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ON THE THEORY OF GENERALIZED HILBERT TRANSRORM VI
THE SPECTRE ANALYSIS AND SYNTHESIS ON THE N.WIENER CLASS S (2

by

Sumiyuki Koizumi

Department of Mathematics,
Faculty of Science and Technology, Keio University,
3-14-1, Hiyoshi, Kohoku-Ku, Yokohama, 223, JAPAN

ABSTRACT
We shall continue the problem of spectrum of function of the N.Wiener class S after the
preceding section 14 in this research report V and we shall prove that in the Theorem E,

we need not always the hypothesis (D, ) and present it as the Theorem £ . We shall

also treat the same problems as for Generalized Hilbert Transforms.

15 The Spectral Analysis and Synthesis on the N.Wiener class S .
We shall explain these circumstances for the sake of completeness as follows
15.1 Let us suppose that for function f of the classS,, there exist the following

Hmit
T
(C,) ;:;;Zi%_j;]’(J\c)e"""‘ctbczc,1 (Vreal 1).

Then we have by the one-sided Wiener formula

Ats
1

T
gﬁalfif(x)e.iudx =£{im02.\[2‘;£g I{s(u+g,f)~s(u»g,f)}du (Vreal 1),

A-¢

We shall begine to define the class S, after Prof. N.Wiener[ 11].
Definition of the class S, . In case f is measurable over (—o, )and integrable of its

square modulus locally and exist the following limit
1 T
lim — x)[dx,
Mﬂbﬂﬂ
we shall say that / belongs to the classS, .
Let us introduce the generalized Fourier transforms (G.F.T.) after Prof. N.Wiener

133



KSTS/RR-17/005 June 8, 2017
(Second edition, September 1, 2017)

s(u,f)=\/,;._jf(x)m—-dx+lzmm\ém{f+j ]f(x)»—-———-—dx

Then we have
2sinx

s(u-}-s,f)ws(u——e,f)zi;f,m j’f( YESIX s g
and
Tg{s(u+s,f)—s(u-g,f)}du,_Ar(l,m___“‘f( )2smx "'“dx}d ‘

Let us define the following formulas

FA(u)=J;-ff( %)

2sinx 2SInX

and

2sinx

F(u)= l;t’.m j F(x) =" gy

respectively, then we have by the Plancherel theorem
HFA(H)*F(u)Hsz)O (A-—>x). (Yreald)
Since the strong convergence implies the weak convergence, we have
TFA(u)z&e(u)du - ? Flu)y, (u)du (A—>o), (VYreall)

where the x,,(u) denotes the characteristic function of interval (1-¢£,4A+¢) and

this formula is written as follows

At+E Ate
[ Fiwjdu— [ Fluydu  (4—w), (Vreald).
A-g A-g

Let us remark that this formula is also proved by the Schwartz inequality directly.

Now we have by the theorem of Fubini

\[;_AIII/"( )2sm8x """‘dx}iu*-———ff( )2szn8x[I

Y A-g

"""du]dx

Eﬁl

A4 . 2 0
j f(x) ~g,b,()(m;usx) dy J» fix )ﬁw,)sm EX o
-4 —w x

w), (Vreald).
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Therefore we have

dx.

sin® ex
2

s-—>0

lzm———l——— j {s(u+¢&,f)-s(u- gf)}du-—\/é..iifg—;i_—f(f(x)e”’“)

The one-sided Wiener formula: Let us suppose that f(x) is measurable and

T
integrable locally and »}M j \f(x)}dx isbounded as for T — . Then we have

lzmmff(x)e”’”dx hm—-—-j‘(f( Je ) sin’ gxdx
x°

T30

in the sense that if the limit of left hand side exist then the limit of right hand side also

exist and their limiting values are equal
Let us remark that if f(x) belongs to the classS,, then the presupposed conditions

of the one-sided Wiener formula are all satisfied. Then applying the one-sided Wiener
formula we have

A+E

1% s
cz——gﬁé—j’—-j;f(x)e dx = %2 \/_,{L{s(u+gf) s(u—g, f)}du

(Vreali) .
15.2 On the Lemma E .
We have
Lemma E' Let us suppose that f(x) belongs to the class S and satisfies the
hypothesis (C, ) (Vreal A). Then we have

A+e
lzmmfls(u+€,f) s(u—¢,f)Pdu= ”(’”0";’\)/;_'5(1“0"”) (Vreal 1).

Proof. Letusdefine ¢(x) as auto-correlation function of f{(x)
17 —
x)=lim— x+1)f(t)dt
o(x) = lim = j f(x+1)f(1)d

and o(u) =o(u,p) asits G.FT. Then applying just the same argument as Lemma
E(c.f. ibid.V,p.125) we have the above formula

A+
/ 2y = o(A+0,0)-0c(A-0,0)
zmmmigs(u-eg f)=s(u—¢e,f)] Nirs

15.3 On the Theorem £
We have

Theorem E” . Let us suppose that f(x) belongs to the classS and satisfies(C, )and
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(R, ). Then we have the same conclusions of the Theorem £ without the Hypothesis
(D).

Proof. We shall prove Theorem E~ step by step as follows.

Step(i) We have by the Schwartz inequality

A+

. 1 2
|, = tim— T AL{S(uw,f)-S(u—e,f)} du |

1 2 o(A+0,0)-o(u—0,p)
ﬁiﬁ-{at;l‘[&b(u+s,f)»~s(u-—-g,f)] du = N .

Therefore we shall conclude that if o(u) is continuous at #=A, then we have
c, =0.
Step(ii) Since o(u) is a bounded and monotone increasing function, there exists

the set of at most countable points A and satisfies properties as follows,
Let us denote A={4,} (n=0123..) and ¢, =c, (n=0,123..) where

A, =0 and ¢, =0 may be permitted.
Then we have
(i)If A¢ A, the we have
o(A+0,9)-0o(u-0,9)=c, =0.
(ii)If 4, e A (n=0,1,2,3,....). Then we have

e, P 2 Y O’q’f/.;.f (4 =00) (0123,
T

and

2 o(4,+0,0)-0(4,-0,0) o(0,p)-0)~0,p)
;Icnlszn: \/5; < J:?}; <00,

Then there exists the B, -almost periodic function g(x)of which Fourier series is as

follows
g(x)~ Y c,e™.
By the hypothesis (C, ),we have
1% it 17 -tz
;anﬁif(x)e dx—i{mﬁ:[rg(x)e dx (Vreal 1).

(c£. V ibid. p.129).
Step(ii) Then if we put f(x)—g(x)=h(x) say. Then we shall prove that the
function A(x) belongs to the class §. Since f(x) and g(x) both belong to the
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class S and we have

1f .17 ey
gﬁﬁlh(x+r)h(r)dt=iﬁ-i;—fr{f(x-i-t)~g(x+t)}{f(t)—~g(t)}dt

1 L — . 1 f — .17 e
=fim s | SO f = lim o | 7w gl lim o | gx 1) 00+ fim o | s+ )g(th

and we have also
1§ — 17 - 1% —
bim s | S e+ )00 = fim s | (v t)f (0 = fim = [ (et

(c.f. IV ibid. pp.105~108).

Therefore we have
1% e 1% e 1 f e
imﬁih(xi—t)h(t)dt::;Tzugf:[“f(xw)f(t)dt »—ggrezoa?:’;g(x+t)g(t)dt.

Thus we shall prove that Afx) belongs to the class S .

Step (iv) We shall consider auto-correlation functions@(x; 1), w(x;g) and y(x;h)of
f.g.h itheir GFT. o(u;@),o(u;yy) and a(u; y) of ¢,,y respectively.

Then we shall prove

o(x; f)=y(x;g)+x(x;h) and o(u;@)=c(uy)+o(u;y)

respectively.

Step (v) Since o(u,; @) iscontinuous on the se A° and discontinuous of the first kind
with jump on the set A we have
o(4,+0,9)-0(4,-0,¢0)

2z

le, <

1 M ;

=lim oc(u+ep)-o(u—g;o)idu  (n=012,-----)

0 2e 2 ,1;[5{ }

On the other hand, since o(u,y) is GFT. of w(x;g) and y(x;/g) is the
auto-correlation function of B, -almost periodic function g(x), we have

\/i.ntzm, Fo(u=zi,)

A<t

a(uy)=
@{Zzenh;—tcmﬁ} (u=4,)
A, <u

and so we have
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Ow)-o(A -0
. |2=0(/%n+ Ww)-o(4,-0y) (n=012-)

i n \[2‘7’1:

on the set A and
. 20(;1«k(},l,l/)—0'(/1--0,1,1/)zo

A \/i;

on the set A°..

Step (vi) Therefore we have proved that o(u; ) is bounded, monotone increasing
function. Because o(u; y) is GFT. of y(x;h) and y(x;/h)is the auto-correlation
function of A('x), we have by the N. Wiener Theorem[1]( Theorem 24,pp. 146~149)

T
%’m"l"jfh(x)izdx=2{a(ﬂ" +0,¢) O'(/’L,, 0,40)"’;0" |2}
=< 2T 2. - N2m
In particular, ifthe o(u,@) is continuous everywhere then it is satisfied
o(A+0,9)~c(u-0,p)=c, =0 (Vrea 1)

Therefore we have

17 2
;%E;_j}';h(x); dr=0,
Thus we have constructed the theory of spectral analysis and synthesis on the class S
without the hypothesis (D, ) completely.
15.4 In the last of this section we shall prove
Theorem F. Let us suppose that f(x)eS,. Then the necessary and sufficient
condition for the hypotheses(C, ) are satisfied for all real A, is the following conditions
f(x)+we™* €8, (o =%1, +i)

are satisfied for all real A .
Lemma F. We have the following formula

QﬁZ (A-e<u<i+e)
b
2

s(u+s,ei“)-s(u—£,ei‘*’)=J

{

(u=Atg)

0 (u<i—-gl+e<u).
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Proofof the Lemma F. Let us start to calculations of the G.ET of ¢™.We have by the

definition of G.F.T.
s(u+g,e* )—s(u—g,e*)
"1(1‘*'&’}* -1 4 ) e—l(wa)x
je”“——-——-————dx+lzm————~ [+ e &—ar
A f _—A - —ix
1 i ) e»i(u»ws)x 1 N ewi(u«g)x
-———~——-§e"“ dx —Lim—=— J+I e e lx
N27 2 —ix A \/ %1 ] —ix
1 1 e-i(u-lws)x _ e—i(a-i.—s)x -1 4 -i(u—lw;‘)x —t( W-A—& Jx
= _{ - dx +Lim. —== I + dx
\ /272- b —IX A—» / A
»i{ u=-A+e)x -i(um%s)x
dx

~ix

e
Therefore we have

S

s(u+g,e® )—s(u—g,e" )= {sign(u—A+¢)-sign(u—A-s}

sin(u—A+¢)x 1 Tsinfu—A—g)x
=PV e dx - PV. dx
N2 ‘{ x N27m _‘£ x
where we have
PV. j Sin ”" = (signn )n :

and then we have

(o7
N

(A-e<u<iA+g)

(u=Aite)

0 (u<A-g,A+e<u).

.
Proof of Theorem F,. (The necessity of condition): Let us suppose that f(x) belongs
to the class S, and satisfies the condition(C, ).

s(u+g,e* )—s(u—g,e* )=<

First of all, we shall remark the following identities

| f(x)+we™ P=\f(x)P +of(x)e™ +of(x)e ™+ o (o=%1, +i).

Then applying the condition({C, ), the existence of limit of following formula
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T
lim —— j | f(x)+we™ [ dx (o==%1, i)  (Vreal 1)
T—o QT o
is guaranteed and therefore we have
f(x)+we™ €8, (w==%1, i) (Vreal 1).
(The sufficiency of condition): First of all, we shall remark also the identities
f(x)e™ = f(x)e™
1 i i . . iAx . . 1.
=)+ ™ =1 f(x) =™ P 4] f(x)+ie™ [ =i| f(x)=ie™ P}

Then applying the condition f(x)+we ™ €S, (w==*1, =i), (Vreal 1) the

existence of following limit

lim — j f(x)e ™ adx (Vreal 1)

T—w 2

is guaranteed and the condition ( C,) is satisfied.
Theorem F, Let us suppose that f(x) belongs to the class S,. Then the necessary

and sufficient condition for existence of the following limit

Ate

ng\/__ jg{s(u+e,f)—s(u—£,f)}du (Vreal 1)

is the following condition
f(x)+we™ €8, (o =%1, +i)

is satisfied for all real 4.
Proof. The necessity of the condition is obtained by the expansion of the required
formula as follows.

lim— [[s(u+a,f +0™ )= s(u-z, f + e ) Pdu
£0 47 =

0

=lim——1—_f|{s(u+e,f)——s(u—8,f)+co(s(u+e,e‘”")~s(u—-g,e"”"‘))} P du

-0 47¢

= lim—— |s(u+e,f)-s(u—e,f)] du
0 47e =

—lmgz— {s(u+e f)-s(u—g f){s(u+e.e™)-s(u—ze™ )ldu
£—> g—oo
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—lzm———m{s(u+gf) s(u— f;f)}{s(u+ge""‘) s(u—g,e‘i"‘)}du

£-50 47[8‘

a) i _;
s_)ol " j]s(u+£.e ) —s(u—g,e™ )} du
-0

=lim——1——-m |s(u+e, f)—s(u—g,f) du +lim of rd
£-0 477 - £—>
—lim r{s(u+£ f)—s(u—eg, f)}du —lim ,T{s(u+g f)—s(u- gf)}du

—>02

The sufficiency of the condition is obtained by the expansion of the required formula

Ate

4lim [{stu+e,f)-s(u-e,f)}du

&0 28\[—

L]

=4limL {s(u+£,f)~s(u—g,f)}{s(u+g,e”””‘)-s(u—-e,e"’“)}du

-0 477, e 7,
—lzng—f|s(u+gf+e’” —s(u—¢g,f+e™ )} du

—lzm—-——jls(u+ef e )—s(u—¢, f—e )] du

£->0

+iling—l——J'{s(u+8,f+ie'u"‘)—s(u—.6',f+ie_"b‘)|2 du

—zllm————-.[ls(u+gf——1e ) —s(u—¢, f—ie™ )| du
Now we shall obtain the desired result by combining Theorems F; and F;, .
Theorem F; Let us suppose that f(x) belongs to the classS,. Then the following

formulas

Ate

lzm——jf(x) . _11352 \/_l{ {s(u+e,f)-s(u—s,f)du

are true for each A in the sense that either of the limit exists, then the other limit

exists and assume the same value.
16. The Spectral Analysis and Synthesis of the G.H.T. fl( x)
16.1 Remark (1). On the hypothesis(R, ).

Let us suppose that f(x)belongs to the class S and satisfies the condition(C, ). Then
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applying Lemma E’ ,we have for any constant a 5

AtE

lz’m-—]——- {{s(u«l—s,f)—s(u—é’,f)}—vfff;al P du

0 4ze 7
:lr‘m—i-m;{s(u+g S)=s(u—g, f)}} du- lzm‘[- T{s(u-{»s f)-stu—g, f)ldu
0 478 ; 4rme . ' ’

( Ate 2 &£
-—Iim«-gﬁ-» j { s(u+ée, f)—s(u— gf)}du-f—!zm ”1 jd
nE

A-e
and we shall notice the following formulas

A+E

c, miz_)n:z)28\/_.gg{s(w%s,f)-—s(uwg,f)}du (Vreal L)

by the hypotheses (C, ). Then we have

Ate

lim——l-— {{s(u+a,f)-—s(u-—s,f)}-—~/’2~7;al [ du

340475544
_0(A+0)-c(A-0)
B NpY3
_0(A+0)~0(A~0)
B NP

and therefore the value of this formula attains to minimum if and only if a, =¢, and

—e,d, —~C,a;+a; P

~le¢; P +]e, ~a, £

we have
e o 2 . _o(A+0)=o(A=0)
iz_%‘mgifg}{s(u'}'s,f) s(u—¢,f)} \/5-7;0,‘] du = NG le, .

and we have
e, P< o(A+0)~o(A-0)
N2
Since o(u)is bounded and monotone increasing function, there exists the set A of
countable points A=4,, (n=01,2,..) at which o(u) has jump and continuous

(Vreal ).

elsewhere. Thus we have the following results.

(i)If A& A, then we have
c(A+0)-0o(A-0)=c, =0

and
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Ate
lim— ( ls(u+,f)=s(u—&,f) du=0.
~04ne 2

(ii)If AeA thatis A=4, (n=0,1,2,....), then we have

A HE
iﬁrgfﬂ;%_gi{S(u+€,f)—S(u~€,f)}—\/2756" P =2 +°f/;_§ A=) i p

16.2 Remark (2). On the hypothesis(R, ) .

Let us introduce the generalized Hilbert transform
F(x)=PV X+i ? f(t) dt
l - . -

TS t+ix—t
On the case A =0.If |u|< £, we have by the Theorem Afc.fibid. I, p.4, p.19) as for

G.FT. of f(x)
s(u+e, f)-s(u—e,f,)

=i{s(u+e,f)-s(u—g f)} ¥2r(u+e f)+2n(ut+e f)

where it is satisfied that
.1
(R)  lim—[h(u+e,f)f du=0
50 Qg A
and we shall assume that there exist a constant a( f) such as
(&)t inre )= [Za)R du=0.
e202¢g 2
Now let us suppose that fl( x) belongs to the class Sand the condition (R,) is
satisfied. Then we have for any constant g, =ia, +a( f)
{stu+e,7,)-s(u-z,1)~2ra)
= i{s{u+£,f)--s(u—~€,f)-\/27tao}+2r1(u+8,f)+2{r2(u+8,f)— %a(f)}
and we have by the Minkowski inequality
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sim—L | {s(u+e.7 )= s(u—5.7,)-\278,} P

0 4re

13

=-.iz;gz-:gi}{s(u+s,f)-s(uws,f)}-«/§an P du
=200 e p oty -a,

2z

Therefore the value of this integral attain to minimum if and only if g, =¢, ie.

d, =¢,,and ¢,=ic, +a( f) and we have

lim-—l--jl{s(u+8,j~";)~s(u*s,j~;)—-\/§;r~50}12 du

&0 47e 7

£

ifi’é““};“; {s(u+e,f)-s(u—g,f)}~2rc, | du

_o(0+)-0o(0-) _
N

In particular, if o(u,@) iscontinuousat w=0,then ¢, =0, ¢, =a(f)and we have

[ EZ*

lim ,..L.

&0 475

{stu+,f)-s(u—5 1)} -2za( f)f du=0
Inthe case A#0.1If |u|<e and |u e [> 0 for sufficiently small &£, we have i)y the

Theorem A (c.f. ibid. I, p.4)
s(u+g,f,)—s(u -g,j~”,)==(-isz'gnu){s(u+£,f)—s(u-—£,f)} .
Then we have by the same arguments as Remark(l) for any constant 4,

Iimmém r]{s(u-f—a‘,f‘i)—-s(u—-é:,f,)}--\/:’E-r;"&,1 P du

&0 412 e

Atve
~ lim—L I{s(u»%s,f}—s(u—s,f)—«/ﬁal}12du

20 4o P

_0(A+0)-a(A-0)

V2r

where d, =(—isignA )a, . Therefore the value of this integral attains to minimum if

-le, § +e; —ay P
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and only if a, =c, and we have

At+e

limL |{s(u+£,fl)—s(u—8,f~l)}—-\/ﬂ§i f du

-0 418 e

Ate
= lim— |{s(u+3,f)—s(u—8,f)~\/27rc/l} I du
-0 471 e
_o(A+0)-0(A-0)
N27m
where ¢, = (—isignA)c,. Therefore we shall conclude that

(i) If A ¢ A.Then we have
c(A+0)-oc(A-0)=c, =0

-l |2

and

A+e

lim—— j s(u+ée, f,)-s(u—ef,)F du=0
A€

0 471g

(i) If AeA,thatis A=4,(n=1,23,...). Then we have

A tE

lz'mL l{s((u+3,j~§)—s(u—g,j~"l)}—\/ZnEn [ du
£-0 471 e
A, +E
=lim——1—— [{s(u+e,f)-s(u—g, f)}—~2mc, [ du
0 47E )7,

:a(/ln+0)—0'(/1n—0)_

C
b lc,

where ¢, =(—isigni, )c,

|2

If A=4 (n=0). Then we have

£

lz'mL l{s(u+8,f~1)—s(u—5:f~1)—V27w~o} * du
s>0 47 <

=0'(O+)—0'(0—)

2z

2
—le
where ¢, =ic,+a(f).

We have seen that the conditions (R, )and( EO ) are destroyed (c.f. I ibid. p.23) and so
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we could not necessarily apply the Minkowski inequality to estimations of remainder

terms. We should correct these conditions and instead of them we should state here

properties (R,) and( Eo )" of which we can prove respectively.

o1 0+ ) —o(0-
(Ry) mz;;yiJ{S(u+g,f)—s(u_g,f)}_J§;co |2 duza( +f/—2;o-( )_’ 0

12

and

(R,) @34—}[;'"'];{s(u+e,ﬁ)—s(u—s,ﬁ)}—f2?eo P =2 °+E(°‘)—|éo P

where ¢, =ic,+a(f).

We shall remark that applying the Theorem E” , we have
6(0+)-6(0-) o(0+)-0(0-)

27z V2

Similarly we have proved in the case A#0. (R, )":

ey P +1E P

Ate

_ o(A+0)-c(A-0)

1
lim— | {s(u+¢&,f)-s(u—g,f)—~2nmc, ;| du —le,
HMMLI{ )=2me,}| N ey |
and (Rl)*I
1 - - 2 g G(A+0)=&(A-0) . ,
iz_%%kgl{s(u+£,ﬁ)—s(u——g,fl)——\/27z'c/1}[ du = TS —-1¢; |
respectively.

We shall also remark that applying the Theorem E’ ,the relation ¢, = (—isigni)c,

and | ¢, |=|c, | we have
6(A+0)-6(A-0) o(A+0,9)-c(A-0,0)

V2r V27

16.3 On the hypothesis ( C ). In the preceding sections, if it is required we are

going to assume the existence of the following limits

T
(C,) ;i_'go-z—l]::‘;ﬁ(x)e"wdx=5l (Vreal 1)

However we shall conclude that hypothesis ( C ) could be derived by the hypothesis
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(C,) and condition (R,) as follows

Theorem F, Let us suppose that f(x) belongs to the classS,and satisfies the

hypothesis

(C,) 1%5— j f(x)e™de=c, (Vreal A)

and the condition

(R) o [Intwre )= Zaf)F a0 (20).

Then we have

(C,) Jim —— j fix)e™dx =&, (Vreal A)

T QT

and

(—isignd)c, (A#0)

c, =

¢, =icy+a(f) (A=0).
Proof. By the Theorem F; we have

Ate

1. - .
1{z_r)rgzo—z—f:';fl(x)e dx = il—’fgz \/._.[L{s(u+£,f1)—s(u——g,fl)}du
in the sense that if either side exists, the other side exists and assumes the same value.
By the Theorem A and the condition (R, ) we shall prove existence of the limit of
right hand side of the above formula.
(i) If A#0 By the Theorem 4, we have

A+e Ate

51_1)1(1)28\/_” j {s(u+£,f])—s(u—£,fl)}du=(——isignﬂ)éiﬁ28@ﬂ£{s(u+s,f)—s(u—s,f)}du

(ii1) If A=0 By the Theorem4 and (R,),we have

{im

H028\/___".{s(u+z3 f) s(u— gf)}du—lzm \/_j' s(u+g,f)—s(u- f;f)}du+a(f)

Thus applying the hypothesis (C, ) we have proved limit of the following formula

A+g

izrgzg\/__ ‘[g{s(u+8,fl)—s(u—£,fl)}du (Vreal 1)

exists.
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The remaining part of the theorem are obvious by the Theorem F; .
16.4 As we have pointed out that the conditions (R,) and ( ﬁo ) are destroyed,

we should correct the Theorem B, Theorem B, and TheoremC
(i) On the case Theorem B,. We have

Theorem B Let us suppose that f € S, and the hypothesis (C, )and the condition
(R,) are satisfied. Then we have that j; € S, and the following equality

lim— jzf( )P v = ltmm—]!f(x)i de-lcy [+ P
Proof. We shall prove the following equality

Izmw}m |s(u+e,f)-s(u—g,f ) dx
4rs ¥,

-0

=£@in-g~:1s(u+e,f)—-s(ums,f) P vy | +15, P.

and apply the N.Wiener theorem (c.fN.Wiener] ] Theorem22,p.140).
For this purpose we shall divide the integral of left-hand side into two parts

zi;i{s(u+s,};) s(u—¢, f, ) dxm-——-—-w j 1615 du+4xg_{[(”)i du

47[ wize

=1, +1, say.
Then by the part (i) of the Theorem A (c.f. ibid. I, p.4),we have

I -m!is(u«i—s,f) s(u—gf)F du--——-— j |(—isignu){s(u+e,f)~s(u—& f)} du

4 fuize

Zy_z— .f |s(u+ge,f)—s(u—g, f)f du

iz

and by the part (ii) of the Theorem 4, we have
=L [ Istu+e,f)-s(u—2F)f du
47 i,

_ b [li{scu+e,f)-su—s,f )} +2n(u+e,f)+2n(u+e, f)1)F du
4re

lui<e

= [ifstuts f)=s(u=c.f)=NEmal )} + 2 (u+ 5, f )4 An(u+e.f) = 2o )F du

hiss
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Here we can apply the Minkowski inequality, and we have by the use of condition
(R,) (c.f ibid.I, p.19) and hypothesis (C,) (c.f ibid. VI, p.133)

;2._.2}“ [ {stu+e,f)=stu-e.f)}~iN2ma( )P du+0() (£-50)

jtse

-1 j |s(u+e f)-s(u—c¢, ) du

4%’ u|se

+i\/27ra(f) j {
4me

wige

i\[i;a(f) J‘ {
4ne

e

s(u+s,f)—s(u—g,f)}du— s(u+e,f)-s(u-€,1)}

Ji2ra(f)F [ aa

4ne e

=1 [ Is(u+e.f)=s(uz.f)Pdu +icyal ] )~Ga( £ )+ | a( £ )P

47E e

—— [ Is(u+s.f)=s(u=s.f)Fdu +ic, ! +]icy +a(f)F
tujge

:4—25 [Isu+e,f)=stu=z1)Pdu~|c, P +15F,

tul<e

where &, =ic, +a( f)
Therefore we have proved the required formula and we can conclude that f; €3S,.
(ii) On the case Theorem B, . We have

Theorem B; Let us suppose that f € S and the hypothesis (C,) and the condition

(R,) are satisfied. Then we have that f{ € S and the following equality

lz_r:gz%-— e |s(u+e f)-s(u—c,7,)f du

o

lim— [ & |s(u+&,f)~s(u—g,f)I du—|c, " +|& |
&0 41 -
Moreover ,we have by Theorem W, (c.f. II, ibid. pp.25~28)
. 1 e - = » 1 L T 2 ~ 32
fim = | G+ R = fm o [ SO Of =1 P 412

Proof. We have
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0

J=-——1——— e |s(u+s,f)-s(u—ef)F du
4rne

L e | "} du+—— J' NP du=J +J,, say.

4me . juise
We have by the Theorem 4 (c.f. ibid. p.4)
le_.l.., J e |s(u+sg, f,)-s(u—g,f ) du

4z 5,

=L j e | (—isignu){s(u+e, f)—s(u—¢,f } [ du
4”31»@.5

- f ™ |s(u+g, f)-s(u—¢g,f) du.
ane o,

and also we have

1 ix 7 7
= [ e s(ut s, f)=s(u-5, 7 ) du
ige

-l f (e -1)|s(u+s.f)-s(u-e.f)F du

4ne

vt [ \s(u+e,f)~s(u-e.f)F du.
47:&:@1“

uise

Since f,c—:So by Theorem B and ¢™ ~1=0(¢) (&> 0), we have

1 ” z z 1
o J (& =Vlsuraf)-s(u-e )P du=0(s) gﬁ—z?ilﬁ(x)lzdx

ui<e

=0(l) (¢—>90)
(c.f 1. ibid. pp.21~22).
Moreover applying the condition (R, ), we have

L f |s(u+e,f,)-s(u—ef)F du

4ne wise

=L [Is(u+s.f)=s(u=e.f)f du—lc P +]G P
47:5*“6

Thus we have

J, L J‘ e |s(u+e, f)-s(u—g&,f)} du—|c, +|& F +o(1) (£—0)
dre

luise

Therefore we have

’i’éﬁ; ¢ |s(u+e,f)-s(u—sJ ) du

~—0
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—Izm—l— e |s(u+e, f)-s(u—g ) du—|c,| +|& [ .
s->04”g

Thus we can conclude that fl (x) €S by the TheoremW, (c.f 11, ibid. pp.25~28) and
we have
Iimn-l-—?f{x+t)f(t)dtm ZimmL}f(xw)f(t)dt-—;c P+1é P
T»= 2T A ! t T QT o 0 01

(iii) On the case Theorem C. We have

Theorem C" . Let us suppose that f(x) isa B*-almost periodic function and satisfies

condition (R, ).Let us write its Fourier series as follows

f(x)~ Y ce™

Then its G.H.T. f; (x) is also a function of B’ -almost periodic and has its Fourier
series as follows
h(x)~Y e

where
j (~isignd, Jc, (n=1,23,.)
C, = <
3\ ico+a(f) (n=0).
Proof. Since f(x) is a function of B”-almost periodic and so it belongs to the class

S and satisfies the condition (R, ), we have that its G.H.T. f; (x) belongs to the
class § and satisfies the hypothesis (’ ¢ W) (Yreal ).

Let us denote the set A = {ﬂ,,,n = 0,1,2,...} . Then we have

Avg

I {s(u+e,f)-s(u—¢,f)ldu

hmmjf(x)e = lzm

°2f‘

0 (AgA)

¢, (A€l A=A,n=012..).

Then we have by the Theorem 4 and condition (R,)
(i) 120
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Avg

i’-?; 25\/‘_ ,;’;{S(u +a,_7‘)—s(u—e,f,)}

=lim (;:j‘/g.n_%) AL {s(u+e,f)-s(u—¢,f)}du

r
= (—isignd) 2{2}; “21—T J f(x)e"¥dx = (~isigni )c,
-T

(ii) 1=0
.1 % = z
i’.’;’ézg\/?.?z-'_{{*’(“*“"ﬁ)“s("“g’f‘)}
=lim js(u+gf) s(u—g,f Ydu+a(f)=ic,+a(f).

£->0 23\/_—

Therefore we have by the Theorem F, (c.f. ibid.V1,15.4 ) the hypothesis ( C 1) (Yreal 1)

is satisfied and we have
"0 (AgA)
zzmwj Filx)e =
¢ (AeA, A=4,n=012,..).

n

Since f(x) istobe B’-almost periodic, we have Y |c, [<oand Y |, ['< too.

Therefore we shall conclude that fl (x) is to be almost periodic and has its Fourier
series as follows

fi(x)~ D& e

16.5 On the spectral analysis and synthesis of G.H.T. f; (x)

Now we shall going to construct the theory of spectral analysis and synthesis of G.H.T.

fi(x).

First of all we should remark the following results.
Let us suppose that f(x) belongs to the class S and satisfies the hypothesis (C, )and
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the condition( R, ). Then };‘ (x) belongs to the classS by the Theorem B; (c.f. ibid.

VI,p.149) and it satisfies the hypothesis (C ) by the Theorem F, (c.f ibid. VI, p147).

Let us denote that @(x) = ¢(x, f ) as the auto-correlation function of f(x) and
o(u)=0o(u,p) asthe GFT of ¢(x). Then since o(u) is a function to be bounded

and monotone increasing , there exist the set A ={4,,n=0,1,2,,..} at most countable

and the o(u) is discontinuous of first kind there and continuous elsewhere. Then we

have
1} it
c, =;%Ef£f(x)e d

Ats
1

.—.iingzgm'{Ig{s(u+z:,f)-s(u—5‘,f)}du

where ¢; =0 (1¢A) and ¢, #0 (1€ A).Weshalldenote ¢, instead of c,

and promise that 4, =0 and we may permit ¢, =0.

We have also

AtE
i’;”sz’i‘;jj s(u+e, f)=s(u~g,f) du= “(“0@32_:(1 0.0)

by the Lemma £ * (c.f. ibid. VI, p.135). Then we have by the Schwaltz inequality
o(A+0,9)—0c(A-0,¢)
V27

Now let us suppose that f{x) belongs to the class S and satisfies the hypothesis

le, < (Vreal 1)

(C, )and condition( R, ). We shall try the same problem as f(x) toits G.H.T. f~1( x).
We shall state them step by step steadily for the sake of completeness.

Step(i) Let us define @(x)= ¢(x, j~; ) as the auto-correlation function of f, {x)and

o(u)=o(u,p) asthe G.F.T. of @(x) respectively. Then we have
if A#0

At
1

¢, =lim su+£,~ -5 u~s,~ du
) Hozgmi{( F)-s(u=g.7)}
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(1s1gn/l)
= lim . J; s(u+e, f)—s(u— 8,f)}

= (~isigni)c,
andif A =0

= [im

£-50 zgﬁj;{s(u*-&‘,ﬁ)——s(u-—g,f:)}du

mizfgzg\[__.!{s(u-faf) s(u—g, f)}du

£

2 % T
+£1£gzg\/....jr(u+8 f)du+£%zg\/.?:;:[{r~2(u+s,f)-\/;a(f)}du-Fa(f)

=icy+a( f)
by the Theorem A ({c.f. ibid. I, p.4) and hypotheses (C, ), ( ¢ ) and condition (R, )

(c.f. ibid. VI, Theorem F,, 147 and p.143). Therefore we have
(—isignAd)c, (A#0)

~

ic,+a(f) (A=0).

Step (ii) Let us denote @(x)=@(x,f) and @(x)=¢(x, f, J the auto-correlation

function of f(x) and f,( x) respectively. Let us also denote o(u)=oc(u,p) and

6(u)=o0(u,p) the GFT.of ¢(x) and @(x) respectively. Then we have

A+g
] 2 o(A+0,9)-0(A-0,0)
1m-——ﬂ£{s{u+€ Sf)=s(u—¢g,f)du= Nors (Vreal 1)

by the Lemma E (c.f. ibid. VI, p.153). Since j~§( x ) satisfies the hypothesis(’ ¢ , ) with

the condition (R, Jasfor f(x), we have also

A+e P ~
gzréml_fgts(u+gf) s(u—¢,7,)Pdu= “("+°’¢3[%'(’1'°’¢) (Vreal 2)

Therefore we have by the Theorem A
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Ats

if 170 lim—— [ |s(u+,7,)-s(u-e.,) Pedu
A

0 4ng 7

A+E

=lm--1- I |(—isignu){s(u+&,f)-s(u—¢, [} du

0 47 A

Ate

-hm-——-—-—jls(u+g f)-s(u-¢,f)Fdu

-0

andif A=0 Ztm-—--f!s(u+8 f) s(u— sf)] du

£~30

~zzm——j;z s(u+e,f)=s(u—g& f )} +2r(u+6,f)+2n(u+e f)f d

=0 4778

where the integrand rewrite as follows

i{s(u+e,f)-s(u—g,f)} +2r(u+e, f)+2r(u+e,f)
:—.i{s(u+g,f)»~—s(uws,f)mix/Zna(f)}+2rl(u+g,f)+2{r2(u+s,f)— %a(f)}
and since we could apply the Minkowski inequality , we have

lzm——-—-[ls(u+8 f) s(u— gfl)j du

&0

-lzm——-—j|z{s(u+€f) s(u—&,f )} ~iN2za(f )} du

-0

Furthermore we shall expand the integrand as follows

L {lifsture, £)-stu-e,f )} ~iN3ma( £)1 du
4ne

xz-;;j}s(u+s,f)——s(u-—€,f)}2du
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~ALL [{stu e, f)=stuc.f - 2LLL f {stu+e.f)=s(u=z.f )ldu+|a(f)F

2627 2,

and we shall also remark that

mlxmwjf(x)dx lim— \/_.f{s(uwf) s(u—¢, f)}du

T 2T

by the one-sided Wiener formula (c.f. ibid. VI, p.1385). Therefore we have

lzm:‘i—— |s(u+e,f,)—s(u—¢,f ) du

*lzm—-—-—f}z s(u+e, f)—s(u~- sf)}-h/w—a(f)

50 47 3

-lzm~———~jts(u+gf) s(u—g,f)Pdu +licy+a( f)f -\

&30

Thus we shall conclude that
~
o(A+0,¢)—0c(A1-0,¢) (A%0)

V2r

a(/’t+0,¢)—o'(;l—0,¢'>)$é

2z

004 0) S8y |icy +al £)F ~Ic,

V2r

.

P (A=0)

Since f,( x) belongs to the class S and satisfies hypothesis ( (8 ), we have that

6(u)=o(u,$) isabounded and monotone increasing function. and so there exists A
the set of A to be at most countable and &(u )is discontinuous of the first kind there
and continuous elsewhere. By the arguments of Step(i) and Step(ii Jabove, we shall

conclude that the set A is just the same the set A and we have
i —o(A-0
o(A+0)-of ) (A%0)

2z

G(A+0)=G(A-0) _ |

2z

N

156

SOV s licy+al £)F ~les P (2=0)



KSTS/RR-17/005 June 8, 2017
(Second edition, September 1, 2017)

and furthermore we shall write the above formula as follows
(0, (AgA)
G(A+0)-6(A-0) o(A,+0)~a(i, ~0)
= ¢ & , (A eA n=123,..
or Ny & /
0+)~o(0~) .
OO0 000 | e, vat£)F -1 P, (=0

2z

Step(iii) In the first we shall remark that the following formula is satisfied

1 Ate

1 5. , n -
lim —— M =i LS ) —s(u—¢g, f )di Vreal 1).
T%ZT_-[,};(U@ ‘%28\[55—1{3{3(u+8 Si)—s(u eﬂ)} u  (Vreal 1)

in the sense that either of the limit exists, then the other limit exists and assume the
same value (c.f. ibid.VI, Theorem F ,pp.141~2; Hypothesis( C 2 ).p.146;Theore B; ,p149).

Then we have by the Schwaltz inequality

A+e

- 2 1 ~ ~ 2
A 4gg%@;AL{s(uw,ﬁ)—s(u—e,ﬂ)}duf

A+s

. 1 e T
siﬁzgmggsp(u+a,ﬁ)—s(u—e,fl)i du

_0(A+0,9)-0(4-0,$)
2r ’

Therefore we have

;!E” 125 6(@,@%("00,@) < 00

and so there exists B’ -almost periodic function g2(x) and its Fourier series

g(x)~Y g,e™
»
where we shall denote ¢, instead of ¢, .

Since we have already shown that f;( x) satisfies the hypothesis (C ./}, we have

: 1 - ~iAx . 1 T ~ —iAx
;ﬁﬁiﬁ(x)e dxmﬁﬁ-ﬁ;ig(x)e dx  (Vreal A).
Then we shall set

fi(x)-8(x)=h(x), say
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and we shall prove that };( x) belongs to the N.Wiener class S . This can be done just

the same arguments as the decomposition
f(x)—g(x)=h(x)
of the Theorem E” (c.f. ibid. VI, 15.3, Step.(iii ), p.137).

Thus we have proved

1 L. - 1T - 17 _

lim— | h(x+1t)h(t)dt = lim — X+t t)dt—lim— | g(x+1t)g(t)dt
MZT_IT( Jh(1)d MZT_ITfl( (1) MZT_jTg( J&(1)
Step. (iv ) We shall also consider the auto-correlation functions of fl, £ and h

P(x)=p(x.f,), W(x)=y(xg) and F(x)=x(xh)
and their G.FT. o(u,9),0(u,y)ando(u,y)
Then we have proved in the Step (iii)

o(x, f,)=w(x,8)+ x(xh)

and therefore we have also
o(up)=o(uy)+o(ujy).
Thus we have proved that o(u,}) isa bounded, monotone increasing function.

Therefore we could apply the N.Wiener theorem (c.f. N.Wiener[1], Theorem 24,pp.146-9)

1 F - o(4 +0,0)~c(A, -0,6) .
lzm—jlh(x)!zdx=2{ ( ¢)—o( ?) e |2}.
T—)ooZT_T - [272.

In particular o(u)=0c(u,p) is continuous everywhere, then it is satisfied by the
results of the Step (ii)
(4 +0.0)-0(4,-0.0) o(4,+0,9)-0(4,-0,¢)

2z 2r

=0, (4 €A, n=123,.)

and

G(OWE O2) Sars)f, (& Pelats)P  (2=0).

Therefore we have proved
17 -
lim— | |h(x)[dx=0.
lim — j | A(x)]

We shall call it Theorem G; .
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17 'The Spectral Analysis and Synthesis of the G.C.I. C\(z, f).
We shall define the G.C.I.of f(x) as follows

F(2)=2C(2.f) =PV 2E! ? f(t) dt

27xi 2 t+i z—t
and we shall going to construct the theory of spectral analysis and synthesis of G.C.1.
C\(z, ). We shall state them step by step steadily for the sake of completeness.
Step (i) Let us suppose that f(x) belongs to the class § and satisfies condition

(z=x+iy, y>0)

(R,) Letusput F{x)=f(x)+if1(x) then ﬁ(x)andF(x)belongtotheclasst

and then we could apply Theorem 4 and Theorem D, to f,(z) = C,(z, F )and therefore

we have
If |u[> ¢ ,then we have

s(u+€,‘]§(z))~s(ums,'ﬁ(z))=Qi—%gn——ﬂ[{s(u+8;F)-s(uw$;F)}+ro(u,y,3;F):f

where

s(u+g;F)—s(u~g;F)={s(u+g;f)~s(u—-e;f)}+i{s(u+g;j~§)—s(u~8;fj)}

= (1+signu){s(u+e; f)—s(u—& f)}

and then we have

s(u+g; fi(z))-s(u—¢; f(z))
=Q*%nﬁ-)—[2{s(u+e,f)—s(u—s,f)} +r0(u,y,a‘;F)]

where ﬁz;g—z%mg[sfro(u,y,g;F) Pdu=0.
If |u|< £ ,then we have
s(u+g; fi(z))-s(u—¢; fi(z))=in(u+e F)+in(u+e F)+r(u+e,y, F)
where
in(ut+e F)+in(u+e F)=s(u+e F)-s(u—eF)

={s(u+s;f)-s(u-—s;f)}+z‘{s(u+s;ji)—s(u—-€;f§)}
= 2in(u+& f)+2in(ute; f)

and then we have
s(tute; fi(z))-s(u—¢; f(z))
=2in(u+g; f)+2in(u+e; fl+n(ut+ey, F)
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where

lim f |n(u,y,e; f)f du=0 and lirtg%» I [r(u+e,y; F)f du=0
55028 ) 0L e

and there exist constant a( f )such as

(R,) Q{{g*i;;[glrz(u%&‘ f)=\[Fa(f)F du.

Step (ii) Now we shall intend to prove that f,(z) belongs to the class.S . This can be
done by the application of Theorem W, . We shall estimate it by the integration by parts

and apply the Lemma E~ .
Let us estimate the following integral

“Is(u+e: fi(z))~s(u~g; fi(z))} du

4;:'
1 fux |2 1 inx ey g2
=— [ e |"P du+— [ & |"F du=1+1, say.
4ne 5, jise
We have
1 ar o (1+signu) 2
11mzufe |———=[2{s(u+e,f)-s(u~&,f )} +r(uy.eF)]l du

T e 2

m_.._j’ le” {s(u+e f)-s(u—e )} du+o(l) (¢->0)

by the Minkowski inequality and we have

(x-2yju u

fistvee:f)=s(v-e:f)F vl

j e | s(ut e, f)~s(u—s,f)f du=

WM?ew_zw“ ﬁ’ s(ve f)-s(v-&f) 12 dv]du
e g £

by the integration by parts,
Now we have by the Lemma E~

)-o(0+)

Z—:;g——zis(v+3;f)—s(v-—e;f)§2dv~—>G(Oo\/_?:; (6-0)
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and
#:ﬂs(v+g,-f)—-s(v—g;f)lzdv->_‘Z.(_‘f_)_:\[z_%ﬁ)ﬁ ae.u (£-0)

boundedly. Therefore we have

I, =—4(ix -2y )?e( wan I(4) —0(0) 4 o(1) (¢-0)

N

Next we have
L= [ & Is(u+a fi(z)-s(u=z; ()P du

ige

22—% I €™ | 2in(u+&; f)+2in(u+g; f)+r(u+ey, F)P du
inlse

where let us remark the following properties

Iimi; j' n(u+e, f)F du=0 ig;z»z—l; f |n(u+e,y;F)} du=0

-0 ,
juise njse

and the condition
A n 2
(R) 3 a(f): lim— [|n(u+e.f)=|=a(f)P du=0.
5028 o 2

Then we have by the Minkowski inequality

L=—— [ In(u+e.f)=\Za(f)P durla(f)F +o(1)=a(f)P +o(1)
e 2

ul<e

(€—>0)
Therefore we have proved

lim —— T e |s(u+re; fi(z))-s(u~e; f(z)) du
&0 4re 7

=—d(ix—~2y )]Ee( =2y wdu’f! a(f)f.

2z

Thus we have proved j](z):i?.C,(z;f)=C’1(z;F)WhereF(x)=f(x)+ij”"1(x)

belongs to the class S by the Theorem W, . We shall present it as follows
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1§ ———
o(x; fi(2) = lim j fi(x+t,y) fi(ty)dt

=lingZL e |s(u+e; fi(z)—-s(u—¢g; f(z) du (z=x+iy, y>0)
&> ﬂ'g

Step (iii ) Let us suppose that f(x) belongs to the class S and satisfies the

hypothesis(C, ) and the condition (R, ). Then we shall notice that G.H.T. f,(z)

satisfies the hypothesis( 8 ) too.

Now we shall prove
. 2
Qi%:zéi_e—ﬂcl (A#0)
lim—l—if(z)e'i“dx =
T—w 2T o 1

ia(f) (A=0)
where z=x+iy, y>0.
For this purpose we shall need the support of the Theorem F, (ibid. IV, p.141). There

we have

l A+e

lim -217 jT fi(2)e ¥ dx = lim i /{L{s(u +& fi(2)—s(u—¢; f,(z))}du

where z=x+iy, y>0.Then we shall intend to estimate the formula in the right

hand side with aide of the Theorems D, , D, (c.f. ibid. ITI, pp.47~8) and Theorem 4 (c.f.

ibid. 1, p.4).
(i) The case A#0.
We have by the Theorem D,

s(u+5;jj(z))—s(u—8,’f1(z))=Qj—%‘ﬂ2e‘y" ({s(u+a;F)—-s(u—~e;F)}+ro(u,y,g;F))

where F(x)=f(x)+i]~’l(x) and we have by the Theorem 4
s(u+e; F)—s(u—¢g;F)

={s(u+£;f)—s(u—8;f)}+i{s(u+8;j71)—s(u—8;fl)}
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={s(u+& f)—s(u—s; f)}+i(~isignu){s(u+¢; f)~s(u—&; f)}

=(1+signu){s(u+¢; f)-s(u—¢; f)}

Therefore we have

Are

ng v,._i {s(u+g; fi(2))—s(u—s; f,(z))}du

A+e
”ﬁ%zg\l/’“lj:x(l+312gnu) os(ute; f)-s(u—g; f)}du

’ . Atre
= _(_!:'312871____&_ -yA i’ﬁ 26\/““ Jg {s(u +£;f)—s(u-s;f)}du

where we shall use the condition

Izmw f b (3.6, F)F du=0

for the estimation of the remamder term.
Since we have by the Theorem F,

A+g

I {s(u+s&:f)-s(u—s; f)}du

A-¢

i
= Ilm — x)e " P dx = lim
j J(x) e 227

we have proved

Izm———ff(z) -iax g M_, Ye, .

T 2
(ii) The case A=0.We have by the Theorem D,
s(tu+e; fi(z))—s(u—e; fi(z))
=in(u+e F)+in(u+e F)+r(u+ey F)
where in(u+& F)+in(u+e F)=s(u+e F)—-s(u—¢g;F).
and we have by the Theorem 4

s(u+s;F)—s(u-8;F)n{s(u+8;f)——s(u——5‘;f)}+i{s(u+£,*f;)~s(uwe,'fl)}

=2in(u+g; f)+2in(u+e; f)
Therefore we have
s(ute; fi(z)~s(u~g; fi(z)=2in(u+g; f)+2in(u+e f)+r(u+e,y;F)

where we shall notice the following properties
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ng-z-—— j b(w,pe f)f du=0 and lmgu—- | huy.e;F)f du=0
i wise &> iuISs

and the condition

(R,) zzm— j b ,85 f) =\ Zal £) ' du=

Therefore we have by the condition (R, )

5’»’523 i) j {s(u+e; f;(z))~s(u—g; f(z)}du=

1
e | 200 (U A & f JdU + 2ir,(u+g; f)du+ r(u+eg vy Fidu
> f'"zn;uia (u+s;f) r"”,uL (w5 fJau+— ,--ML J(u+2,y, F)

= 283}..[{"2(”4—8 f)- [a(f)}du+ia(f)+o(1)= ia(f)+o(1), (€—>0)."

mise

Thus we have proved

17 1
lim — z)dx = lim s(u+e; fi(z)—s(u—g; f,(z)idu
mzr_frf*” Mzs\@;mjﬁ{( fi(2)=s(u-5; fi(2)}
= ia(f).
Remark. We shall consider as for f,(z)=2C,(z,f) insteadof f(z)=C,(z,F),
F(x)=f( x)-i—i];(x) and apply the first half part of the Theorem D, . Then we have

the followings.
(i) |ulpe

s(u+eg; fi(z))—s(u—eg; fi(z)) = (1+ signuje™ ({s(u+s;f)—-s(u—8;;f)} +r;,(u,y,8;f))
where

- [ln(uy.e;f)P du=0(1), (£-0).

26. iz

(i) |ulge
s(u+£;ﬁ(z))—s(u——e;ﬁ(z))*—*Zz’q(u+8,'f)+2ir2(u+s;f)+2r3(u+s;y;F)
where F(x)= f(x)+if(x) and

= [ Rursif)P du=o(V), — [ In(uteyiF)f du=o(l), (50)

lujse jui<e
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and

(R) o [Wureif)-Zar)f duzo(l)  (s0).
g%u?ss 2

Then we have

(i) 120
izrgzg‘/_ﬂ_fg{s(u—ks fi(z)—s(u—sg; fi(z))}du
AtE
=(1+ signu Je” ’”‘{ggz \l/wi{s(u-f-g,f) s(u—¢; f)}du
(i) A=0

lim— Jﬂiﬁ {s(u+e; fi(2))~s(u~e;; fi(z))}du

. — ._7{ 7, =7
*il_g?gzg\/—w[g{ﬁ(w*&f) \[;a(f)}duﬂa(f) ia( f).

Therefore if we apply the Theorem F;, then we have

((1+signije™c, (1%0)

. 1 T ~iAx —
;inzﬁ:';ﬁ(z)e d = <

ia(f) (A=

.

where z=x+iy, y>0 and
1k »
c, ""“51’?05}‘ jT f(x)e™dx (V¥ reald)

Thus we have obtained the same results as above. The second proof, it may be more
simple than that of the first.

Step (iv) There exists B, -almost periodic function G(z) (z=x+iy,y > 0)as for
variablex and any y >0 of which Fourier series are as follows

G(z)~Z(1+signl,,)c,,e“’" (z=x+iy,y>0)

n=xd

where
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. 1 T ~id X
cnm}{in:-if:[rf(x)e & (n=0123,..)

Beeause we shall remark that

G(x,y)~ia(f)+ Y (1+signd, Jc,e ™ e™

A, >0
where

C e"""'e“‘"‘ = C”eil"(”fy) = cne“*z s

therefore we shall write G(z)} asfor G(x,y).

Then we have

lzmmff(z)e ‘“dxwlzm—IG(z)e"‘“dx (Vreal ).
T 2T
Becauseif A €A, then A =4, forsome 7 and so we have

r(1-l~.s'igmz'tu)e”""c,,, (n+0)

. 1 T ~iAdx : 1 T ~fAx 3
mﬁiﬂ(z)e ch‘mgz_ﬁEFLG(z)e dx =

ia(f), (n=0).
and if 4 ¢ A, then we have

hm--j fi(z)e *dx = lzm——-— jG(z) e =0,

Therefore if we set f;{z) G(z)-—H(z),then H(z) belongs to the class § and we

have

Izm~»—-jH(x+t+xy)H(t+zy)di Izm—-—»jf(x+i+:y)f(t+zy)dt zzm-jc(x+z+zy)c;(t+xy)dz

Now let us denote @(x,y; f,(z)), w(x,y;G(z)), and y(x,y;H(z)) as for their
auto -correlation function of f,(z), G(z),and H(z) respectively. Let us denote also
o(u,y;@), o(u,y;w), and o(u,y; y) asfor their G.F.T. respectively.

Then we have
%,y [i(2) =w(%,y;G(z))+ x(x,y; H(z))
and
o(u,y;p)=o(uy;y)+o(u,y; x).
Since the o(u,y; y) is bounded and monotone increasing function, we have by the
N.Wiener Theorem (c.f. N.Wiener| 1 ] Theorem 24, pp.146~9)
wawslim ?Tt Hix+ip)P ap <2820 CO0) i1 )

N
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'y {0’(/1,, +0.7:9)=0(% =0.3:9) 5. Iz}
V27 !

A,>0

Step (v) We have by the Lemma E

o(0+.y,0)-0(0-y.0) ;. 1 j:g\s(u+8 yifi(z)=s(u—g,y; f,(z)) [ du

) /2 T £-0 47[5
We have also by the Theorem 4 and Theorem D,
(1) 1>0
o(A+0,y,9)-0(A-0,y,¢)

2x

Ate

e [ 180 e,yi (2= sty f(2)F
-0 41

‘4£Z’?>T ﬁs(m f)=s(u—z; f )] d 4"('“0’¢)J-2-_:(/1—0,~¢)

(ii) A=0 If |ul<e, we have
s(u+e,y; [i(z))—s(u—g,y, fi(z))=2in(u+e; f)+2ir,(u+¢; f)+2n(u+ey, F)

where F(x)= f(x)+if,(x).

We have also by the hypothesis (R, ) and he Minkowski inequality
o(0+,y,¢)-0(0-y,0)

2z
—tim—— [ Is(u+£,9; f;(2))~s(u—z.y; fi(2 )P du=lia(f)F.

0 472

[u|<£

Therefore we have

lzm-—«~I|H(x+zy) Pdx =4
A,>0

{am +0:0)-0(% ~0:p) \ce-w}
V2r " '

In particular if the o(u, @) iscontinuouson u >0, then we have
]. T
lim— || H(x+iy)[dx=0 Vy>0).
T»sz_!Tl (x+iy)] (V y>0)

We shall call it as Theorem G, .
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