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Abstract

Bell’s inequality itself is usually considered to belong to mathematics and not quantum mechanics. We think
that this is making our understanding of Bell’ theory be confused. Thus in this paper, contrary to Bell’s
spirit (which inherits Einstein’s spirit), we try to discuss Bell’s inequality in the framework of quantum
theory with the linguistic Copenhagen interpretation. And we clarify that the violation of Bell’s inequality
(i.e., whether or not Bell’s inequality holds ) does not depend on whether classical systems or quantum
systems, but depend on whether a kind of simultaneous measurements exist or not. And further we conclude
that our argument ( based on the linguistic Copenhagen interpretation) should be regarded as a scientific
representation of Bell’s philosophical argument (based on Einstein’s spirit).

Key phrases: Bohr-Einstein debates, Bell’s inequality, Combined observable, Linguistic Copenhagen inter-
pretation, Quantum Language

1 Review: Quantum language (= Measurement theory (=MT) )

1.1 Introduction

Recently (cf. refs. [6, 7, 8, 9, 10, 11, 12, 13, 14] ), we proposed “quantum language”, which was not only
characterized as the metaphysical and linguistic turn of quantum mechanics but also the linguistic turn
of Descartes=Kant epistemology. And further we believe that quantum language is the only scientifically
successful theory in dualistic idealism. That is, we think that the location of quantum language in the history
of world-description is as follows.

Parmenides
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Schola-−−−−−→
sticism

1©

−−→
(monism)
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→
quantum
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−−→
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language−−−−−−→
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7©


5©−−→
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everything
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Figure 1: The history of the world-description

statistics
system theory

language−−−−−−−−−−→
(A3)

9©

the linguistic world view ( dualism, idealism )

the realistic world view (monism, realism)

And in Figure 1, we think that the following four are equivalent (refs. [6, 13]):
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(A0) to propose quantum language (cf. 10© in Figure 1, ref.[13])

(A1) to clarify the Copenhagen interpretation of quantum mechanics (cf. 7© in Figure 1, refs.[7, 12])

(A2) to clarify the final goal of the dualistic idealism (cf. 8© in Figure 1, refs.[8, 14])

(A3) to reconstruct statistics in the dualistic idealism (cf. 9© in Figure 1, refs.[9, 10, 11])

In Bohr-Einstein debates (refs. [2, 5]), Einstein’s standing-point is on the side of the realistic view in
Figure 1. On the other hand, we think that Bohr’s standing point is on the side of the linguistic view in Fig-
ure 1 ( though N. Bohr might believe that the Copenhagen interpretation (proposed by his school) belongs
to physics). In this paper, contrary to Bell’s spirit (which inherits Einstein’s spirit), we try to discuss Bell’s
inequality (refs. [1, 17]) in quantum language (i.e., quantum theory with the linguistic Copenhagen inter-
pretation). And we clarify that whether or not Bell’s inequality holds does not depend on whether classical
systems or quantum systems (in Section 3), but depend on whether a kind of simultaneous measurements
exist or not (in Section 2). And further we assert that our argument ( based on the linguistic Copenhagen
interpretation) should be regarded as a scientific representation of Bell’s philosophical argument (based on
Einstein’s spirit).

1.2 Quantum language (=measurement theory); Mathematical preparations

Although quantum language has two formulations (i.e., C∗-algebraic formulation and C∗-algebraic for-
mulation), in this paper we devote ourselves to the C∗-algebraic formulation (cf. Remark 1 later).

As a mathematical generalization of quantum mechanics, quantum language is constructed in a certain
C∗-algebra A (i.e., a norm closed subalgebra in B(H) (i.e., an operator algebra composed of all bounded
linear operators on a Hilbert space H with the norm ‖F‖B(H) = sup‖u‖H=1 ‖Fu‖H ), cf. [16] ) as follows:

(B)

(=measurement theory)

Quantum language

(language)

= Measurement
(Axiom 1)

+ Causality
(Axiom 2)

+
�� ��Linguistic ( Copenhagen ) interpretation

(how to use Axioms 1 and 2)

Note that this theory (B) is not physics but a kind of language based on “the mechanical world view”.
When A = Bc(H), the C∗-algebra composed of all compact operators on a Hilbert space H, the (B) is

called quantum measurement theory (or, quantum system theory), which can be regarded as the linguistic
turn of quantum mechanics. Also, when A is commutative (that is, when A is characterized by C0(Ω), the
C∗-algebra composed of all continuous complex-valued functions vanishing at infinity on a locally compact
Hausdorff space Ω (cf. [16])), the (B) is called classical measurement theory. Thus, we have the following
classification:

(C) measurement theory
(= quantum language)

=


quantum measurement theory

(when A = Bc(H))

classical measurement theory
(when A = C0(Ω))

That is, this theory covers several conventional system theories (i.e., statistics, dynamical system theory,
quantum system theory).

Now we shall explain the measurement theory (B). Let A(⊆ B(H)) be a C∗-algebra, and let A∗ be the
dual Banach space of A. That is, A∗ = {ρ | ρ is a continuous linear functional on A }, and the norm ‖ρ‖A∗

is defined by sup{|ρ(F )| | F ∈ A such that ‖F‖A(= ‖F‖B(H)) ≤ 1}. Define the mixed state ρ (∈ A∗) such
that ‖ρ‖A∗ = 1 and ρ(F ) ≥ 0 for all F ∈ A such that F ≥ 0. And define the mixed state space Sm(A∗)
such that

Sm(A∗)={ρ ∈ A∗ | ρ is a mixed state}.

A mixed state ρ(∈ Sm(A∗)) is called a pure state if it satisfies that “ρ = θρ1 + (1 − θ)ρ2 for some ρ1, ρ2 ∈
Sm(A∗) and 0 < θ < 1” implies “ρ = ρ1 = ρ2”. Put

Sp(A∗)={ρ ∈ Sm(A∗) | ρ is a pure state}, (1)
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which is called a state space. It is well known (cf. [16]) that Sp(Bc(H)
∗
) = {|u〉〈u| (i.e., the Dirac notation)

| ‖u‖H = 1}, and Sp(C0(Ω)
∗
) = {δω0 | δω0 is a point measure at ω0 ∈ Ω}, where

∫
Ω
f(ω)δω0(dω) =

f(ω0) (∀f ∈ C0(Ω)). The latter implies that Sp(C0(Ω)
∗
) can be also identified with Ω such as Sp(C0(Ω)

∗
)

3 δω0 ↔ ω0 ∈ Ω.

Define the C∗-algebra Â by the smallest C∗-algebra such that A ∪ {I} ⊆ Â ⊆ B(H), where I is the

identity in B(H). Note that A = Â holds if I ∈ A.
According to the noted idea (cf. [4]) in quantum mechanics, an observable O :=(X,F , F ) in A (or

precisely, Â ) is defined as follows:

(i) [Field] X is a set, F(⊆ P(X), the power set of X) is a field of X, that is, “Ξ1,Ξ2 ∈ F ⇒ Ξ1∪Ξ2 ∈ F”,
“Ξ ∈ F ⇒ X \ Ξ ∈ F”.

(ii) [Finite additivity] F is a mapping from F to Â satisfying: (a): for every Ξ ∈ F , F (Ξ) is a non-negative
element in A such that 0 ≤ F (Ξ) ≤ I, (b): F (∅) = 0 and F (X) = I, where 0 and I is the 0-element

and the identity in Â respectively. (c): for any finite decomposition {Ξ1,Ξ2, . . . ,Ξn, ...,ΞN} of Ξ
(
i.e.,

Ξ,Ξn ∈ F (n = 1, 2, 3, . . . , N), ∪N
n=1Ξn = Ξ, Ξi ∩ Ξj = ∅ (i 6= j)

)
, it holds that F (Ξ) =

∑N
n=1 F (Ξn).

Remark 1 Quantum language has two formulations (i.e., the C∗-algebraic formulation and theW ∗-algebraic
formulation). In the W ∗-algebraic formulation, the W ∗-algebra A such that A ⊆ A ⊆ B(H) plays an
important role. From the mathematical point of view, the W ∗-algebraic formulation may be superiority to
the C∗-algebraic formulation. That is, in the above (ii), the countable additivity (i.e., F (Ξ) = limN→∞∑N

n=1 F (Ξn) ) is naturally discussed in the W ∗-algebraic formulation. However, in this preprint, we devote
ourselves to the C∗-algebraic formulation, which is handy. For the W ∗-algebraic version of this preprint (i.e.
Bell’s inequality), see ref. [15], in which the mathematical exactness is sufficiently satisfied.

1.3 Axiom 1(Measurement), Axiom 2(Causality)

With any system S, a C∗-algebra A(⊆ B(H)) can be associated in which the measurement theory (B)
of that system can be formulated. A state of the system S is represented by an element ρ(∈ Sp(A∗)) and

an observable is represented by an observable O :=(X,F , F ) in Â. Also, the measurement of the observable
O for the system S with the state ρ is denoted by MA(O, S[ρ])

(
or more precisely, MA(O :=(X,F , F ), S[ρ]))

. An observer can obtain a measured value x (∈ X) by the measurement MA(O, S[ρ]).
The Axiom 1 presented below is a kind of mathematical generalization of Born’s probabilistic interpre-

tation of quantum mechanics (A). And thus, it is a statement without reality.
Axiom 1 [Measurement] The probability that a measured value x (∈ X) obtained by the measurement
MA(O :=(X,F , F ), S[ρ0]) belongs to a set Ξ(∈ F) is given by ρ0(F (Ξ)).

Next, we explain Axiom 2 in (B). Let A1(⊆ B(H1)) and A2(⊆ B(H2)) be C∗-algebras. A continuous

linear operator Φ1,2 : A2 → A1 ( and, : Â2 → Â1 ) is called a Markov operator, if it satisfies that (i):

Φ1,2(F2) ≥ 0 for any non-negative element F2 in A2, (ii): Φ1,2(I2) = I1, where Ik is the identity in Âk,

(k = 1, 2). Here note that, for any observable O2 :=(X,F , F2) in Â2, the (X,F , Φ1,2F2) is an observable in

Â1, which is denoted by Φ1,2O2. Also, the dual operator Φ
∗
1,2 : A∗

1 → A∗
2 clearly satisfies that Φ∗

1,2(S
p(A∗

1)) ⊆
Sm(A∗

2).
Now Axiom 2 in the measurement theory (B) is presented as follows:

Axiom 2 [Causality] Let t1 ≤ t2. The causality is represented by a Markov relation Φt1,t2 : At2 → At1 .

1.4 The linguistic interpretation (= the manual to use Axioms 1 and 2)

In the above, Axioms 1 and 2 are kinds of spells, (i.e., incantation, magic words, metaphysical statements),
and thus, it is nonsense to verify them experimentally. Therefore, what we should do is not “to understand”
but “to use”. After learning Axioms 1 and 2 by rote, we have to improve how to use them through trial
and error.

We can do well even if we do not know the linguistic interpretation. However, it is better to know the
linguistic interpretation (= the manual to use Axioms 1 and 2), if we would like to make progress quantum
language early.

The essence of the manual is as follows:
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(D) Only one measurement is permitted. And thus, the state after a measurement is meaningless
since it can not be measured any longer. Thus, the collapse of the wavefunction is prohibited (cf.
[12]). We are not concerned with anything after measurement. That is, any statement including the
phrase “after the measurement” is wrong. Also, the causality should be assumed only in the side of
system, however, a state never moves. Thus, the Heisenberg picture should be adopted, and thus, the
Schrödinger picture should be prohibited.

and so on. For details, see [13].

1.5 Simultaneous measurement, parallel measurement

Definition 1. [ Simultaneous observable, Simultaneous measurement] Let A(⊆ B(H)) be a C∗-algebra.

Consider observables Ok = (Xk,Fk, Fk) (k = 1, 2, ...,K) in Â. Let (×K
k=1Xk, �K

k=1Fk) be the product

measurable space, i.e., the product space ×K
k=1Xk and the product field �K

k=1Fk, which is defined by the

smallest field that contains a family {×K
k=1Ξk | Ξk ∈ Fk, k = 1, 2, ...,K}. An observable O = ×K

k=1 Ok =

(×K
k=1Xk, �K

k=1Fk, F ) in Â is called the simultaneous observable of Ok (k = 1, 2, ...,K), if it holds that

K

×
k=1

Fk(Ξk) = F (
K

×
k=1

Ξk) (∀Ξk ∈ Fk) (2)

Also, the measurement MA(O, S[ρ0]) is called a simultaneous measurement of measurements MA(Ok, S[ρ0])

(k = 1, 2, ...,K). Note that a simultaneous observable O = (×K
k=1Xk, �K

k=1Fk, F ) in Â always exists if
observables Ok (k = 1, 2, ...,K) commute, i.e.,

Fk(Ξk)Fl(Ξl) = Fl(Ξl)Fk(Ξk) (∀Ξk ∈ Fl, ∀Ξl ∈ Fk, k 6= l) (3)

Definition 2. [ Parallel observable, Parallel measurement] For each k = 1, 2, ...,K, consider a measurement

MAk
(Ok :=(Xk,Fk, Fk), S[ρk]). We consider the spatial tensor C∗-algebra ⊗K

k=1Âk(⊆ B(⊗K
k=1Hk)), and

consider the product measurable space (×K
k=1Xk,�K

k=1Fk). Consider the observable ⊗K
k=1Ok = (×K

k=1Xk,

�K
k=1Fk, F̃ ) in

⊗K

k=1
Âk such that

F̃ (×K
k=1Ξk) = ⊗K

k=1Fk(Ξk) (∀Ξk ∈ Fk, k = 1, 2, ...,K).

which is called the parallel observable of Ok :=(Xk,Fk, Fk) (k = 1, 2, ...,K). And let
⊗K

k=1 ρk ∈ Sp((
⊗K

k=1 Ak)
∗)).

Then the measurement M⊗K
k=1 Ak

(
⊗K

k=1 Ok = (×K
k=1Xk, �K

k=1Fk,
⊗K

k=1 Fk), S[
⊗K

k=1 ρk]
) (which is also de-

noted by ⊗K
k=1 MAk

(Ok, S[ρk])) is called a parallel measurement of MAk
(Ok = (Xk,Fk, Fk), S[ρk]) (k =

1, 2, ...,K). Note that the parallel measurement always exists uniquely.

2 Bell’s inequality always holds in classical and quantum systems

2.1 Our assertion about Bell’s inequality

In this paper, I assert that Bell’s inequality should be studied in the framework of quantum theory ( i.e.,

quantum theory with the linguistic Copenhagen interpretation). Let us start from the following definition,

which is a slight modification of the simultaneous observable in Definition 1.

Definition 3. [Combined observable] Let A(⊆ B(H)) be a C∗-algebra. Put X = {−1, 1}. Consider

four observables: O13 = (X2,P(X2), F13), O14 = (X2,P(X2), F14), O23 = (X2,P(X2), F23), O24 =

(X2,P(X2), F24) in Â. The four observables are said to be combinable if there exists an observable O =

(X4,P(X4), F ) in Â such that

F13({(x1, x3)}) = F ({x1} ×X × {x3} ×X), F14({(x1, x4)}) = F ({x1} ×X ×X × {x4})

F23({(x2, x3)}) = F (X × {x2} × {x3} ×X), F24({(x2, x4)}) = F (X × {x2} ×X × {x4}) (4)
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for any (x1, x2, x3, x4) ∈ X4. The observable O is said to be a combined observable of Oij (i = 1, 2, j = 3, 4).

Note that the O is regarded as a kind of simultaneous observable of Oij (i = 1, 2, j = 3, 4). Also, the measure-

ment MA(O = (X4,P(X4), F ), S[ρ0]) is called the conbined measurement of MA(O13, S[ρ0]), MA(O14, S[ρ0]),

MA(O23, S[ρ0]) and MA(O24, S[ρ0]).

The following theorem is all of our insistence concerning Bell’s inequality. We assert that this is the true

Bell’s inequality.

Theorem 4. [Bell’s inequality in quantum language] Let A be a C∗-algebra. Put X = {−1, 1}. Fix

the pure state ρ0
(
∈ Sp(A∗)

)
. And consider the four measurements MA(O13 = (X2,P(X2), F13), S[ρ0]),

MA(O14 = (X2,P(X2), F14), S[ρ0]), MA(O23 = (X2,P(X2), F23), S[ρ0]) and MA(O24 = (X2,P(X2), F24),

S[ρ0]). Or equivalently, consider the parallel measurement ⊗i=1,2,j=3,4MA(Oij = (X2,P(X2), Fij), S[ρ0]).

Define four correlation functions (i = 1, 2, j = 3, 4),

Rij =
∑

(u,v)∈X×X

u · v ρ0(Fij({(u, v)}))

Assume that four observables O13 = (X2,P(X2), F13), O14 = (X2,P(X2), F14), O23 = (X2,P(X2), F23) and

O24 = (X2,P(X2), F24) are combinable, that is, we have the combined observable O = (X4,P(X4), F ) in A
such that it satisfies (4). Then we have a kind of of simultaneous measurement MA(O = (X4,P(X4), F ), S[ρ0])

of MA(O13, S[ρ0]), MA(O14, S[ρ0]), MA(O23, S[ρ0]) and MA(O24, S[ρ0]). And further, we have Bell’s inequality

in quantum language as follows.

|R13 −R14|+ |R23 +R24| 5 2 (5)

Proof. Clearly we see, i = 1, 2, j = 3, 4,

Rij =
∑

(x1,x2,x3,x4)∈X×X×X×X

xi · xj ρ0(F ({(x1, x2, x3, x4)})) (6)

(
for example, R13 =

∑
(x1,x2,x3,x4)∈X×X×X×X x1 · x3 ρ0(F ({(x1, x2, x3, x4)}))

)
. Therefore, we see that

|R13 −R14|+ |R23 +R24|

=
∑

(x1,x2,x3,x4)∈X×X×X×X

[
|x1 · x3 − x1 · x4|+ |x2 · x3 + x2 · x4|

]
ρ0(F ({(x1, x2, x3, x4)}))

=
∑

(x1,x2,x3,x4)∈X×X×X×X

[
|x3 − x4|+ |x3 + x4|

]
ρ0(F ({(x1, x2, x3, x4)})) ≤ 2

This completes the proof.

As the corollary of this theorem, we have the followings:

Corollary 5. Consider the parallel measurement ⊗i=1,2,j=3,4MA(Oij = (X2,P(X2), Fij), S[ρ0]) as in Theo-

rem 4. Let

x =
(
(x113, x

2
13), (x

1
14, x

2
14), (x

1
23, x

2
23), (x

1
24, x

2
24)

)
∈ ×

i,j=1,2
X2(≡ {−1, 1}8)
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be a measured value of the parallel measurement ⊗i=1,2,j=3,4MA(Oij = (X2,P(X2), Fij), S[ρ0]). Let N

be sufficiently large natural number. Consider N -parallel measurement
⊗N

n=1 [ ⊗i=1,2,j=2,3 MA(Oij :=
(X2,P(X2), Fij), S[ρ0]) ]. Let {xn}Nn=1 be the measured value. That is,

{xn}Nn=1 =



(
(x1,1

13 , x2,1
13 ), (x1,1

14 , x2,1
14 ), (x1,1

23 , x2,1
23 ), (x1,1

24 , x2,1
24 )

)
(
(x1,2

13 , x2,2
13 ), (x1,2

14 , x2,2
14 ), (x1,2

23 , x2,2
23 ), (x1,2

24 , x2,2
24 )

)
...

...
...(

(x1,N
13 , x2,N

13 ), (x1,N
14 , x2,N

14 ), (x1,N
23 , x2,N

23 ), (x1,N
24 , x2,N

24 )
)


∈ (X8)N

Here, note that the law of large numbers says:

Rij ≈
1

N

N∑
n=1

x1,nij x
2,n
ij (i = 1, 2, j = 3, 4)

Then, it holds, by the formula (5), that

|
N∑

n=1

x1,n13 x
2,n
13

N
−

N∑
n=1

x1,n14 x
2,n
14

N
|+ |

N∑
n=1

x1,n23 x
2,n
23

N
+

N∑
n=1

x1,n24 x
2,n
24

N
| ≤ 2, (7)

which is also called Bell’s inequality in quantum language.

Remark 2 [The conventional Bell’s inequality (cf. [17])] The mathematical Bell’s inequality is as follows: Let

(Θ,B, P ) be a probability space. Let (f1, f2, f3, f4) : Θ → X4(≡ {−1, 1}4) be a measurable functions. Define

the correlation functions R̂ij(i = 1, 2, j = 3, 4) by
∫
Θ
fi(θ)fj(θ)P (dθ). Then, the following mathematical

Bell’s inequality holds:

|R̃13 − R̃14|+ |R̃23 − R̃24| ≤ 2 (8)

(E) This is easily proved as follows.

“the left-hand side of the above (8)” ≤
∫
Θ

|f3(θ) + f4(θ)|P (dθ) +
∫
Θ

|f3(θ)− f4(θ)|P (dθ) ≤ 2

This completes the proof.

Recall Theorem 4 (Bell’s inequality in quantum language ), in which we have, by the combinable condition,

the probability space (X4,P(X4), ρ0(F (·))). Therefore the proof of Theorem 4 and the above proof (the

conventional Bell’s inequality) are, from the mathematical point of view, the same.

3 “Bell’s inequality” is violated in classical systems as well as
quantum systems

In the previous section, we show that

(F1) Under the combinable condition (cf. Definition 3), Bell’s inequality (5) (or, (7)) holds in both classical

systems and quantum systems.

Or, equivalently,
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(F2) If Bell’s inequality (5) (or (7)) is violated, then the combined observable does not exist, and thus, we

cannot obtain the measured value ( by the measurement of the combined observable).

This makes us expect that

(G) Bell’s inequality (5) (or (7)) is violated in classical systems as well as quantum systems without the

combinable condition.

This (G) was already shown in my previous paper [7]. However, I got a lot of questions concerning (G) from

the readers. Thus, in this section, we again explain the (G) precisely.

3.1 Bell’s thought experiment

In order to show the (G), three steps ([Step:I] ∼[Step:III]) are prepared in what follows.

[Step: I]. Put X = {−1, 1}. Define complex numbers ak(= αk + βk
√
−1 ∈ C : the complex field)

(k = 1, 2, 3, 4) such that |ak| = 1. Define the probability space (X2,P(X2), νaiaj ) such that (i = 1, 2, j = 3, 4)

νaiaj
({(1, 1)})= νaiaj

({(−1,−1)})= (1− αiαj − βiβj)/4

νaiaj ({(−1, 1)})= νaiaj ({(1,−1)})= (1 + αiαj + βiβj)/4 (9)

The correlation R(ai, aj) (i = 1, 2, j = 3, 4) is defined as follows:

R(ai, aj) ≡
∑

(x1,x2)∈X×X

x1 · x2νaiaj ({(x1, x2)}) = −αiαj − βiβj (10)

Now we have the following problem:

(H) Find a measurement MA(Oaiaj := (X2, P(X2), Faiaj ), S[ρ0]) (i = 1, 2, j = 3, 4) in a C∗-algebra A such

that

ρ0(Faiaj (Ξ)) = νaiaj (Ξ) (∀Ξ ∈ P(X2)) (11)

and

Fa1a3({x1} ×X) = Fa1a4({x1} ×X) Fa1a3(X × {x3}) = Fa2a3(X × {x3})

Fa2a3({x2} ×X) = Fa2a4({x2} ×X) Fa1a4(X × {x4}) = Fa2a4(X × {x4})

(∀xk ∈ X(≡ {−1, 1}), k = 1, 2, 3, 4)

[Step: II].
Let us answer this problem (H) in the two cases (i.e., classical case and quantum case), that is,

•

 (i):the case of quantum systems: [A = B(C2 ⊗ C2)]

(ii):the case of classical systems: [A = C0(Ω× Ω)]

(i):the case of quantum system: [A = B(C2)⊗B(C2) = B(C2 ⊗ C2)]

Put

e1 =

[
1
0

]
, e2 =

[
0
1

]
(∈ C2).
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For each ak (k = 1, 2, 3, 4), define the observable Oak
≡

(
X,P(X), Gak

)
in B(C2) such that

Gak
({1}) = 1

2

[
1 āk
ak 1

]
, Gak

({−1}) = 1

2

[
1 −āk

−ak 1

]
.

where āk = αk − βk
√
−1. Then, we have four observable:

Ôai = (X,P(X), Gai ⊗ I), Ôaj = (X,P(X), I ⊗Gaj ) (i = 1, 2, j = 3, 4) (12)

and further,

Oaiaj = (X2,P(X2), Faiaj := Gai ⊗Gaj ) (i = 1, 2, j = 3, 4) (13)

in B(C2 ⊗ C2), where it should be noted that Faiaj is separated by Gai and Gaj .

Further define the singlet state ρ0 = |ψs〉〈ψs|
(
∈ Sp(B(C2 ⊗ C2)∗)

)
, where

ψs = (e1 ⊗ e2 − e2 ⊗ e1)/
√
2

Thus we have the measurement MB(C2⊗C2)(Oaiaj , S[ρ0]) in B(C2 ⊗ C2) (i = 1, 2, j = 3, 4). The followings

are clear: for each (x1, x2) ∈ X2(≡ {−1, 1}2),

ρ0(Faiaj ({(x1, x2)})) = 〈ψs, (Gai({x1})⊗Gaj ({x2}))ψs〉 = νaiaj ({(x1, x2)}) (i = 1, 2, j = 3, 4) (14)

For example, we easily see:

ρ0(Faibj ({(1, 1)})) = 〈ψs, (Gai({1})⊗Gaj ({1}))ψs〉

=
1

8
〈(e1 ⊗ e2 − e2 ⊗ e1), (

[
1 āi
ai 1

]
⊗

[
1 āj
aj 1

]
)(e1 ⊗ e2 − e2 ⊗ e1)〉

= 1
8
〈(
[
1
0

]
⊗

[
0
1

]
−

[
0
1

]
⊗

[
1
0

]
), (

[
1 āi

ai 1

]
⊗

[
1 āj

aj 1

]
)(

[
1
0

]
⊗

[
0
1

]
−

[
0
1

]
⊗

[
1
0

]
)〉

=
1

8
〈(
[
1
0

]
⊗
[
0
1

]
−

[
0
1

]
⊗
[
1
0

]
), (

[
1
ai

]
⊗
[
āj
1

]
−
[
āi
1

]
⊗
[
1
aj

]
)〉

=
1

8
(2− aāj − āiaj) = (1− αiαj − βiβj)/4 = νaiaj ({(1, 1)}).

Therefore, the measurement MB(C2⊗C2)(Oaiaj , S[ρ0]) satisfies the condition (H).

(ii):the case of classical systems: [A = C0(Ω)⊗ C0(Ω) = C0(Ω× Ω)]

Put ω0(= (ω′
0, ω

′′
0 )) ∈ Ω × Ω、ρ0 = δω0 (∈ Sp(C0(Ω× Ω)

∗
), i.e., the point measure at ω0) ). Define the

observable Oaiaj := (X2,P(X2), Faiaj ) in Ĉ0(Ω× Ω) such that

[Faiaj ({(x1, x2)})](ω) = νaiaj ({(x1, x2)}) (∀(x1, x2) ∈ X2, i = 1, 2, j = 3, 4, ∀ω ∈ Ω× Ω)

Thus, we have four observables

Oaiaj = (X2,P(X2), Faiaj ) (i = 1, 2, j = 3, 4) (15)

in Ĉ0(Ω × Ω) ( though the variables are not separable (cf. the formula (13) ). Then, it is clear that the

measurement MC0(Ω×Ω)(Oaiaj , S[δω0
]) satisfies the condition (H).

(ii)′:the case of classical systems: [A = C0(Ω)⊗ C0(Ω) = C0(Ω× Ω)]
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It is easy to show a lot of different answers from the above (ii). For example, as a slight generalization of

(9), define the probability measure νtaiaj
(0 ≤ t ≤ t) such that

νtaiaj
({(1, 1)})= νtaiaj

({(−1,−1)})= (1− t(αiαj + βiβj))/4

νtaiaj
({(−1, 1)})= νtaiaj

({(1,−1)})= (1 + t(αiαj + βiβj))/4

And consider the real-valued continuous function t(∈ C0(Ω×Ω)) such that 0 ≤ t(ω′, ω′′) ≤ 1 (∀ω = (ω′, ω′′) ∈
Ω × Ω). And assume that t(ω0) = 1 for some ω0(= (ω′

0, ω
′′
0 )) ∈ Ω × Ω、ρ0 = δω0 (∈ Sp(C0(Ω× Ω)

∗
), i.e.,

the point measure at ω0) ). Define the observable Oaiaj := (X2,P(X2), Faiaj ) in Ĉ0(Ω× Ω) such that

[Faiaj
({(x1, x2)})](ω) = νt(ω)

aiaj
({(x1, x2)}) (∀(x1, x2) ∈ X2, i = 1, 2, j = 3, 4, ∀ω ∈ Ω× Ω)

Thus, we have four observables

Oaiaj = (X2,P(X2), Faiaj ) (i = 1, 2, j = 3, 4) (16)

in Ĉ0(Ω × Ω) ( though the variables are not separable (cf. the formula (13) ). Then, it is clear that the

measurement MC0(Ω×Ω)(Oaiaj , S[δω0 ]
) satisfies the condition (H).

[Step: III].

As defined by (9), consider four complex numbers ak(= αk + βk
√
−1; k = 1, 2, 3, 4) such that |ak| = 1.

Thus we have four observables

Oa1a3 := (X2,P(X2), Fa1a3), Oa1a4 := (X2,P(X2), Fa1a4),

Oa2a3 := (X2,P(X2), Fa2a3), Oa2a4 := (X2,P(X2), Fa2a4),

in Â. Thus, we have the parallel measurement ⊗i=1,2,j=3,4 MA(Oaiaj := (X2,P(X2), Faiaj ), S[ρ0]) in

⊗i=1,2,j=3,4A.

Thus, putting

a1 =
√
−1, a2 = 1, a3 =

1 +
√
−1√
2

, a4 =
1−

√
−1√
2

,

we see, by (10), that

|R(a1, a3)−R(a1, a4)| + |R(a2, a3) +R(a2, a4)| = 2
√
2 (17)

Further, assume that the measured value is x(∈ X8). That is,

x =
(
(x113, x

2
13), (x

1
14, x

2
14), (x

1
23, x

2
23), (x

1
24, x

2
24)

)
∈ ×

i,j=1,2
X2(≡ {−1, 1}8)

LetN be sufficiently large natural number. ConsiderN -parallel measurement
⊗N

n=1 [⊗i=1,2,j=3,4 MA(Oaiaj :=

(X2,P(X2), Faiaj ), S[ρ0]) ]. Assume that its measured value is {xn}Nn=1. That is,

{xn}Nn=1 =



(
(x1,1

13 , x2,1
13 ), (x1,1

14 , x2,1
14 ), (x1,1

23 , x2,1
23 ), (x1,1

24 , x2,1
24 )

)
(
(x1,2

13 , x2,2
13 ), (x1,2

14 , x2,2
14 ), (x1,2

23 , x2,2
23 ), (x1,2

24 , x2,2
24 )

)
...

...
...(

(x1,N
13 , x2,N

13 ), (x1,N
14 , x2,N

14 ), (x1,N
23 , x2,N

23 ), (x1,N
24 , x2,N

24 )
)


∈
( ×
i=1,2,j=3,4

X2)N (≡ {−1, 1}8N )
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Then, the law of large numbers says that

R(ai, aj) ≈
1

N

N∑
n=1

x1,nij x
2,n
ij (i = 1, 2, j = 3, 4)

This and the formula (17) say that

|
N∑

n=1

x1,n13 x
2,n
13

N
−

N∑
n=1

x1,n14 x
2,n
14

N
|+ |

N∑
n=1

x1,n23 x
2,n
23

N
+

N∑
n=1

x1,n24 x
2,n
24

N
| ≈ 2

√
2 (18)

Therefore, Bell’s inequality (5) (or (7)) is violated in classical systems as well as quantum systems.

4 Conclusion

In this paper, contrary to Bell’s spirit (which inherits Einstein’s spirit), we try to discuss Bell’s inequality

in the framework of quantum theory with the linguistic Copenhagen interpretation of quantum mechanics.

And we show Theorem 4 ( Bell’s inequality in quantum language), which says the statement (F2), that is,

(I1) (≡ (F2)): If Bell’s inequality (5) (or (7)) is violated, then the combined observable does not exist, and

thus, we cannot obtain the measured value (by the measurement of the combined observable).

Also, recall that Bell’s original argument (based on Einstein’s spirit) says, roughly speaking, that

(I2) If the mathematical Bell’s inequality (8) is violated in Bell’s thought experiment (the quantum case of

Section 3.1), then hidden variables do not exist.

It should be note that the (I2) is a philosophical statement in Einstein’s spirit, on the other hand, the (I1)

is a statement in scientific theory (i.e., quantum theory with the linguistic Copenhagen interpretation). It is

sure that Bell’s answer (I2) is attractive philosophically, however, we believe in the scientific superiority of

our answer (I1). That is, we conclude that our (I1) is a scientific representation of the philosophical (I2). If

so, we can, for the first time, understand Bell’s inequality in science. That is, Theorem 4 is the true Bell’s

inequality.

We hope that our proposal will be examined from various points of view1.
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