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ABSTRACT
We shall intend to contribute to the theory of Generalized Harmonic Analysis ( G.H.A.)

in addition to the hypothesis as for existence of the following limit
1% i
(C,) ¢ _?{z_ﬁfif(x)e dc (Vreal A)

and present here fine and advanced forms and results. This hypothesis is very natural
since it correspond to the existence of the Fourier coefficients in the theory of Fourier

series and almost periodic functions.

Chaptet 1. We shall intend to prove three Theorems 4, Band C. Along to the work of

Prof. N.Wiener[ 1 ], we shall introduce several classes of functions and Generalized
Fourier Transform (G.F.T.) as follows.

Hilbert space W?: The class of function f that belongs to I2 and exists the

following integral

[LICH 4 oo,
o l+x

The Generalized Fourier Transform (G.F.T.) of function f(x)is defined by the

following formula

-4 1

1 —fux -1 4 ~iux
s(u;f)=——\/;=7rjf(x)e_—lxldx+lki_.)rg.ﬁ[f+I ]f(x)i—ixdx

and we have
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S(“+5:'f)~S(u—£','f) =1A{;ﬁéif(x) ZSi;T,S‘x Z_de ]

Class S, : The class of function f that belongs to [;_ and exists the following
integral
L[ 7P
T 2T =
Class S : The class of function f that belongs to Lfoc and exists the following integral

o(x; f) = ]{m%if(xﬂ)??)dt (V real x).

The function(x; f) is called the auto-correlation function of f(x ).
ClassS”: The class of a function / that belongs to the class S and its auto-correlation

function ¢(x; f)is continuous for allx. It is clear that
S'cScsS, cW’,

Then we shall prove Theorems 4,8 and C as follows.

1.1.The Relevant Theorems of G.H.A. and Theorem A.

We shall start function f(x) that belongs to the class W>. Applying the N.Wiener
General Tauberian Theorem in this case the so-called Wiener formula one obtains the
following theorem (c.f. N.Wiener[ 1 ],pp.138~140)

Theorem W, Let ussuppose that f(x) belongs to the space W?. Then we have

T w0
f g [V P~ latwe i) =stue:f e

in the sense that if either side exists, the other side exists and assumes the same value.
Then, we shall prove the necessary and sufficient condition for the hypothesis(C, ) to
be true. That is as follows.
Theorem 4 Let us suppose that function f(x} belongs to the classS; . Then we have

for each and all real A

Ate

21:1;1301%:["f(Jc:)e"’b‘cix=lz'm I{s(u+s;f)—s(u—€;f)}du

1
e02e 27 2.

in the sense that if either side exists, the other side exists and assumes the same value.
Proof of Theorem 4 . Now let us suppose the hypotheses (C, ). Then after N.Wiener,
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we should use the identity

dab<a+bf -|a=bf +ila+ibf ~ila-ibP = w|a+wbf

wel)

where Q)= {il, ii} . It might be realized the role to represent the inner product as the

sum of norms as follows. Then we have

F(x)e™ = f(x)e™ = —Zwlf(x)+m"h [
weQ
and inversely the term | F(x)+@e™ [* could be expanded as follows

| f(x)+0e™ P f(x)] +of(x)e™ +o f(x)e™ +|we™ [
Therefore we have

Lemma 4, Let us suppose that function f(x) belongs to the classS;. Then the

hypothesis (C,) and the statement f(x)+we™ €S, (Vo e Q) are equivalent to
each other for each and all real A.
Next we shall consider the G.E.T. of f(x)+we™, (Vo e €2). First of all we have by

the elementary caleulation

-

N2m (A-—e<u<id+teg)

s(u+ge™)—s(u—eg;e*)= < N2m/2 (u=Atsg)

0 (u<d-g, A+e<u)

-

Then applying Theorem WO , we have

hm—j =S 0| f(x)+we™ | dx

T3 2T wt—:ﬂ

—Za)hm—.[ls(u+e frwe™ )—s(u—g; f+we™ )} du

mEQ

= lim f > o|{stu+e; f)-s(u- ef)}+a){s(u+g ™ )—s(u- g,,e"b‘)}l2 7

§0 4”8 we.Q

o0

:IimL {s(u+£;f)—s(u—s,‘f}{s(u+s;e""b‘)—s(u—s;e""‘)}du

&0 47rg
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A+e

= lim - J_ A_fe{s(u+e; f)s(u~e; f du

It is easily verified that by the Theorem ), ,the estimation of inverse direction is also

true. Therefore we have

Lemma 4, Let us suppose that function f(x) belongs to the classS,. Then the

proposition f(x)+we™ €S, (V@ Q) and the existence of the limit

Ate

£%23\/_,{L{S(u+8;f)—s(u—€;f)}du

is equivalent for each and all real A.

Thus combining two Lemmas 4, and 4, , we have proved Theorem A.

Next we shall state the N.Wiener theorem as a more fine and advanced forms.

Theorem W, Let us suppose that function f(x) belongs to the classS,. Then we

have
zzm—jf(x+t)f(r)dr_zzm Ie‘"‘ls(u+£ F)-stu—e; f)F du

in the sense that if either side exists, the other side exists and assumes the same value.

In the first we shall state the following result.

Lemmal#] Let us suppose that function f{x) belongs to the classS,. Then the two

propositions f € S and f(x+t)+wf(t)eS, (VoeQ, Vreal x) are equivalent to

each other.
Let us suppose thatf(x+t)+a)f(t) €S, (V(o € Q, Vreal x).Since we have

hm-—jf(x+r)f(:)dr_-hmmj Yol f(x+t)+af(t)Pdt

T 0e)
we shall conclude that f(x) belongs to the class.S.
On the other hand let us suppose that f(x) belongs to the classS . Since we have

T
?{ini——l—_[]f(x+t)+a)f(t)|2 dt

——hm—j|f(x+r)| d:+a>zzm——jf(x+r)f(r)dr
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.1 T W 2 5. 1 T 2
+olim— j fx+0)f(0) +|of lim 5]—,—[ | f(x)Pat,

we shall conclude that f(x+1)+wf(t) e Sy(VoeQ).
Proof of Theorem W,. Let us suppose that f(x) belongs to the classS and let us
consider the G.ET. of f(x +¢ )+ @ f(t). Let us denote after N.Wiener (c.£[ 1], p.156)

'Nf

sx(u;f)=\/;_-|-f(x+t)---—--1dt+lzmJ_|:I+J‘ }f(xw)
-A

Then applying Theorem ¥, ,we have

hm——j|f(x+r)+mf(:)| dt

hm————j|s(u+s flx+t)+af(t)-s(u—g; f(x+t)+wf(t))F du

£—0 ﬂg

o)

- ﬂ# \(s.(ut 65 f)=5,(u—s; f ) +o(s(ute f)—s(u—zg: f)I du
and we have

zzm—jf(x+r)f(r)d:_—hm—jZa;]f(x+r)+wf(r)f dt

_rael)

= Liim LS 0 (s,(uts; f)=s,(u=s: 7 P+ ols(urs; f)-s(u—e:/ )F du

4 047 7 oo

"‘hm—j(s (u+e; fl—s(u—=g f))s(u+e f)—s(u—g; f))du

£—0

Now we sha]l quote the N.Wiener result (c.f. [ 1], p158). Thatisif f(x) belongs to

the space W?, then we have
[ I(s.(uaif)=s.(u=sif )= (s(u+5: ) =s(u=s: f)F du=0(s)

as £—0.
Then applying the Minkowski inequality we have

o0

lim-———1~—— {sx(u+£;f)—sx(u-—8,‘f)}{s(u+.s‘;f)——s(u——g;f)}du

60 4z 3.

o

= lim—— j e |s(ute; f)-s(u—g; f) du

Therefore we have
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17 — 1 7
lim —— x+t)f(t)dt =lim—— | ™ |s(u+e; f)—s(u—e; )} du
sz_fo( )F(1)d Homi |s(u+8; f)=s(u—g f)]
On the contrary, let us suppose that a function f(x) belongs to the classS, and the

following limit

i’imL e |s(u+e; f)-s(u—g; f)F du
£-0 471

-0

exists for all x.
First of all let us remark that the following identity

¥ == ol +ol.

wel)

Then we shall estimate the following formula
1 % .
— [le" +oPls(u+s f)-s(u-& 1) du .
dre =,

Here we shall quote one more the same estimation as for s.(u+¢g; fj—s (u—g;f)

and applying the Minkowski inequality, we have

L ]‘Q|3m"‘(0|2|S(”‘*'&f)-—.5'(1,:—~3;f)]2 du
4re =,
- Tl(em+50)(S(u+€;f)-s(u-g;f))|2 du
4rng 7,

=LTlSx(u"'gif)—sx(u—6','f)“€i'“(S(u+£‘,'f)—s(u—.c;;f))+
47 =,
+e™ +w)(s(u+e; f)—-s(u—e; f) du +O(&*)
=$T|(S;(u+6‘:‘f)—sx(u-8;f))+a>(s(u+£;f)—s(u—s;f))|2 du+0(g*)

=4ngj|(S(u+£’-f(x-}-t)+a)f(f))—s(u-—g,~f(x+t)+a)f(t))|2 du+0(5‘2)

as €¢—0.
Therefore we have by the Theorem ¥

lim—~—1-~—'[|e"“'“+co|2|s(u+.e‘;f)—.s(u—(t:;j")|2 du
£0 4zg v

=lim~1——T|s(u+£,‘f(x+t)+cof(t))——s(u—£;f(x+t)+a)f(t))[2 du

04z <
o1 X R
—;Lnggf_jrlf(xw)mf(r)l dt

forall x and V& €. Then we have by the identity to be stated above
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lsz e |s(u+g; f)—s(u—g; f)* du

e300 47e

1 e
=Z£%%£%m|e +of i s(u+e f)-s(u—e; f)} du
Y, m——j Solf(x+t)+of(t)! d =zzm—jf(x+r)f(:)dr
472 2T < o
Thus we have proved the N.Wiener Theorem such as a more ﬁne and advanced form.
It should be remarked that the half part is the N.Wiener Theorem (c.f.[ 11, Theorem 27,

p.158) and the remaining half part is due to by the author.

1.2. The Relevant Theorem of G.H.A. and Theorem B.
Let us define the G.E.T. of the auto-correlation function @fx; f) of f(x)} asfollows

o(u;p) = \/;—ﬂ [ots f)—-—-—dx+llm——{ | I}@(x:f)%:—dx

As for the spectral analysis of the N.Wiener classS, we shall need to know the
properties of o(u; ¢ ). We shall present here the more detailed properties of o(u, )
after the same method of N.Wiener[ 1 ] with the assistance of properties of o, (u; @, )
(€ >0) thatis defined by the following formula.

Let us denote

@

qog(x;f)z% [ & s(u+s; f)-s(u—s;f)F du
7E 3,

and its G.F.T.
o, (4,) = Imx f)wldxmm—[H }mx f)——dx

Then it is clear that the function @_(u; f) is of positive definite in the sense of

S.Bochner[ 31 and it is represented as

1 7,
A = e dA_ (u
? = i (1)
and by the theorem of the Levy inversion formula we have
1 % e
A (u)=PV.— [ g,(x)
N2 5,

On the other hand from the definite formula of @, (x; ) we have directly that

1 7 L . 2
23@£|S(v+g’f) s(v—eg; f )| dv

A (u)=
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Therefore we have

—iux _1

1 < e 1 T 2
P.V.—J—Z._—;[—_J;qos(x;f) dx=zgmgls(v+£;f)—s(v—s;f)|dv

and

1
( ) Us(ul¢s)— 28-\/2—7;

where the constant term C, in this formula may readily be verified by the limiting

IIS(V+8,'f)—S(v—8,'f) Pdv-C,, ae u
0

value

14

-4 1

as the A tends to infinity through a sequence {A j} . Here we shall quote the same

method used in the proof of the F. Riesz-Fischer theorem in the theory of I* -space.
Since @ (x; f) tends to ¢(x;f) boundedly as £ >0 and @ (x; f)/(—ix) tends

in the mean to @(x, f)/(—ix} as £ >0 over any range of x to be not containing

the origin. From these facts we shall conclude that
o(u;p)=limo (w;p,) (I*)
&0

on any finite range of #. Because we have by the Plancherel theorem

[lo.(w0,)-o(uip)P dus—fr—'[ f Icog(x:f)-(o(x;f)lde v [ Lo eti I 4

ol x

as € >0 forany N >0.
It is remarked that definition of &_(u,;¢.) on the set of measure 0 may be permitted

to move. Hereafter we shall quote the o, (u,;@_) asthe above formula(*) for allu.
Now we shall quote the Lemma due to Paley-Wiener (c.f.[2], pp.134~5).

Lemma(Paley-Wiener). If we have a sequence of monotone functions { f,,} tending to

a function f(x) in the mean, then we have

f(x) = f(x) ae. (n—>w)
Then applying the Paley-Wiener Lemma to the sequence of {:r:lj9 {(u, @, )} we shall

conclude that
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o(u;@)=limo (u;@.) aeu
£—0

Furthermore we shall intend to consider the more detailed properties of o{u; @ )with
the assistance of those of o, (1,9, ).

Let us denote the set D of # where the sequence o, (u, @, )is convergent and the
set £ of u where it is not convergent or to be not defined. Then we have DU E=
(—oo, 4+0) and m(E)=0.

It is remarkable that hereafter we shall denote o(u)ando,(u) instead ofc(u,;¢)

and o (u;@,) respectively for the sake of simplicity.
We shall also define as follows

o(u)=supo(v), o(u)=info(v) and o-(u)=_‘—i”_),;_‘§(_”)_.

veil velr
Then we could define o(u) everywhere and it is a bounded, monotone increasing

function of # and first of all we shall prove that it satisfies the following properties
o(u-0)=c(u) and o(u+0)=0c(u)
at any point #. Then we shall prove the following results.

(i) Onthe case of o(u)—g(u)=0 atapoint u.

We have the ling o (u) exist and
£y

o(u-0)=o(u+0)=0c(u).

Then it is continuous there.

(ii) On the case of o(#)—og(u)>0 atapoint u.

We have the lz'ng o.(u) does not exist there and
£

o(u+0)—o(u—0)=c(u)-o(u)>0.

Then we shall conclude that it is discontinuous of the first kind there and has
magniftude of jump that states it above.

Now we shall intend to prove the following
Theorm B . Let us suppose that function f(x) belongs to the class S, then the

following limit

1 utg

(st f)=stv=-se;1)Pdv=lim(o,(uts)-o,(+s))

lim

=0 28\/%

9
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exists and equals to
o(ut0)}—o(+0)
for any point # respectively.
We shall start to prove several properties of o,(#) and o(u). We shall prove them
by the elementary calculation of Real Analysis. However since it shares of a role of
essential part of Theorem C, therefor we shall prove it for the sake of completeness.

Lemma B,. The o(u) satisfies at any point #
o(u—0)=o(u) and o(u+0)=0(u)

respectively.
Proof. Since o(u) is bounded, monotone increasing function we have for any pair of

(u'.u") suchas u' <u”
;J'-(u')=i{1f0'(v')= inf o(v')s sup o(vV')=supa(v')=g(u").

u'<y u'<v'<u” w'evi<u® vy
v'eD veD velD v'eD

Therefore we have proved for any pair of (v,u#) suchas v<u,
a(v)so(v)<a(u)
and so

o) =20 < o u

Then we shall take the limit such as v T # , we have
o(u-0)<o(u)
Next we shall intend to prove the inverse inequality. Since (%) is a bounded
monotone increasing function, for any pair (u'u’) suchas #’ <u"” <u, we have
o(u)<o(u').
Then we shall take the limit such as #" T #, we have
o(u)<o(u-0)
and so we have

o(u)=supo(u)<o(u-0).

Therefore we have
ofu—0)=o(u).
Similarly we shall prove

o(u+0)=oc(u).

10
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Lemma B, (i) In the case of E( u)=0o(u) atapoint #. Thepoint # belongs to

the set D and o(u) iscontinuous there.

(ii) We have at any point # of the set E

E(u)<g(u).

Proof. (i) Since o,(u) is bounded and monotone increasing function of #, we have
any pairof £,&'>0
o (u-g)<o (u)<o (u+e).

Since the measure of the set E js 0 and so there exist a sequence of points {u te '}

suchthat ut&'€D and {€'}{ 0.In the first we shall intend {&} ¥ 0, then we have
o(u—¢g’) S%_i_)mﬁo*s(u) Sﬁo;(u) <o(u+e!).

Next we shall intend { 8’} { 0. Then we have

a(u)<limo,(u) < limo, (u) < o(u)
£>0 L

Since o(u—0)=c(u), o(u+0)= o(u ) by the Lemma B, we shall conclude that

ling o.(u) =o(u) existand we have
£

o(u~-o)=oc(u)=c(u+0)

and o(u) iscontinuous there.

(ii) Let us suppose that o(u)= E( u) at a point u of the set . Then repeating the

same argument as the case (i), we shall conclude that ling o, (u)exists. It lead to the
£—

contradiction. Therefore

we have
o(u)-o(u)>0 (Yueck).
Now we have proved

(2) In the case o(u)=0o(u). The limit

11
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o(u)=limo,(u)

exist and continuous at the point #. The set of point #is subset of Dand we shall

denote it as D,.

(b) In the case E( u)>o(u). The point u# belongs to the set £ or D—D  we have

o(u+0)—o(u—0)=o(u)-oc(u)>0.

Therefore o(u )is discontinuous of the first kind and the set (D~ D, ) E is at most

countable.
Author suppose that the set D = D). However this problem is open at present and he

leave it to the reader. Therefor hereafter we shall treat our theory in the case
DUE =(—w0,0),m(E)=0 only for the sake of simplicity. Author suppose that this

hypothesis does not never lose the essential part of the theory.
Proof of Theorem B. Let us remark that the following formula
1 ute

23'\[2_; I |S(v+8,'f)—s(v—g;f)|2 dv=U£(ui£;(05)"'0'8(i£;¢)g)

and so without loss of generality we shall prove it at a point # = 0. That is as follows

ling o.(*t8,9.)=0(20;¢)

(1) In the case of a point 0 € D. Since the sequence {G'S (u )} is a bounded monotone

increasing function of %, for any pair (o,u) and £>0 suchas o<e<u,ueD,we

have
o.(0)<o,(+e)<o (u).

Then in the first tending & 40 , we have

o(0) s@ag(+e)s@ag(+g) <o(u)
£-0 L

In the second we take the least lower bound of o(u Jas for u € D such as 0 <u .since

we have o(0}=0(+0) and we have

lingas(+£)=0'(+0)

We have similarly

12
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limo,(-¢)=o(-0)

(ii) In the case a point 0 € £. We have defined o(0) as follows.
o(—0)+o(+0)
2
Letusput o(+0)~c(~0)=d >0 and define
o (u)=o(u)—dhfu)

where Afu) isthe Heaviside operator, that is as follows

o(0)=

1 (u>0)
h(u)= > (u=0}
0 (u<0).

Since we have by the definition
o' (+0) =o(+0) ~dh(+0) = a(-0)
6 (-0)=0(-0)-dh(-0)=oc(-0)
o (0)=0(0)—dh(0)=0c(-0)
respectively. Then o (u) iscontinuousat u =0,

Now let us put
ol(u)=0,(u)—dh(u)

and consider the sequence { o (u )} instead of {0, (u)}then it is continuous at a point

u € D. Because we have

lingo';(u) =lingo‘8(u)—dh(u)= o(u)—dh(u)=0 (u)

£ £—

and o (u) iscontinuous. Then applying the results of (i) to o, (u), we have
lingo*;(+£)=o"(+0)

where

o.(+e)=0,(+&)~dh(+g)=0,(+¢)-d and o (+0)=0c(-0)
Therefore we have
limo,(+&)=limo,(+e)+d
-0 =0

=0 (+0)+d =o(-0)+d =o(+0)

13
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Similarly we have
£ﬁrga§(—s)=a'(-0)
where
o.(~¢)=0,(~&)—~dh(~¢)=0,(-¢) and o (-0)=0c(-0)

Therefore we have

limo, () = 5(~0)

In general we shall prove by the same argument as above

lingo;.(u te)=0(utl)

at any point # respectively. Thus we have proved the Theorem B .

1.3. The Decomposition Theorem on the classS and TheoremC.
Applying Theorem 4 and Theorem B to function f(x)that belongs to the classS,

we have
Theorem C . Let us suppose that function f(x) belongs to the classS and satisfy the

hypothesis ('C, ). Then we shall decompose
f(x)=g(x)+h(x)
with functions g,# that satisfies the following properties.
(i) g(x)is a B*-almost periodic function in the sense of A.S.Besicovitch. Let us

denote its Fourier series expansion such as
1 | :
~ ix,x = i ~idx =
2(x) ;c"e ;G =lmo jT g(x)e™ds  (n=0123,.)

Then we have

1k ) 2 ()~ (~0; )
j{ygﬁ_frlg(x)ldx—;lcnls .

2z

(ii) h(x) belongs to the classS and we have

sim L [ A Pt Z{am,, +0:0)-0(4=0¢) | lz}’_
52T 4, : V2r
Moreover let us suppose that the function f(x) belongs to the class S’ .Then we have
h(x)=0 ae x and f(x)=g(x) ae x.
Proof of Theorem C. Let us suppose that a function f(x) belongs to the class.S and
the hypothesis('C, )is satisfied. Then we have

14
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A+e
z;z_r)rgEEJ‘|s(u+s fi—s(u—¢,f)Pdu= “(}“+O"”j/§(}““°’°”) (Vreal 2.

by the Theorem B, We have the following formula

A+E

~, . 1
_hm—-jf(x)e “a:@;z ﬁi(s(uw if)—s(u—g;f))du

T

by hypothesis(C, ) and Theorem 4 .
Then we have by the Schwartz inequality

Ate

lim— J—AL(S(u+8:f)~S(u—8;f))du f

|, ['=| lim

“i’_’féz;;lrls(“s f)=s(u=z;f)[du _"”“*‘Ofwg(ﬂ_a-w

Therefore we have
Step (1).If e D, the o(u) iscontinucusat ¥ =A.We have ¢, =0.

Step (ii). If u € E, since the o(u) isabounded and monotone increasing function,

the set E is at most countable and we shall present it as follows
E={A} (n=0123,..) and ¢, (=c,,sap),(n=0,123,..)

where A, =0 and ¢, =0 may be permitted.
We have by the Schwartz inequality

A+s

1
- - du ?
> \/_mL{S(””’f) s(u—¢,f )} dul

|e, P=im
£

e a(A+0;0)-0(A-0;9)
<£z_;g4—j[s(u+g f)=s(u—g; f)fdu= Nors

and

2 o(A,+0,p)—c(A, -0,0) o(w,p)-0)-0,p)
2l s o R

Then there exists the B, -almost periodic function g(x) and its Fourier series

expansion is as follows

g(x)~ Y c,e™
n
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(c.f A.S. Besicovitch [6],pp.91~112). By the hypothesis (C, ),we have

1% g LT iax
;mﬁif(x)e ci)c=£ﬁ—2?:|;"g(x)e dx  (Vreal A).

(c.f. ibid.V, 20d ed. p.129).
Step(il) Then if we put f(x)—g(x)=h(x) say. Then we shall prove that the
function A(x) belongs to the class 5. Since functions f(x) and g(x) both belong

to the class S and we have

o1k — 1 F .
lim = j h(x+ )Rt = lim I {f(x+1)—g(x+t}{f(t)-g(t)}at
- lim El;if(xﬂ)??r)dt—]% — [ sex+ ol

1 F —_— 1% —
~lim J g(x+t)f ()t + mf_[rg(x +1)g(t)dt
and since g(x)is B’ -almost periodic function, we have also

1 T - T —
li s | SO0 = i % I g(x+1)7(t)dt

T
~linor | atx+tjg(dt =), F e
(c.f ibid. IV, pp.105~108). Therefore we have
oz e 1z L Sy L
%Elh(xw)hmdt = =£ﬁﬁ:|;f(x+t)f(t)dt —]{ﬂ—z—%—_j;g(x+t)g(t)dt.

Thus we have proved that a function 7(x) belongs to the class S .

Step (iv) We shall consider auto-correlation functions ¢(x; f},w(x;g), x(x;h)of
f,g.h and their GET. o(u;¢),0(u;w),c(u; x) of @i,y respectively.

Then we have

O(x: f)=y(x:g)+x(xh) and  o(u;p)=o(uy)+o(uy)

respectively.

We have already proved that the o(u; @) is bounded monotone increasing function.

The o(u;y) is G.ET. of w(x,g) and w(x;g) is the auto-correlation function of
B, -almost periodic function g('x}, then we have

( Vmyle, P (u=i,)

A<t
o(uwy)= <

A, <u

Jﬂ[z|c,,|2+§lcm|2J (4= 1)

S
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and so o(u;y) is bounded monotone increasing function.
Since o(u;y) is represented as the difference of the two bounded, monotone

increasing functions o(u;¢) and o(u;y ), it is a function of bounded variation and

we have
17 2 1% :
5‘]::["|Z(x;h)ldeZ(O,'h)=£g?3g—2?:[Plh(x)ldx, (VT)

by the N.Wiener theoreml[ 1] {c.f. Theorem 25, p. 154).
Therefore we could apply the N.Wiener theoreml[ 1] (c.f. Theorem 24, pp.146~149) to
the function ¥(x;#)and we have

1 t 0(1}, +O,(D)“'O'(ﬂ. _0;¢) 2 :
lim— || y(x:h)Fdx = { = —le, " ¢ .
T—= 2T _-[, e ; N27
In particular if o(u; @) is continuous everywhere ,then it lead to

|C" |2$ o-(/?/n +O,‘¢\)/;_CT(2'" _0,‘¢) = 0 (n = 0,1,2,3’.“)
T

and we have

1 T
Iim — xh)Pdx=0.
lim— j | 2(x:h)|
Now let us notice that we have

Tlaxh)f R U T
_L—W—dxs(Her);%E:[r[z(x,h)ldx

by the N.Wiener theoremf 1] (c.f. Theorem 20, p.138) and we have y(x;h)=0,a.e. x..

Moreover if a function f(x) belong to the class S, then since we have proved that
17 — 1% — 1t —
lim— 1V h(x +1)h(t)dt = lim — x+1)f(t)dt — lim— x+t)g(t)dt
Tz_sz_jT( Jh(t)d mzr_frf( ) (1) mzr_ff( )g(t)d

and then y(x; 4 )is continuous everywhere and we shall conclude that y(x;h)=0 for

all x. Thus we have proved
1 2 B —
ig’}oi—fllh(x)ldxHZ(O,h)~0-

Then applying the N.Wiener theorem[ 1 ] (c.f. Theorem 20, p.138) to A(x) again ,we

have

Tm(_{)_lzdx<(1+2x)lim—}-]:|h(x)fzdx
2o 1+xr 715w 2T 3,

Thus we have
h(x)=0 ae x and f(x)=g(x) ae x.

Thus we have proved Theorem C.
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Author suppose that N.Wiener might consider the decomposition theorem of function
f(x) on the classS in the research of his first stage. Therefore hereafter Theorem C

should be called the Paley-Wiener decomposition on the theory of G.H.A.

Remark (1) Let us suppose that f(x) belongs to the classS and satisfies the
hypothesis(C, ). Then we have for any constant a,

Ate
lim L [Vs(u+e;f)-s(u-s;f)-2ma, P du
=0 47e e

_0(A+09)-0(A-0,0)
Var

and therefore the value of this integral attains to minimum ifand only if a, =¢, and

~le, |2+|c;'——al &

we have

Adg . _ —_N-
lim—— [ |(s(u+8& f)-s(u—s; f))~~2me,  du=2(2+ %) =0(A=0ip) /o
&0 4qe P N2

Since o(u)is bounded and monotone increasing function, there exists the set £ of
countable points A=4,, (n=0,12,...) at which o(u;@) has jump and continuous
elsewhere. Thus we have the following results.

(i)If Ae D, then we have

o1 M o(A+0;p)—c(A~0;¢p) ’
lim— | |s(u+e; f)~s(u—s; ) du= : 2 —te, F=0.
-0 Q71e Z.’L X /27; A
(ii)If AcE, thatis A=4, (n=0,1,2,3,...), then we have
1 M (A +0)—a(A —0)
lim—— s(u+eg, f)-s(u—g, ~2ze, " du= L L —le, P
it [ Vsure f)=stu=s. )} =2, e <, |

(c.f. ibid. VI, 3t ed. pp.141~143)

Chapter 2. Generalized Hilbert Transforms

This theory had been constructed by the author (c.f. S.Koizumi[10]} about more than
fifty years ago.  Let us suppose that a function f(x) belongs to the Hilbert space W>.
Then Generalized Hilbert Transform of order 1{G.H.T.) of f(x)is defined by the

following formula

t+i x—f

~ _ (x+i) T f(t) dt
Fi(x)=P¥ = £
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Here we should be remarked that it has been introduced already for the purpose of the
different research by H.Kober (c.f. Research Report I, pp.2~3). Then it can be written as

x+i L trix—t
and then ?1 (x) belongs to the space ¥ ?and so G.F.T. of }”1 ( x)is well defined.

Let us rewrite the multiplier x+i=(¢+i)+(x—t), then it can be written formally

as follows

?I(x)=P.V.—LT£(—t)—dt+P.V.lTf(t_) T = Fex)+ A(f),
T x—t 7,

t+1

where ? is the ordinary Hilbert transform of f.

2.1 Relevant theorems of G.H.A. and advanced results.
About fifty years ago, the author established the following theorem (c.f. [10] Theorem
49, pp.201~205 ; see also [12] Theorem A)

Theorem K. Let us suppose that f(x) belongs to the class/#*. Then we have for any

positive number &
(i) if |u[>& then

s(u+£;71)~—s(u——s;}f)=(—isign u){s(u+s;f)—s(u—g;f)}
000000nd
(1) If |u|<& then

s(u+£;3r:)~—s(u-£;?l)= i{s(u+£,'f)—s(u—£;f)}+2r1(u+a;f)+27;!(u+8;f)

where
"lllf
and
1 T
nu fl=lim— | —%""dt.
Bow (o7 _j[3 t+1

We shall intend to estimate remainder terms #(u,; f) and r(u; f) in Theorem K.

For r(u; f),if f(x) belongs to the space?, then
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(R) L {inure; 1) du=0(s), (s0).
2e 7

(c.f. Research Report I, p.19).
As for r,(u; f), we shall set the following condition('R, ) There exist a constant
a( f) such that

(R) o finureif)-(Za(f)F du >0, (£0)

This condition should be indispensable to reconstruct the theory of G.H.T. under the
assistance of hypothesis (C, ). Then we shall obtain many rich results as follows.
Theorem 1. Let us suppose that f €S, and the hypothesis (C, ) and the condition

(R,) are satisfied. Then we have f; €S, and the following equality

S 1% .
;ﬂﬁilﬁ(x)lzdxﬁlf_{gﬁ-jrlﬂx)lz det|a(f)+ie, [ =le, .

{e.f. ibid. VI, 3 ed. Theorem B; , pp.148~9)
Proof. We shall intend to estimate the following formula

1 2 . p
I:4—I|s(u+a;f1)—s(u—a;ﬁ)|2 du.
e 7,
Then by the Theorem K, we have

r=-1 I |(—i)signu){s(u+e f)—s(u—g f)} du

47e e

+--1- j Ii{s(u-l-&',‘f)—s(u—g;f)}+21;(u+a5‘;f)+27‘2(u+a5‘;f)|2 du

47e e

=1, +1,,5ay. Asforl,, we have

11=—1— j | s(u+g; f)—s(u—g f)Fdu.

4xe e
As for I, ,we have by the Minkovski inequality ,

L=— [ |ifs(u+a;f)=stu=s; f}+2r(ute; f)Pdu + ofl) (5-0)

dre e

and by the use of the condition(R, ) and applying the Minkovski inequality again, we

have
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L= [ |i{s(u+8; f)-s(u=g; )} +2ma(f)F du + o(1) (5->0).

4zs s

Moreover we have

L= [ |s(u+s f)=s(u=z f)Pdu+i ;fij S(u+8; f)-(u—5; f )} du

4” lu|se [ES4

.26;(\{1,,,{';5 s(u+g; f)—s(u—g; f)}du+|a(f) + o(1) (£—0).

Here we shall notice that

&

T
¢, =£ifg%-j;f(x)dr=ii—;)ygzj;gl{s(u+8;f)—-s(u—£;f)}du
by Theorem A, then we have

I =—— [ |s(u+8; f)=stu—s; f)Pdu-+la(f)+icF =lcy P + o(1) (5—0)

47[ lujse

Therefore we have that

hm—j|s(u+g f)-s(u—g:f ) du

£-30

—hm—J|s(u+sf) s(u-&;f)f du+|a(f)+icy [ ~[c, [

&0

Since f(x) belongs to the class S, then if we apply Theorem#, to the above formula,
we have proved that a function ﬁ( x) belongs to the classS; and we have
1%z 2 1% 2 2 2
;ﬁfilﬂ(x)l w=;m§£|f(x)l detla(f)+ic, [ =l P .

If we apply Theorem 4 to the results of Theorem1, we have obtained directly the

following Corollary.
Corollaryl.1. Let us suppose that f belongs to the class S, and satisfies hypothesis

(C, )and condition(' R, ). Then we shall prove that ?1 satisfies the hypothesis

~ T -
(C,) mfl fi(x)e™dx =&, (Vreal A)

Proof. The existence of the following limit
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A+

j{s(u+a Fi)=s(u—g,f)ldu  (Vreal )

{’I"fg 28\/

is derived as follows.
We shall apply Theorem K, to this problem. If 4 #0, we have

Ate . - Atg
lim » \/_ [ {su+ef)-stu-¢e )}du=(—-zszgn/1)£lm AL s(u+e,f)—s(u—sg,f))du

andif 4A=0, wehave

iﬂrgzgrf{s(u+sf) s(u— sf)}du iﬁng_I s(u+e,f)—s(u—e,f )du+a( f)

Therefore if we apply Theorem A4 to f:( x) then we have proved that hypothesis

{ o ) is derived and we have

(—isignd)c, (A#0)
= —ids g
71"1_13302 If(x)e dx =

a(f)+ic, (A=0)

respectively.

Theorem 2. Let us suppose that f €. and hypothesis (C,) and condition (R, )

are satisfied. Then we have _fl € S and the following equality

lim—— I’”‘ls(u+sf) s(u—g,f, )} du

50 4z 3.

clim [ & |s(u+e,f)=s(u—s,f)P du-ic, | +]5 P
50 dg

where (:'; =ic,+a(f). Moreover we have
1 5= = 1% ——
oy w Jim —— _ 2 ~ 12
lim—— j Ax+)i(e)dt = lim = J f(x+)f(dt— |, +& P
That is to say, we have

o f)=o(u f 418 F =6 [

(c.f. ibid. IT, Theorem ¥, pp.25~29).
In particular result of Theorem 1 could be rewritten as follows
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. 1 T 2 . 1 T 2 2 2
gﬁfilﬂ(x)l “”“iii’faiﬂwx)' di—lc, [P+ |
Furthermore we have
Theorem 3. Let us suppose that f € S'and the hypothesis (C,) and the condition

(R,) are satisfied. Then we have that ?1 €S8’ and we have
lz'ml?f(xﬂ)}(r)dt = lim-1-]‘f(x+t)f(t)dt——|c P+l
- 2T = ! ! T-a 2T 3, 0 o
where ;:; =ic,+a(f).

Proof. By the Theorem 2, we have ?1 (x) to belong to the class.S . Then applying

the theorem of N.Wiener[ 1] (c.f. Theorem 28, p. 160) and Theorem K, we have

.

ﬂ%ﬂ’gﬂg—-_ii ]IS(u+8;f1)*S("‘“&'f1)|2 du
s

=timlim—— [+] \s(u+s:f)=s(u-6:f)F du =0

Asw 50 471 | 4 ’ ’ -

Thus we have proved that 7"1 (x) belongs to the classS”.

We have also
Theorem 4. Let us suppose that f(x) isa B’-almost periodic function and

satisfies condition (R, ). Let us write its Fourier series expansion as follows

flx)~Y c,e™.

Then its G.H.T. f] (x) is also a function of B” -almost periodic and has its Fourier
series expansion as follows
h(x)~ 28,

where

(~isignd, )c, (n=123..)
ic,+a(f) (n=0).
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(c.f. ibid. VI, 8rd ed. Theorem C", p.151).

Remark (2) Let us suppose that f(x) belongs to the classS, and satisfies the

hypothesis(C, ) and the condition( R, j. Then we have by the Corollary of Theorem 1,

its G.H.T. .71 (x) belongs to the class S, and satisfies hypothesis( Ca }.

In the case A =0. Then we have for any constant a,

hm—-—Ji(s(u+e fi)-stu-s:1,)-V2za, [ du

e—0 441,

—lrm—jl(s(u+£f) s(tu—g;1))— x/2—7z'a0|2du

g0

_o(+0,9)-o(-0,p)

2z

where a; =ia, +af f ). Therefore the value of the integral attains to minimum if and

- lz +lep~a, |2

only if g, =c¢;,1e. @, =¢, and ¢, =ic, +a(f). Then we have

hm— j |(s(u+8;f,)~s(u—e; 7, )~2mc, [ du

s—-)O

_hm—j|(s(u+g fi—s(u-g:f)—2xc, } du
#-0 475 3
_o(+0:9)=0(-0:0) | .

N2 °

In the case A # 0. Then we have for any constant a,

A+e

zzm—j|(s(u+s F)-s(u—g:F ) —ras [ du

£->0

A+e

—hm-l— |(s(u+8 f)—s(u—g; f))—2ra, [} du

&0 418
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_ o(A+0,p)~0(A-0;0)
2r

where 4@, = (~isignA)a,. Therefore the value of the integral attains to minimum if and

-le; |2 t+lc,—a, 12’

onlyif a;, =c¢; and we have

Ave

lim— [ Vs(u+e:F)-s(u-e;F )~ \2mes [ du

=04pe 2

=lim—l——'i_[sl(s(u-E-.f;‘;f)—s(u—&‘,‘f))—\/:z;c,1 F du
>0 dpe 2
_o(A+0;90)~0(A-0;p) 2
= \/5;7:_ —le, I
where ¢, = (~isigni )c,. Therefore we shall conclude that
(i) Ae€eD. Then we have

Ate

lzm—-j|s(u+s 7 )-s(u-¢; 7, ) du

&0

Me o(A+0;0)—a(A-0:9)

— —_— - 2:
lim— J1s(ures f)=stu=s; 1) Pdu= T ¢, P=0
(ii) Aek,if A=4,,(n=123,.). Then we have
A+e . .
Img—-—— I [(s(u+eg; f] s(u—s;fl))—mcn I du
1 Ayt
—hm——— |(s(u+&; f)—s(u—g; f))~ \/_c P du
& j-s

_ o-(/ln + 0; ¢) - O-(ﬂ‘n — 0; ¢) _ |
2z "

where 2': = (—isigni, )c,.

IZ

If A=4, (n=0). Then we have

I:m———j|(s(u+s Fi)-stu—e;F, ) —2zc, | du

&0
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_o(+0;0)~o(~0:0)
P2z

where ¢, =ic, +a( f). (c£ ibid. VI, 8 ed pp.143~145)

+| ¢ & —ley |2

2.2 The Decomposition Theorem of G.H.T. E( x) ontheclassS.

Let us suppose that f(x) belongs to the class S and satisfies the hypothesis(C, )
and the condition ('R, ). Then by the Theorem 1, Corollary 1 and Theorem 2, we proved

that its G.H.T. }'I( x) belongs to the class S and satisfies hypothesis ( (o ). Then with

the assistance of Theorem C, we have the decomposition of G.H.T. 3’;( x) as follows.

Let us denote
f(x)=g(x)+h(x)
as the decomposition of f(x) in Theorem C ,then as for G.H.T. of them we have

fi(x)=g(x)+h(x)

and it gives the required decomposition of 7;( x ) .Therefore we have

Theorem 5. Let us suppose that f(x )belongs to the class $ and satisfies hypothesis

(C, )and condition('R, ). Let us set the decomposition of f(x) asin the Theorem C

J(x)=g(x)+h(x}).

Then we have the decomposition

fix)=g(x)+h(x)

and it satisfies the same properties of f(x)as in the TheoremC .

Proof. The proof can be done by the same argument as Theorem C . By Theorem 4 the

:g:;( x) is B?- almost periodic with Fourier series expansion

g(x)~ che”"”
n

=+

T
[(x)e ™ dx = lim 515; j g(x)e™dx (n=0123,..)
-T

and
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(—isignd, )c, (n=1273,..)

icy+a(f) (n=0)

Then we have

. lT“" 2 2
;gfiugl(x)l dx=;|c,,|

oA, +0,0)-0(%4 -0,9) o(x¢)-0o(-»p)
< Zn: \/2_” = \/ﬂ <0
where
o(4,+0;,9)-0(4,-0,9)
2z

(n=1,2,3,..)

o(4,+0;0)-a (A, -0;0)

<
N2z
of(+0,0)-o(-0;,¢)  ~, )
+le, |” —|c n=0).
i o e " =leg|© (n=0)

Therefore since :f:( x) belongs to the N,Wiener classS, then E (x) does too by the

same argument as Theorem C.

Nowletusdenotesqﬁ(x):QJ(x,j?]),t;(x)=t//(x,§:) and ;'E(x)=;f(x,z) as the

auto-correlation function of _ﬁ, g and E respectively and o(u,@),0(u,i7) and

o(u,y) astheir G.F.T. respectively. Then we have
o(xf)=v(xg)+ x(xh) and  o(wp)=o(uy)+o(ui),
In particular we have
S I TP 1~ ] e
;ﬂﬁllﬁ(x)l ¢=;mfllgl(x)l dx+gz_,n;§_[r|mx)| dx.
Let us remark that E (x) belongs to the classS, ofu, q; ) and of u;yq; ) are both

bounded increasing as a function of #.Then o(u; y)=o(u;@)—~o(u;y) isa

function of bounded variation and its magnitude of jumps are as follows
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(i) If Ae D, wehave
o(A+0;0)-0(A-0;0)=0 and o(A+0;p)—c(A-0;p)=0
then we have

G(A+0;7)—a(A-0;7)=0

(i) ¥ AeE={4}(n=0123.)
We have in thecase n=12,3,...
(2 +0;0)-0(3,~0:;p)=0(4,+0;0)~ (4, ~0;p)
oA, +0; )—a(A, -0 ) =27 |c, P=~27 |c, ]
and
o(2,+0;x)-0(2,-0,7)
={o(4, +0;0)-o(4, - 0:0)} ~{o(4, +0:1) -o(4, —0: )}
={o(4,+0;0)-0(4,-0;0)} =27 |c, .
We have in the case n=0
o(+0;0) - 0(~0;0) = o(+0;0) ~5(~0;0) +27(1 ¢, I =1 ¢y )
o(+0;y ) - o(-0: ) =2x | & [
and
o(+0;x)-o(-0; )
={o(+0:0)~0(~0:9)} ~{o(+0:9) - o(~0; )}
={o(+0;0)~0(—0;0)} V27 |¢, |

Therefore we have

ot oA+ 0p)-o(h, -0p) ~,|
gl_f)}o‘lo*z"T—'_ITIZ(x,hl)[dx_Zn:{ .\/E _Icnl
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[0l +00)-a(4-00) o\
z{ )= 51}

by the N.Wiener theoreml 1] (c.f. Theorem 24, pp146~149)
In particular, ifo(u; @ )is continuous everywhere, then we have

N O T
!-m;;_[ﬂwx)’ﬁ)l dc=0.
and moreover we have
tlalxh)l N N T
ivdXS(l-Fzﬁ)g%EilA’(x,}ﬁ)l dx=0

by the N.Wiener theorem/ 1 ]{c.f. Theorem20,p.138). Thus we have

z(x,l?)=0 ae x.
In addition, if f{x} belongs to the classS’, then since E( x) and é‘j( x} are both
belong to the elass S, ;l: (x) does too. Then since ¥{ x,'E ) 1is continuous everywhere

we have x,I;: )=0 for allx and in particular we have

. 1 A = 2 T
;t_r;gE_J;lia(x)l dv=(0;h)=0
and repeating the same arguments as above we have by the N.Wiener Theorem|[ 1 l{c.f.
Theorem20, p.138)

B(x)=0 ae x.
and we have
fi(x)=g(x) aex
Thus Theorem5 has proved .
Chapter 3. Generalized Harmonic Analysis on the upper-half plane.
We shall reconstruct the theory of Generalized Hardy Space(G.H.S.) in the upper - half

plane as another application of G.H.A. As for the Theory of ordinary Hardy Space, it
should be refered to E.C.Titchmarsh [3].
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Generalized Hardy space H. lz and Relevant Theorems.
We shall denote it by Hand it is defined by the set of a function F(z ), (z=x+iy)
that is analytic in the upper half-plane y >0 and the integral

2V F(x+iy)
Eo
exists uniformly in y > 0.
Generalized Cauchy Integral (G.H.T.). We shall denote it by C(z; F')and it is
defined for a function F('x ) that belongs to the space W?* by the following formular
Z+i T F(t) dt

GzF)= (+it—z

2zi 7,

where z=x+iy, y>0.

Then along just the same arguments as Hardy space H(c.f. E.C.Titchmarsh [3],Chap.
V, pp.119~132) we had been proved the several theorems.
Theorem X, . Let F'( z )be analytic in the upper half-plane y >0 and belongs to the
class H_.Then we shall find out the boundary function at y =0 to be denoted it by
F(x).Then we have

(i) We have
limF(x+iy)=F(x), ae x
y—0

where if we write f(x) astheReal Part of F(x),then Imaginary Part of F(x)is

F.(x) andwehave F(x)=f(x)+if (x).

(ii) It belongs to the space #* and we have

=) . 2

limIIF(xHy) ZF(x)I =0,
y=0 < I+x

(iii) The F(z)is represented as the G.C.I. of #(x ), that is

-]

z+i-’-F(t) dat
27i Y t+it—z

-0

F(z)=C/(zF)=

where z=x+iy, y>0.
We shall prove that the inverse theorem is also true as follows.
Theorem K, . Let us suppose that f(x)belongs to the space W and let us define

F(x)=f(x)+if (x) and F(z)=C,(z:F).Then we have

(i) The F(x) belongs to the spaceW> and F(z) belongs to the class H?.
(ii) The F(x) isthe boundary function of F(z) in the following sense
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lingF(x-!—iy)=F(x), ae X
¥y

and

Iim 5
y-30 1+x

Theorem K, .Let F(z),(z=x+1iy) be analytic in the upper —half plane y >0
and belongs to the class Hf. Let us denote by F(x) its boundary functionat y=0.

FLEG+)-F()Py, o

Then we have for any given positive number &
(i) if fulz¢, then
s(ut+e F(z))—s(u—¢e; F(z))

= (QE ST o 5 65 F ) s(u= 5 F ) v(.9,6: )

where

1
lim— [ 1r(uy,8,F)F du=0

lul>e
forevery y>0,
(ii) if |uj<s, then
s(u+e; F(z))—s(u—gF(z))= in(u+e F)+in(u+e F)+rn(u+sy,F)
where
in(u+g F)+in(u+e F)=s(u+eF)—s(u—gF)

lim—— [Ir(u+e;F)P du=0 and lim | \n(u+s,y:F)F du=0
=0 2o &0

|tl<z |ul<s
for every y>0.
(c.f. S.Koizumil10 ] and Research Report III, pp. 46~52).

Let us suppose that a function #(z ) is analytic in the upper-half plane y >0 and

belongs to the class le . Then by the Theorem K|, there exists the boundary function at
y =0 and we shall denote it by F(x ). Then it is represented as follows

F(x)=f(x)+if (%)

where f(x)is the real part of F(x)and ?](x) is the imaginary part of F(x)and

GH.T. of f(x).

Furthermore we have

z+i]‘iF(t) dt
2 2 t+i z—t

—an

F(z)=C/(z;F)= (z=x+iy, y>0)
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Here we shall quote the skew reciprocal formula of G.H.T.

5H1(x) _, If(r) a o oppl Ifl(r) dt___f(x)

x+i t+i x—t t+i x-t xX+i

and it is derived from that of the Ordinary Hilbert Transform.(c.fE.C. Tichmarsh[ 3 ],
Chap.V, Theorem91, pp.122~123), (c.f. S.Koizumil[11], Theorems36,37,pp.192~3) and
(c.f. Research Report III,pp. 50~51 and 63~64).
Then we have
F(2)=2C(z f)
with f(x) thereal partof F(x).
Now we shall denote
HMz)=C(zf).
Then we should remark that F(z)=2f(z) and this enable us to argue with f,(z)

instead of F(z) and to set hypothesis(C, )} and condition(R,) on f(x).

Now we shall going to construct the theory of spectral analysis and synthesis of G.H.S.
and the Decomposition Theorem of F(z). We shall state them step by step steadily for
the sake of completeness.

Theorem 6 Let us suppose that F(z) belongs to the class H]. Let us denote F(x)
as its boundary function at y = 0. Let us suppose that f(x) the real part of F(x}

belongs to the class S and satisfies hypothesis(C, )and condition(' R, ). Then we have
If |up> &, then we have
S(u+e;F(z))—s(u—8:F(z)) = (—liigg-"—-’fie"“ {2(s(u+g; f)—s(u—g; f))+r(u,ye F)}

where

lzm— I | ro(u, y,8;F)du=0.

e—>0
]u|>.<:

If |u|< &, then we have
s(u+g F(z))—s(u—g;F(z))=2in(u+sg; f)+2in(u+e f)+n(u+ey;F)
where

in(u+e fl+rin(u+e f)=s(u+e f)—s(u—ef)
zzm——j|r,(u+s )P du=0 and lzm—J|r3(u+ay,F)|2du 0

l"i"‘f-' lu|<e

and there exist constant a( f )such as
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(R)  lime— [ |n(u+sif)=\Za(£)F du=0
028 2

Proof. We can apply Theorem K, and Theorem X, then we shall obtain the required
results. We shall omit the detailed proof.

Theorem 7 Under the same hypotheses and condition as Theorem 6 , the function
F(z) belongs to the class § forall y>0.

Proof. In the first, we shall intend to prove that F(z)belongs to the classS as
function of x for all y > 0. This can be done by the application of Theorem#;. We
shall estimate it by the integration by parts and apply Theorem B.

Let us estimate the following integral

—I——J.e"'“ |s(u+&;F)—s(u—g;F)I du
4re 2,

L[ e ah,;+-1—je"=”‘|"|2 du=1+1I, say.

41?8 lujze |ui<e

We have
I ¢ e (I+signu) 2
= [ e | (o s(u 6, ) = s(u =5, £ )+ r(w, 3,55 F)} P d

\u|>&

=$Tef"‘e“2”" |s(u+e; f)—s(u—~gf)f du+o(l) (£—0)

£

by the Minkowski inequality and (R} we have

1 o e(-‘x-Z,v) u =
—[e™e™ |s(u+g;f)-s(u—z;f)f du= JIstv+e:f)=s(v—g:f)F dv:I
e E

u=g

_(ix-2y) Terar—w" U[ s(v+e f)-s(v—e f)f dv]du
e - £

by the integration by parts.
Now we have by the Theorem B

)—o(0+)
Var

I:;gjls(v+s;f)—-s(v—£;f)Izdv—>a(oo (£0)

and
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1 % 2 o(u)—o(0+)
—_— +& f)-s(v—-¢g; dv—>—>——~ qe. 0
4zg{'“" f)=s(v=g;f)Pdv v u (5-0)
boundedly. Therefore we have
. T e -o(0+)
I =-4(ix-2y)| ™ 2w (u) = 0(0+) du+o(1 £—0
| =—4( y)! o (1) (£-0)
Next we have
Iz=-—1—— e |s(u+e; F(z)—s(u—g F(z)) [ du
drxe

lul<g

= j "\ 2in(u+te; f)+2in(uve; f)vr(uy,e F) du
e

] <&

where let us remark the following properties

lzm——— [I1n(u+s,f)F du=0 and lzm~— [ In(uy.8F)P du=0

lu]Ss |u|<e

and the condition('R, ). Then we have by the Minkowski inequality

b=— [ In(uta.f)=-\[Za(£)F dur|a(£)P +o(1)=a(f)P +o(1) (50

dze e

Therefore we have proved

hm—l—— e | s(u+e; F(z))—s(u—¢&; F(z)[* du
s0 47g =

= _%@Ieﬁxdy)u (o(u)—a(0+)du+|a( ).

Thus we have proved that F(z) belongs to the classS by Theorem W,

Next we shall prove F(z} belongs to the classS'. Applying Theorem of N.Wiener(c.f.
[ 1], Theorem 28, p.160) with the assistance of Theorem8, we have

hmf;n—wl—[‘[+i ]|s(u+8 F(z))-s(u—g F(z)) ] du

A= g0 o1

—I:mlzm—l:'[ T ] “”’g”") e (2 s(u+ 8 f)-s(u—5; £ )+ 1o(u,y,5: F} P du

A-we0 4 7e
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o«

—lzmlzm—— e |s(u+e; f)-s(u—g f)If du
A-—-)ws—mﬁg

< lime™ lim—-Ils(u+£;f)—-s(u—€;f)]2 du=0.
A= s—)oﬂg_m

Therefore we obtain that F(z) belongs to the class.S’as a function of x for all
y >0 and we have

o(xiF(2) = lim 5 | (w1, )0y

1
—lmg-;r— e |s(u+e; F(z))—s(u—e; F(z))l du (z=x+iy, y>0).
£ TE
Theorem 8 Under the same hypotheses as the Theorem 6, /'( z ) satisfies the
hypothesis(C; ) (V real A)as function of x forall y>0
Proof For this purpose we shall need the support of Theorem 4 . There we have

Atrg

lim — j F(z)e™ dx = lim — J— [ s{s(u +& F(z))~s(u~e;F(z))du

where z=x+1iy, y>0.Then we shall intend to estimate the formula in the right
hand side with the assistace of Theorem 6.

(i) The case A # 0. We have by Theorem 6

' 1 A+E . _ .
lim S A‘L{s(u-i—s, F(z))~s(u—¢&; F(z))}du

1 % (1+signu) _
=lim e I2s(u+g; f)-s(u—g; +r(u, v, Fldu
s-—ng f Ajs 2 { ( ( f) ( f)) .0( y }

At

=(1+signﬁ.)e'y""lin[1]2 I (s(u+e; f)—s(u—g;f))du=(1+signld)e”*c,
£ g ﬂ,—-s
Thus we have proved

AdE
lzmm F(z)e " dx=lim s(u+e;F(z))—s(u—e; F(z)}du = (1+ signi Je ¢
lim~ f (z) Hong_lL{( (2))=s(u=&;F(z))jdu=(1+signid)ec,

(ii) The case A =0.We have by Theorem 6

s(tu+e; F(z))—s(u—g F(z))=2in(u+g; f)+2r,(u+e f)+r(u+ey, F)
where we shall notice the following properties
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lzm— [In(u+e;f)f du=0 and lzm— [ 1n(u+s,y: F)Pdu=0

£-07
INH‘.‘ uj<e

and the condition

(R)  lims [ In(utsif)- Za(f)F du=0

a->0
IuiSS

Therefore we have

2&1/% Hj {s(u+e&;F(z))~s(u~g F(z))}du

28\/—lufl;s(r2(u+8’f) za(f))du+ia(f)+o(1)=ia(f)+o(1) (6—0).

Thus we have proved

lim— J‘ F(z)ds =lim [ {stu+e;F(z))-s(u—&;F(z)}du=ia( f).

28J— i<

Thus we have proved

0, (1eD)
T
jljm-z-l-j-;_f1‘7'(12)6""’1"ciac== (1+signd)e™c,, (LeE,1#0)
r
ia( f), (LeE,A=0)

where
T
c, =£%51?-£f(x)e_ij"xdx and 4, €E (n=0,1,23.)

Now let us suppose that F(z) belongs to the G.H.S. Hf on the upper-half plane.
Let us denote F(x) the boundary functionat y=0 and f(x) the real part of
F(x).Let us suppose that f(x) belongs to the N.Wiener classS and satisfies

hypotheses(C, ) and condition(R, }. Let f(x)=g(x}+ h(x) be the decomposition

in TheoremC and we shall denote G.C.I. of each function as follows
MD)=C(zf), &(z)=C(zg) and h(zh)=C(zh)
respectively.
Then g,(z) is B’-almost periodic function and we have

zzmwff(z)e"""dh hm—fg](z)e Tdx, (z=x+iy, y>0).

Ty
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Let us denote the Fourier series expansion of g(x) as follows
g(x)~ Z ce™
n
Then we have the Fourier series expansion of g,(z)

1+ A,
gx(z)’"—'a(f)-l-zi——%gi—)e"”’yc e™, (z=x+iy, y>0).
nx0
This is proved as follows. Applying Theorem 4 ,Theorem C and Theorem K, ,we have

(i) In the case A # 0. We have by Theorem A4 and part (i) of Theorem K

r ) 1 Ate - -
m—jf(z)e de=£ng28J:_2;A_[£{S(u+8,f,(z))—s(u—s,j](z))}dx

= lim I(1+szgnu) "’"{(s(u+s fl=s(u—sg; fli+r(uyes; f)}du

Ate

(1+szgniL) ! 1
SR iaddd 151_1)1328\/__21[8{s(u+8 f)=s(u—g; f)}du

_( 1+S;gnﬂ) g J- F(x)e ™ d

On the other hand we have by the same argument as before
lzm — I g(z)e ¥ dx = ﬂi&;@i)— 2 lzm I g(x)e " dx
and
l- Lf‘[f()—lixdx_l ___1___]: —iﬂxdx
T%ZT_T x/e -TmZT_Tg(x)e
by Theorem C Therefore we have
Izm——jf(z) Ty = lzm—J‘gl(z)e"‘xdx (z=x+iy, y>0).

(ii) In the case A =0.We have by Theorem A and part (ii) of Theorem K,

lzm jf(z)dx ii_r)rgzg\l/gluf[s{s(u+g,-ﬁ(z))—s(u—g;fl(z))}du

= ?13323\/_ I {in(u+e f)+in(u+e f)rn(u+ey; f)du

lu<e
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- %23\/_[";[5 s(u+ & f)-s(u—¢; f)}du—zzm—jf(x)dx
Similarly we have

1% .1 Z
lim— I &i(2)dx =Jim —— j g(x)dx.
Therefore we have by Theorem C
.1k 1%
lim ﬁ_jrﬁ(z)dx =lim E.IT & (z)dx

On the other hand we have by the part (i) of Theorem K, and condition (R,)

1 T
lim — zidx = lim———— | in(u+eg; f)du
Tepeo 2T ”j;fi( ) &—0 2 \ / |Hl-[6' 2( f)

34028\/2_!"7[3(?2(114-3 f)- ;a(f))du+-;—ia(f)=%ia(f)

Then we have

Lia(f) (7=0)

j{gnz— j g(z)e " dx= <

(1+ signi, ) "”"e""‘
9 2

(n=123,.)
Therefore we have

gl(z)fw—za(f) ZM e (z=x+iy, y>0).

C €
nel)

Next we have by the same argument as Theorem C

lzm—_‘.h](x+t+zy)hl(t+zy)dt

T
— 1 & -
=;{fg_gﬁ_frﬁ(xﬂ+iy)ﬁ(t+iyﬂt—;grgogfigl(x+t+iy)g;(f+iy)dt

Let us denotes @,(x,y; fi(z)) v (x,y,g,(z))and y,(x,y,h(z)) asauto-correlation
function of ,(z), g,(z) and 5 (z)respectively. Let us denoteso(u,y; ¢, ), 0(u, y; ¥, )

and o(u,y; ;) as GET. of g(x,y; fi(z)) ¥ (xty;gl (z))and Y4 (x:y;hl(z))

respectively.
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Then we have
o(xy; f(zZ) =%y 8(z)+ 0%y, h(z)

and
oluy;p)=c(uyy )+o(uwy 1)

Since the o(u,y; ¥, )is represented as a difference of two bounded and monotone
increasing function o(u,y;@,) and o(u,y;y, ), itis a function of bounded variation
and we can apply to it the N.Wiener Theorem (c.f. [ 1] Theorem 24, pp.146~9).

Let us estimate the magnitude of each jumps. We have by Theorem B

A+

o(A+0,y:9)-0(A=0.y:0) _ s | 150482 S (2) (=2 yif ()T d

2 5—)0 47;

We shall obtain also by Theorem 4 and Theorem K, (c.f. ibid. ITT, Theorem D, p.47)

the following estimations
(i) Inthe case l # 0. We have by the part (i) of Theorem K,

a /1""0, ) -0 A_OJ s . 1 e
(a2 i) w:i’i’hzgj s+ f(2)~s(u—5; fi(z ) du

Ate

= lim j|(1“’3"“) e {(s(u+e; f)—s(u—g; f))+r(u,y,5 )} du

0 475 |

._:[MJ “‘2»";“l;m--l-—zjb‘(u+6‘ )= s(u— 3f)| du

2 g0

=(1+sz;;,»n,1J2 91 O(A10,9)-0(A-0;0)

2 N

(ii) The case A =0. We have also by the part (ii) of Theorem K;, hypothesis (R, )

and the Minkowski inequality
o(+0.y; ¢ )~ 0o(-0,y,¢,)

2z

‘I’”ST _[ lir(u+g f)+in(ut+e f)+r(u+ey f)F du
£ 7E |

ul<e
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<l [ litr(urs: )= [Fa(/)F dut|iaCs)P=l Sial 1)

e-—rD
\u}<s

On the other hand we have by the Theorem 9
r 1 ) )
IEIa(f)I (rn=0)

O-(/l+ O’y;Wl)'—a(ﬂ"O’y"Wl) = <
N2

|(1+szgnl) g |

n=1273,..
: ( )

Therefore we have

lzm—J'|Zl(x voh(z) P dx:;{c(ﬁ,, +0,y;zl\)/%;(ln _O,y;Zl)}

_ Z{a(&, +0,y;,¢)—-0(A,-0,y,9,) 3 o(A,+0,y;y,)—o(A, —O,y;t//])}2
N27 N2z

n

. 2 . . 2
__.Z(lﬂrzgnﬂnj e—u,,y{amn +0; 495(&. %)y, F}

n=0

Now we shall prove the decomposition theorem of F(z).

Theorem 9. Let us suppose that F(z)}, (z=x+1iy, y>0) belongs to space le.
Let us denote F(x) the boundary functionat y=0 and f(x) the real part of

F(x).Letus suppose that f(x) satisfy hypotheses (C,) and condition (R, ).

Then we have the decomposition
F(z)=G(z)+ H(z)
where
F(z)=2C(z; f), G(z)=2C(z;g) and H(z)=2C(zh)
respectively and satisfies the following properties
The G(z) is B’-almost periodic function and its Fourier series expansion is as
follows

G(z)=ia( f )+ (1+signd, Jc, e

n=0

where G(z)and H(z) both belong to the space H;.
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The F(z),G(z) and H(z) belong to the N.Wiener class S’ and we have

1% ] 2
lim— j | 2(x,y;H(z))F dx

2
=Z(I+Sign/1n)26—zf‘n}'{a(ﬂ’n +01 wg(ﬂh —0’ ‘p)_]cn |2}

nxl

In particular if the o(u, @) is continuous everywhere as foru > 0, then we have
1 T
lim — x,y;Hfz)Pdx=0 vYy>0).
MZT_ITIZ( yiH(z)| (V y>0)

and we have
F(x+iy)=G(x+iy) ae.x (Vy>0).
Proof Since F(z} and G(z) are both belong to the class S', and therefore H(z)
does too. Then applying the N.Wiener Theorem/ 1 ](c.f. Theorem 20,p.138), we have
x(x,y;H(z))=0 (Vx, Vy>0)

and in particular
1% 2
lim— | |H(x+iy)['dx=0 (Vy>0).
riwzry (x+iy)] (Vy>0)

Then applying the N.Wiener Theorem(c.f. [ 1] Theorem 20,p.138) to H( x +iy ) again,
we have
H(x+iy)=0 (Vx, Yy>0)
and therefore we have
Fix+iy)=G(x+iy) (¥Vx, Vy>0).
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