongs to the class H. Let us denote F(x)
as its boundary function at y = 0. Let us suppose that f(x) the real part of F(x)
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belongs to the class § and satisfies hypothesis(C, ) and condition(R, ). Then we have
If |u|> £, then we have
s(u+ e F(z))—s(u—e;F(z))= ﬁHzﬂeﬂ’" {2(s(u+s;f)-s(u—e; f))+r(uye F)}

where

lim—— [ 1%(uy,6;F)Pdu=0.

-0
ul>g

If |u|<¢&, then we have
S(u+e,F(z))—s(u—g; F(z))=2in(u+e f)+2ir,(ute f)+n(utey,F)
where

infute f)vin(uts fl=s(u+e f)-s(u—g;f)

@351; [ 1n(u+e f)P du=0 and m-z-l; [ 1n(u+e,y F)Pdu=0

luj<g lul<e

and there exist constant a( f )such as

(R) limo_ [ In(u+eif)-\[Za(£)F du=0

lul<e

Proof. We can apply Theorem K and Theorem X,, then we shall obtain the required
results. We shall omit the detailed proof.
Theorem 7 Under the same hypotheses and condition as Theorem 6 , the function
F(z) belongs to the class S* forall y>0.
Proof. In the first, we shall intend to prove that F(z }belongs to the classS as
function of x forall y> 0. This can be done by the application of Theorem#,. We
shall estimate it by the integration by parts and apply Theorem B.

Let us estimate the following integral

Ly g |s(u+eF)—s(u—g:F)[ du

dre -,
R PP TP [e=|"Pau=1+1, say
47[8 lulze [T l v .
We have
I, xwl—— e™ [mu—)e“”“ {Z(S(u+8,'f)——s(u—-g;f))+r0(u,y,s;F)} ? du
dre e 2
=—\e™e™ \s(u+e; f)-s(u—g; f) dut+o(l) (g§—>0)
7E
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by the Minkowski inequality and (R, ) we have

eli=2y) 4 jium

J'ls(v+&:;f)—5»'(1«*—.3—";f)|2 dv

nE

~1~—Te"“e'2”" |s(u+éer f)=s(u—-e; f)I} du ={
e

u=g

_(fx-zy)Termwu U| s(v+e& f)-s(v—g& f)F d"]d“
e e e

by the integration by parts.
Now we have by the Theorem B

ofw)—o(0+)

2z

LTIs(v+‘s‘;f)~—s(v—~£;f)|2dv—) fe—>0)
dre

and

o(u)—o(0+)

2z

Lj-|s(v+f;;f)—5r(v—s;f)|2dv—) ae.u (g—>0)
4z .,

boundedly. Therefore we have

1, = (s - 2y)°fe“*-2”" 2L tuvot) (s0)

Next we have

I=— | ™ |s(u+& F(z)—s(u—g& F(z))} du

1 [ & 12in(u+8; )+ 2in(uts; £)+n(uy,e:F)F du
nE

lu|<s
where let us remark the following properties

m% [In(u+s.f)P du=0 and m% [ In(uy.s:F)P du=0

|e|=e le|<e

and the condition ('R, ). Then we have by the Minkowski inequality
1 T
I =i _[ |B{ute, f)- 561'(]")[2 dut|a(f) +o(t)=la(f)[ +o(1) (£—0)
ujse

Therefore we have proved
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e \s(u+e; F(z))—s(u—e F(z))| du

Iim ——L—
s>0 47g <

4(Ix - 2y) T (ix=23 Ju 2

=————"" ¢ {o(u)—o(0+))dutta .
Nir J )=o(0+)du+la( f)]
Thus we have proved that (z) belongs to the classS by Theorem _

Next we shall prove F(z) belongs to the class.S'. Applying Theorem of N.Wiener(c.f.
[ 1], Theorem 28, p.160) with the assistance of Theorem6, we have

Ao 0 4778

zszrZL{jJrT :lls(u+8 F(z))-s(u—e;F(z))} du

‘ﬁ’i’i@?};[fﬁ } ﬁ“s;—i‘fﬂ e {2 s(u+8; F)-s(u—&; f ) +1y (1,38 F} | du

—hmlzm— e |s(u+g; f)—s(u—g; f)F du
A—)cos—)ﬂg[g

slime“z”“lzm _[]s(u+e,f) s(u—g; f)F du=0.

Ay

Therefore we obtain that F(z ) belongs to the class S’ as a function of x for all

y >0 and we have

oxiF(2) = lims | FCxt,)F Ly

—lmg% e |s(u+e; F(z)-s(u—¢e; F(z))P du (z=x+iy, y>0).
£—> ﬂ's

Theorem 8 Under the same hypotheses as the Theorem 6, F( z ) satisfies the

hypothesis(C, ) (V real A)as functionof x forall y>0.
Proof For this purpose we shall need the support of Theorem A4 . There we have

Arg

[ {s(u+e;F(z)—s(u—e;F(z)}du

T hs

1 T
lim— | F(z)e"™dx =lim
T'ao ZT:[r ( ) £=0 ) o f
where z=x+1iy, y>0.Then we shall intend to estimate the formula in the right

hand side with the assistace of Theorem 6.
(i) The case A # 0. We have by Theorem 6

511’1328\/_;[:{8(” +& F(z))~s(u—¢g; F(z))}du
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= lim _[ (1+szgnu) e {2(s(u +8;f)—s(u—8;f))+r0(u,y,s;F}du

Ate

= (1-+ signA )e™”* lim I (s(u+e; f)—s(u~g; f))du=(1+signld)ec,

1
5302827 7,

Thus we have proved

Ats
bim — j F(z)e™dx =lim > J_ ,1 f {s(u+&; F(z))—s(u—&;F(z))}du=(1+signd Je™c,

(ii) The case A =0.We have by Theorem 6
s(tu+e F(z))—s(u—e; F(z))=2in(u+sg; f)+2ir,(u+ge flrr(ut+gey F)

where we shall notice the following properties

llm——— I |n(u+e f)f du=0 and hm—~— I |n(u+ey;F)ldu=0

e—)D
!ul-(s luj<g

and the condition

(R,) hm——j|r2(u+gf) Za(f)]zduzo

e02g llse

Therefore we have

> \/_;I s(u+ & F(z))-s(u—¢; F(z))}du

2€rlu£g(r2(u+s f)- Za(f))du+ia(f)+o(1)=ia(f)+o(1) (5=0).

Thus we have proved

lim —— j F(z)dx =lim 7 J_ M[ s{s(u +&; F(z))—s(u—& F(z))}du =ia( ).

Thus we have proved
J 0, (AeD)
glm—jF(z)e-'“dxﬂ (1+signi)e”c,, (AeE,A#0)
ia( f), (LeE,A1=0)

where
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. 1 T —id,x
c,,=mé-fif(x)e dc and A, €E (n=0123,..)

Now let us suppose that F(z) belongs to the G.H.S. Hf on the upper-half plane.
Let us denote F(x) the boundary functionat y=0 and f(x) the real part of

F(x).Let us suppose that f(x) belongs to the N.Wiener class.S and satisfies
hypotheses(C, ) and condition(R, }.Let f(x)=g(x)+h(x)} be the decomposition

in Theorem C and we shall denote G.C.I. of each function as follows
Wz)=C(z f), g(z)=C(z;g) and h(z;h)=C/(zh)
respectively.

Then g,(z) is B’-almost periodic function and we have
. T -ix 1 i —idx .
?{m—i—fiﬁ(z)e dx_m-z—T_jTgl(z)e de, (z=x+iy, y>0).
Let us denote the Fourier series expansion of g('x) as follows
g(x)~ 2.c,e™
Then we have the Fourier series expansion of g,(z)

gi(2)~ia(f)+ OIS chg i, (z=xtiy, y>0)

n»0

This is proved as follows. Applying Theorem 4 ,TheoremC and Theorem X, ,we have
(i) In the case A # 0. We have by Theorem 4 and part (i) of Theorem X

Ate

T
gﬁal?:';"ﬁ(z)e'mdx lim I{s(u-l-e,f(z)) s(u— e,f(z))}dx

=0 2 A—s

1 ’1+5(I+Stgnu) _
=lim YA s(u+¢g; s(u—g; +r(u,v,eE; du
oy el ) J 5 {(s(u+e;f)=s(u—&: f)+r(uy.5 )}
_ (1+signi) - A
_ 7 lim sfu+eg; s(u—g; du
5 Hozg\/—j{( f)=s(u-e:f)}
(1 + S;g'nﬂ') -yl I f(x)e—h'lxdx_
On the other hand we have by the same argument as before
1% (1+signi)
. -Mx - :1 —~idx
,{gg*z—T-_J;g.(Z) R jg(x)e dx

and
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ltmm'[f(x)e"’b‘dx— lzm—Ig(x)e"‘“dx
by TheoremC . Therefore we have
Izm———jf(z)e “‘dx—llmmjgl(z)e"'“dx (z=x+iy, y>0).

(ii) In the case A =0.We have by TheoremA and part (ii) of Theorem K,

I {s(u+e fi(z))—s(u—g fi(z)}du

Jul<e

lim — jf(z)dx lim 2\/2_

= £%28\/E|uf[£ in(u+g f)rin(u+e f)ru(u+tey f)idu

17
= {:z_rzgZg‘j_lul_[e{s(u-l-a;f)-—s(u—a;f)}du=?(z_7)73°—2—f:';"f(x)dx

Similarly we have
lzm jgl(z)dx lzm—jg(x)dx
Therefore we have by Theorem C

R .1k
lim —— j A(z)de=lim— j & (z)dx

On the other hand we have by the part (i) of Theorem K; and condition (R,)

1 & 1
lim — z)dx = lim ir,(u+g&; f )du
lim — IT fi(z)ds = lim— Jﬂlrj J(u+sf)

=lim

tin=—= | (n(urs: f)=\|Za  )du Sia(f) = Sia( )
ul<e

Then we have

Sia(f) (n=0)

lzm— j gz Je ™R gy = J

T—)ao

(n=1273,..)

(1+signi,) C &Y gl
2 n
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Therefore we have

gl(z)”—m(f) Z(l—-l-%éw e (z=x+iy, y>0).

nz0

Next we have by the same argument as Theorem C

zzm——jh,(x+t+zy)hl(t+:y)dr

Tow

= lim— If(x+t+zy)f(t+ly)dt llm—jgl(x+t+zy)g,(t+zy)dt

'I'—):n

Let us denotes ¢, ( x v h(z) v (xy;g(z))and yx,(x,y;h(z)) asauto-correlation
function of £,(z), g,(z) and k (z)respectively. Let us denoteso(u,y; @, ), o(u,y; v, )
and o(u,y; 1) asGET.of @ (x,y; fi(z), v (x,y,g,(2z))and z(x,y h(z2))
respectively.

Then we have

(%Y f(2) =wi(xy; g1(2)+ (% y:h(2))

and
O'(M,y,'qﬂl) = o‘(u,y;t,u])+0'(u,y;}[1) .

Since the o(u,y; 7, )is represented as a difference of two bounded and monotone
increasing function o(u,y;¢,) and o(u,y;\, ), it is a function of bounded variation
" and we can apply to it the N.Wiener Theorem (c.f. [ 1 ] Theorem 24, pp.146~9).
Let us estimate the magnitude of each jumps. We have by Theorem B

) . A+0
a(z,+o,y,¢,)~am-0,y,¢1):,,-mLJ‘|s(u+g,y,f(z)) s(u—~g,y; fi(z)) du

N2 =04zxg

We shall obtain also by Theorem A and Theorem K; (c.f. ibid. IIf, Theorem D, p.47)

the following estimations
(i) Inthe case A # 0. We have by the part (i) of Theorem K,
Ate

FAe 3/%; B2 [ Istureif(z)=s(us: f(z)F du

A+g

= lim j]ﬂ”::g"”) T Cs(u+e; f)—s(u—g; f ) +ry(u,y,5 [ d

. 2 A+e
=(1—J55@fi] e-”ﬂs_)0 Ib'(u+£ f)—s(u—g; f)IF du
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_ (1 +sigm1j2 ot O(A+09) - 0(4-0:0)

2 2z

(ii) The case A =0. We have also by the part (ii) of Theorem K, hypothesis (R, )

and the Minkowski inequality
o(+0,y;¢, )~o(-0,y; @)

2z

—lzm—— I lin(u+e; f)+in(u+e; f)+r3(u+ay,f)[ du

£—0
lu|<e:

=tim— [ |i(r(u+e;f)~ ZalFF dut| Sia(£)f =1 za(f)l

0 4” luj<e
On the other hand we have by the Theorem 9

Sia(f)P (n=0)

G(A+0,y:01)~(A=0y:01) _

2r
Therefore we have
(4 +0,9; 1) =0 (h, Oy,zl)}
llm-— %y, h(z)) " dv =
Ilzl( ih(z)F Z{ Jox

- Z{GM,, +0,y:0)—0o(4, ~0.y.p) _o(4 +0,y:v1)—0(4, ~0,y;w1)}2
Vaz Var

n

. 2 : : 2
_ Z[Hs;gnﬁ,,) S {crm,, +0, ¢E(zn ~00) ,2}

n=0

Now we shall prove the decomposition theorem of F(z).

Theorem 9. Let us suppose that F(z), (z=x+iy, y>0) belongs to space H}.
Let us denote F(x) the boundary functionat y=0 and f(x) the real part of

F(x).Let us suppose that f(x) satisfy hypotheses (C,) and condition (R, ).

39



Then we have the decomposition
F(z)=G(z)+H(z)
where
F(z)=2C(z:f), G(z)=2C/(z;g) and H(z)=2C/(z: h)
respectively and satisfies the following properties
The G(z) is B?-almost periodic function and its Fourier series expansion is as
follows

G(z)=ia( f )+ (1+signk, jc,e™

el

where ((z)and H(z) both belong to the space le .
The F(z),G(z) and H(z) belong to the N.Wiener class S’ and we have

1% _ 5
;l_fgﬁilz(x.y, H(z)} ax

=Z(1+Sign/1” )Ze-Zﬂn.V {o-(ﬂ’n +0"¢\)/;_;:'-(ﬂ’n _0"40)_'6” 12}

n#0

In particular if the o(u;¢) is continuous everywhere as foru > 0, then we have
1 L
lim — x,y; H(z) Pdx =0 Vy>0).
fimor [ 12y H(2)) (¥ y>0)
and we have
F(x+iy)=G(x+iy) aex (Vy>0).

Proof Since F(z) and G(z) are both belong to the class §’, and therefore H{('z)}

does too. Then applying the N.Wiener Theorem/ 1 I(c.f. Theorem 20,p.138), we have
x(xy;H(z)=0 (Vx, Vy>0)
and in particular

17 ) e —
jlﬂz_r}ZEJJH(xHy)ldx—O (Yy>0).

Then applying the N.Wiener Theoremf{c.f. [ 1] Theorem 20,p.138) to H(x+iy)again,
we have
H(x+iy)=0 (Vx, Vy>0)
and therefore we have
F(x+iy)=G(x+iy) (Vx, ¥y>0).
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