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ABSTRACT
We shall continue the problem of spectrum of function of the N.Wiener class S after the
preceding section 14 in this research report V and we shall prove that in the Theorem E,

we need not always the hypothesis (D, ) and present it as the Theorem £ . We shall

also treat the same problems as for Generalized Hilbert Transforms.

15 The Spectral Analysis and Synthesis on the N.Wiener class S .
We shall explain these circumstances for the sake of completeness as follows
15.1 Let us suppose that for function f of the classS;, there exist the following

Himit
7
(C,)  lim % jT f(x)e ™ dc=c, (Vreal 4).

Then we have by the one-sided Wiener formula

Ats
1

7
ﬁi”i";'f [« F(x)e e = %2 = j {s(u+e, f)-s(u~g f)ldu (Vreal 1),

A-g

We shall begine to define the class S, after Prof. N.Wiener[ 11].
Definition of the class S . In case f is measurable over (o0, jand integrable of its

square modulus locally and exist the following limit
1 T
lim —— x) dx,
lim = j | f(x)]
we shall say that f belongs to the classS, .
Let us introduce the generalized Fourier transforms (G.F.T.) after Prof. N.Wiener
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s(u,f)—\/,._'[f(x)m—»—dx-}»lzmm\éz:{if+j ]f{x)»—-———-—dx

Then we have

s(u+e f)-s(u—¢,f)= Izmw—ff( )2‘”’”‘ g
and
T{s(u-l—s f)—s(u~- 8f)}du-2r( I 2sinx "“dx}lu.

Let us define the following formulas

Fy(u)=—= j f(x)

2sinx 2SInX gy

and

2smx

F(u)= lj‘.m j F(x) =22 gy

respectively, then we have by the Plancherel theorem
| Fy(u)-F(u)||;>0 (Ad—>w). (Yreald)
Since the strong convergence implies the weak convergence, we have
?Fﬂ(u)zm(u)du —> T F(u)y, (u)du (A—>»), (VYreald)

where the x,,(u) denotes the characteristic function of interval (1-¢£,4A+¢) and

this formula is written as follows

AtE Ats
[ Fwjdu— [ Fluydu  (4—), (Vreald).
A-g A-g

Let us remark that this formula is also proved by the Schwartz inequality directly.

Now we have by the theorem of Fubini

\[;;T[_{f( )zszngx "’“dx}iu ‘/""“ff( )Zsznex[I """du]dx

4 e[ 2sinex : Y e sin® £x
&f(x) )(x)dx if() )

w), (Vreald).

It

"’:ﬁl
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Therefore we have

e )sin2 &x
2

dx.

1 1% 3
lim—— j {s(u+e,f)-s(u~- gf)}du-—\/_..igrg;g—i(f(x)e

g0 4

The one-sided Wiener formula: Let us suppose that f(x) is measurable and

T
integrable locally and »}M J \f(x)}dx isbounded as for T — . Then we have

Jim — j F(x)e ™ dx = Izm—-— j (f(x)e™) sin’ 2
x

Tw)co

in the sense that if the limit of left hand side exist then the limit of right hand side also
exist and their limiting values are equal
Let us remark that if f(x) belongs to the classS,, then the presupposed conditions

of the one-sided Wiener formula are all satisfied. Then applying the one-sided Wiener
formula we have

AtE

17 i
cz-—;ﬁé}—'j;f(x)e dx = ngz \/_/{L{s(u+&'f) s(u—¢, f)}du

(Vreald) .
15.2 On the Lemma E .
We have
Lemma E° Let us suppose that f(x) belongs to the class S and satisfies the
hypothesis (C, ) (Vreal A). Then we have

Arg
lzmmfls(u+€ f)-s(u—e, f)Pdu= 0(’1*0"2’5{”‘“0"”) (Vreal 1).

Proof. Letusdefine ¢({x) as auto-correlation function of f(x)
17 e
x)=lim— x+1)f(t)dt
o(x) = fim = f f(x+1)f(1)d

and o(u) =0o(u,p) asits G.FT. Then applying just the same argument as Lemma
E(c.f. ibid.V,p.125) we have the above formula

1 M o(A+0,0)-0a(A—-0,0)
Izmzw j |s(u+8,f)—s(u—e,f)fdu= =

15.83 On the Theorem £ .
We have

Theorem E . Let us suppose that f(x) belongs to the classS and satisfies(C, )and
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(R, ). Then we have the same conclusions of the Theorem £ without the Hypothesis
(D;).

Proof. We shall prove Theorem E~ step by step as follows.

Step(i) We have by the Schwartz inequality

Atg

. 1
|, =l tim— T AL{S(uw,f)-S(u—&f)} du
R B o(A+0,0)-o(u-0,p)
s | Puvo L)oo O dus o

Therefore we shall conclude that if o(u) is continuous at ¥ =A, then we have
c, =0.
Step(ii) Since ofu) is a bounded and monotone increasing function, there exists

the set of at most countable points A and satisfies properties as follows,
Let us denote A= {/1,,} (n=0123,..) and ¢, =c, (n=0,123,..) where

A, =0 and ¢, =0 may be permitted.
Then we have
(i)If A¢ A, the we have
o(A+0,¢)-o(u-0,9)=c, =0.
(ii)If 4, e A (n=0,1,2,3,..). Then we have
2 O +0.0)-0(h =00) 4123

;c}t} \/:?T;;

and

1570 +0.0)=0(4,=0p) _o(®,0)=0)=00)

Then there exists the B, -almost periodic function g(x)of which Fourier series is as

L

follows
g(x)~Y c,e™.
By the hypothesis (C, ),we have
R DN I SO
ignwgfif(x)e dx—,l{mﬁ:[“g(x)e dx (Vreal A).

(c.f. V ibid. p.129).
Step(ii) Then if we put f(x)—g(x)=h(x) say. Then we shall prove that the

function A(x) belongs to the class §. Since f(x) and g(x) both belong to the
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class S and we have

1% s 1% s
lim j H(x -+ h()ds = lim — j {fx+t)-g(x+){f(1)-g(t)}at

1% ——= 1 e 1% - 1% —
=fim s | SOt f = lim | 7w gl lim o | gCx 107 (e + fim o [ s+ )g( e

and we have also
1} —_ 1§ —_— 1k —
bim s | S e+ )g(0de = fim o | (v t)f (= fim = | a(x+ (1
(c.f. IV ibid. pp.105~108).
Therefore we have
1 ¢ e 1% e 1% o
ﬁﬁﬁih(x-w)h(t)dt == gﬁgi,-if(x+t)f(t)dt ~£z_}r?°§;:£.g(x+t)g(t)dt .

Thus we shall prove that A(x) belongs to the class S .
Step (iv) We shall consider auto-correlation functions(x; f J,w(x;g) and y(x;h)of
f.g.h itheir GFET. o(u;@),0(u;yy) and o(u; y) of @i,y respectively.

Then we shall prove
o(x; f)=w(x;g)+x(x;h) and o(u;p)=c(uy)+o(u y)
respectively.

Step (v) Since o(u,; @) iscontinuous on the se A° and discontinuous of the first kind
with jump on the set A we have
(4 +0,9)-0(4,-0,9)
2z

le, <

1 A ;

= [im o(u+ep)-o(u—e;o)idu  (n=012,-----)

&0 2e27 ,;”L{ 7 }

On the other hand, since o(u,y) is GFT. of w(x;g) and y(x;/g) is the
auto-correlation function of B, -almost periodic function g('x), we have

2z e, B (u#4,)

PR

a(uy )=

M{chnf%mﬁ} (u=h,)
A, <u

and so we have
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Ow)—o(i -0
. lzza(ﬂn-k Ww)-o(4, -0y) (n=0,12,)

i n \[2‘?’2:

ontheset A and
. Wa(,%-&(},gz/)—a(ﬂ—o,y/)mo

A \/i;

on the set A°..

Step (vi) Therefore we have proved that o(u, 7) is bounded, monotone increasing
function. Because o(u; y) is GFT. of y(x;h) and y(x;/h)is the auto-correlation
function of A('x), we have by the N.Wiener Theorem[1]( Theorem 24,pp. 146~149)

T
lzm__I__J'Ih(x)idezz{O'(ﬂa +0,¢) 0'(/1,; 0:¢)_icn |Z}
T 2T bt ~ /27[
In particular, ifthe o(u,@) is continuous everywhere then it is satisfied
o(A+0,p)~c(u-0,p)=c, =0 (Vrea 1)

Therefore we have

1% )
ﬁmé?:gih(x)} de=0,
Thus we have constructed the theory of spectral analysis and synthesis on the class S

without the hypothesis (D, ) completely.

15.4 In the last of this section we shall prove
Theorem F;. Let us suppose that f(x)eS,. Then the necessary and sufficient
condition for the hypotheses(C, ) are satisfied for all real A, is the following conditions
f(x)+we™* €8, (o==%1, +i)

are satisfied for allreal A.
Lemma F. We have the following formula

C/é; (A-e<u<i+eg)

s(u-i—s,e’“)—-s(u—a‘,em’):}{ ————?—r— (u=Atg)
0 (u<il-gl+e<u).
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Proof of the Lemma F. Let us start to calculations of the G.FT. of ¢”*.We have by the

definition of G.F.T.
s(u+s,e* )—s(u—g,e*)

—3(u+a}x
iAx
e ——-——--————dx:-r—l im ——
j A-poo f
1o o e -1 1
-m_{e”"‘ — i B AR
sz -1 =X Ao (20T
1 j' e-i(u-.%—s)x - e—i(a-z—a)x
\1277 -1 —ix
»i( u=-Ate)x -i( u-A=&)x
dx

~ix

e
Therefore we have

S5

s(u+g,e® )—s(u—g,e" )=

A+e)x
x

~—PV~—-—~ dx—PV.

i)

J- sinfu—

where we have
sin ﬂx

PVj

and then we have

s(u+e,e™)—s(u—g,e* )=<

-~} 4 ) e~t(u4~a)x
I +j e ——dx
401 —iX
-1 a4 ] ewi(u«s’)x
J +I e p—
<4 1 ] =

-1 4 -l(a Ave)x —t( u-A~&}x
e+l im—e [ +j dx
A—>» f AR

{sign{u—A+&)~sign(u~ -}

r sin(uwﬂme)xdx

T

(7
N

= (signn )x ,

(A-E<u<A+g)

(u=Ateg)

0 (u<A—-g,d+e<u).

.
Proof of Theorem ¥, . (The necessity of condition): Let us suppose that f(x) belongs

to the class S, and satisfies the condition(C, ).

First of all, we shall remark the following identities

| f(x)+we™ =

\f(x)P +of(x)e™ +of(x)e ™+ o

(o==*1, +i).

Then applying the condition(C, ), the existence of limit of following formula
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vy
;fimvz-%,-ftf(x)-&we“““ P dx (o=1%1, +i)  (Vreal 1)
-7
is guaranteed and therefore we have
f(x)+we™ €85, (o==%1, *i) (Vreal 1).

(The sufficiency of condition): First of all, we shall remark also the identities

f(x)e™ = f(x)e™
= S0 P =L 700)= e P 4] f(x)wie™ P il f(x)=ie™ P

Then applying the condition f(x)+we™ €S, (w==%1, i), (Vreal 1) the
existence of following limit
1% :
lim —— x Je M dx Yreal A
lim — f f(x) ( )
is guaranteed and the condition(C, ) is satisfied.

Theorem F, Let us suppose that f(x) belongs to the class S;. Let us suppose that

the following Limit

AtE

lim 5 J"“ jg{s(u +&,f)=s(u—e,f)}du  (Vreal A)

exist. Then we shall conclude that the following limit
7
Jim — j | f(x)+we™ [ dx (o=*L%i) (Vreal i)
T 2T o

exist.
Proof. This is obtained by the expansion of the required formula as follows.

szwjls(ué-af-i-me"“) s(u—g, f +we™ )du
s-30 4o

o0

= lim—— i{s(u+a,f)~—s(u—~a,f)+w(s(u+a,e"”‘"}-s(u—e,e““”‘))}{2 du

-0 41

o0

1 o 2
"{f-’)’grw |s(u+e,f)—s(u—eg, f)I du

-—Izm————f{s(u+sf) —s(u— sf)}{s(ui»se"“) s(u—g,e” )}du
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lim-2_ | {s(u+s.f)-s(u-s f}{s(u+e.e™ )=s(u—z5e™ )| du
4re

&0
-3

+Izmi4 j}s(u+se ) —s(u—g,e*)[* du

o

clim—— [ |s(u+e f)-stu—c f)F du

e d7g

ity

- A+E

~lim-2- {s(u+£f} s(u—~g,f )}du —Izm—j.{s(u-fsf) s(u—eg, f)}du

£->0 4 nE

i il A+E
+lim -~ [ du
>0 47g J.

Therefore we can conclude that the following limit

Izm————j]s(u+g fHwe™ )—s(tu—¢, f+we™ ) du.

e~

exist and we have by the Theorem W, (c.f 1, ibid. p.2)

lzm-—jlf(x)me'“x dx

-—Zzﬁ—-~——~jis{u+ef+me ) —s(u—g, f +we™™ ) du.

Thus we have proved that f(x)+we™ €S, (o =%1,%i), (Vreal 1).

Now we shall attain the desired consequence by combining the result of two Theorems
F and F,. We have proved
Theorem F; Let us suppose that f(x) belongs to the class S, . Then the following

formula

Ave

r
lim 5‘;— ’2 f(x)e e =lim [ {scu+e,f)=s(u—s,f jau

s—>»0 2 £ f 3‘5

is true for each A in the sense that either of the limit exists, then the other limit exists

and assume the same value.

16. The Spectral Analysis and Synthesis of the G.H.T. f; {(x)

16.1 Remark (1). On the hypothesis(R, ).
Let us suppose that f(x)belongs to the classS and satisfies the condition(C, ). Then
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applying Lemma E’ ,we have for any constant a,

AtE

z'zm-———- ! Hs(u+e,f)-s(u—g,f)}- 2ra, P du

&0 4718
A+s A+g
_1;m—-j;{s(u+gf) ~s(u=¢,f)} | du—lim ‘/Ze [ {stu+e.f)-s(u-z, 1 )}jdu

20 478 e

/ Ate £
-—Iim«»gﬂj{ s(u+e, f)—s(u— gf)}du-i—lzm jd
e

Ag

and we shall notice the following formulas

c, w%% \/__);{s(ws S)=s(u~g,f)}du (Vreal 1)

by the hypotheses (C), ). Then we have

A+g

lim—L— |{s(u+e,f)~s(u—g,f)}-2na, [ du

2“’04”8#&'
_o(A+0)-o(A-0)
- NpY3
o(A+0)~0(A~0)
- 2z

and therefore the value of this formula attains to minimum if and only if a, =¢, and

—e,d, ~C,a;+a; P

2
~l¢; 124“]04““&} .

we have
AtEg
1t 1500 8.) st £} e, P e =TT ZE0 e,
and we have
2¢ o(A+0)~o(A-0) (Vreal 1).

le, I's ﬁ;

Since o(u)is bounded and monotone increasing function, there exists the set A of

countable points A=4,, (n=0]1,2,.. ) at which o(u) has jump and continuous
elsewhere. Thus we have the following results.

(i)If A& A, then we have
(A+0)-c(A-0)=c, =0

and
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At

lim—— j’ s(u+e, f)~s(u—e f)P du=0.
8404’:6#5

(ii)If AeA thatis =4, (n=0,1,2,....), then we have

Ay tE
1;,,,,,3,.,. i{s(u*_g’f)_s(uﬁg,f)}_\[2’;6”[z d“=a(%+of/;m”—0)*f¢n
n

-0 418 e

l2

16.2 Remark (2). On the hypothesis( R, ).

Let us introduce the generalized Hilbert transform
- x+i 7 f(t) dt
F(x)=PV. jf( )t
T s bvix—t
On the case A =0.If |u|< £, we have by the Theorem Alc.fibid. I, p.4, p.19) as for

G.FT. of f(x)
s(u+e, |, )-s(u—e,f,)

=i{s(u+e,f)-s(u—g f)} ¥2n(u+e, f)+2n(u+e, f)

where it is satisfied that
.1 2 g
(R) gg’gggilr;(ws,f)i du=0
and we shall assume that there exist a constant a( f ) such as

.1 ¢ )
(R)  lim— j \n(u+te, f)- %a(f); du=0.

Now let us suppose that fl{ x) belongs to the class Sand the condition (R,) is
satisfied. Then we have for any constant g, =iq, +a( f)
{stu+e,7,)-stu-e,1)~2ra)
= i{s(u“&ajf)ws(u—»5,f)-\/27tao}+213(u+8,f)+2{r2(u+s,f)- %a(f)}
and we have by the Minkowski inequality
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lzm—l— i{s(u-i—g f) S(u— gf) \/57?00}

&0 47{5

-Irm-—-—— }{s(u+sf) s(u~g, f)} =2za, [ du

590 4

0)~of-0 > 2
i jéff ) ey P +lcy~a, |

Therefore the value of this integral attain to minimum if and only if g, =¢, ie.

d, =¢,,and ¢,=ic, +a( f) and we have

lzm-—-—-j’l{s(u-i»é‘ f) s(u— sf) \/5?‘;00}1 du

-0 drp

Izmwjl s(u+ge, f)-s(u—e.1)} - ~\27c, ! du

5~30 7;'g

_o(04)=0(0)_ o
2z o

In particular, if o(u,¢) iscontinuousat u=0,then ¢, =0, &, =a(f)and we have

zimmL-s1{s(u+g,]";)-s(u-g,;”§)}mfi}?a(f);? du=0

&0 475

Inthe case A#0.1If Ju|<e and |ute >0 for sufficiently small &£, we have ﬁy the
Theorem A (c.f. ibid. I, p.4)

s(u+g,f,)—s(u -3,]f)m(~»isigm¢){s(u+a‘,f)—s(u-—£,f)} .
Then we have by the same arguments as Remark(1) for any constant 4,

Are

tim—— [ |{s(u+&.7,)~s(u~e.7, )} ~ 27, ! du
e

30 4 A
~&

Ats

~ lim—L I{s(u+s,f)—s(u—s,f)~«/2_7za3}12 du
A

220 4org -

o(A+0)~o(A~0
=2 \)[2—7;( )“‘93’2'*“1‘71““1!2
where d, =(~isignA Ja, . Therefore the value of this integral attains to minimum if
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and only if @, =c, and we have

a+e

Iim———i——- §{S(u+8,f~,)ws(u-8,f;)}—s/2_7;5£ [ du

20 4re e

| A
"ﬂZ’STI {s(u+gf) s(u—¢,f) -2z, | du
=0'(/%+0)~cr(/1——0)wic 2

N 1

where C, = (~isignA )c,. Therefore we shall conclude that

(i) If A€ A.Then we have

o(A+0)~0o(A~-0)=¢c, =0

and
At

jb(u%f) stu—e.F ) du=0

b‘--)O 4

(ii)If Ae A, thatis A=4,,(n=1,273,..). Then we have

A e
Iz‘m--1~—- l{s{(u+a f) s(u— S,f)} \[“c du
-0 471 e
—Iim——i—-—wgz {s(u+e fl—s(u—¢ f)}wx/?.-z;c P du
~e~>ﬁ4ﬂ££~_8 ' ’ "

_0(Ay+0)=0(4,—0)
NS

where ¢, =(~isignd, jc,

2
-le, |

If A=24, (=0). Then we have

lzm——l— {s(u+gf) s(u— €f) \[_‘“6’0}

230 4re

_o(0+)-o(0-)_
Ny ’

.,

where &, =ic, +a(f).

We have seen that the conditions (R,)and(R, )are destroyed (c.f. I ibid. p.23) and so
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we could not necessarily apply the Minkowski inequality to estimations of remainder

terms. We should correct these conditions and instead of them we should state here

properties (R,) and( fi‘o )" of which we can prove respectively.

(R) @gélu [ Hstu+e,)=stu=e.f)} =27 P du= O ey

and

(Rt ] ot F)=stuma )} ome - 200020

where ¢, =ic, +a( f).

We shall remark that applying the Theorem E”, we have

&(0+) “5-(0“) e O-(O+) _O-(O_) _I c |2 + | . |2 )
J2r J2x o
Similarly we have proved in the case A #0. (R, )":
Ate
lim—— {s(u+2,f)—s(u-s,f)~~2me,} P du= o(A+0)-o(A=0) . ¢

£—0

e ;. 27

and (EA)‘I
1M p - e 4 G(A+0)=&(A-0) . ,
ing;gﬂLl{s(u+£,fl)—s(u—a,ﬂ)—\/27rc,1}| du = Nors -, |
respectively.

We shall also remark that applying the Theorem E ,the relation &, =(-isigni)c,

and | ¢, |=lc, | we have
G(A+0)-6(A-0) o(A+0,¢)—c(A-0,p)

V27 2z

16.3 On the hypothesis ( C ). In the preceding sections, if it is required we are going

to assume the existence of the following limits

T
(C.) lim 5_% jT f(x)e ™ de=¢,  (VYreal A)

However we shall conclude that hypothesis (C ) could be derived by the hypothesis
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(C,) and condition (R,} as follows

Theorem F, Let us suppose that f(x) belongs to the classS;and satisfies the
hypothesis
1T i
(C,) ?l"z_zzoﬁi‘f(x)e dc=c, (Vreal A)

and the condition

(R) o fInurasf)-Za(f)Fdus0  (2-0).

Then we have
pad . 1 % - o -~
(C,) gﬁﬁiﬁ(x)e Mde=¢,  (Vreal A)
and

-

c; =

I(—zls'ign/?.)c,1 (A=0)

G =icg+al(f) (A=0).
Proof. By the Theorem F; we have

A+e

g{iﬁ%iﬁ(x)efhdx ngz\/_jg{s(u+s,]§)—s(u—s,fl)}du

in the sense that if either side exists, the other side exists and assumes the same value.
By the Theorem A and the condition (R,) we shall prove existence of the limit of
right hand side of the above formula.
(i)If A#0 By the Theorem 4, we have

A4s A+e
lim

8-’025\/—— L{s(u+€,f}) sy — 5f)}du~(—zszgm1)lzm2£\/_ I{s(u+£,f)—s(u—£,f)}du

(ii) If A =0 By the Theorem 4 and (R, ),we have

lim
&0 28

j{s(u+gf) s(u—- af)}du—lzm J_j s(u+e,f)—s(u—e, f)}du+a(f)

—6'

Thus applymg the hypothesis (C, )we have proved limit of the following formula

A+e
lim

> J—f{s(u+g,f;)—s(u—£,f;)}du (Yreal 1)
g0 £ .

exists.
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The remaining part of the theorem are obvious by the Theorem F; .
16.4 As we have pointed out that the conditions (R;) and ( ﬁo ) are destroyed,

we should correct the Theorem B, Theorem B, and TheoremC
(i) On the case Theorem B,. We have

Theorem B Let us suppose that f € S, and the hypothesis (C, )and the condition
(R,) are satisfied. Then we have that ]7; € S, and the following equality

lim— jzf(x)F dx = zzmm—jxf(x)z de-lcy [+ ]
Proof. We shall prove the following equality

Isz}m |s(u+e, f,)-s(u—g,f, ) dx

&0

=lim-—-—1—-« [s(u+e,f)—s(u~e f)f di—|c, | +]& P.
5%47&9%

and apply the N.Wiener theorem (c.f N.Wiener] ] Theorem22,p.140).
For this purpose we shall divide the integral of left-hand side into two parts

1 2 ~
z;;i{s(u+s,j1) s(u—6,F )P do=— [1ee du+m[[("); du

47[6 wize

=1, +1, say.
Then by the part (i) of the Theorem A (c.f. ibid. I, p.4),we have

I -m'“s(u&s,f) s(u-gf)F du~—-——-— j |(—isignu){s(u+e,f)~s(u—& f)} du

4 {uizg

—_ f |s(u+g, f)—s(u—g, f)I} du

}u'za
and by the part (ii) of the Theorem 4, we have

1 . .
=o— [ Istu+ef)—s(u—eF)f du
Jiss

=L f li{s(u+e,f)=s(u—& f)}+2r(u+e f)+2n(u+e f)[1 )] du
47z

lul<e

= [ifstuts f)=stu=c.f)=NEmal )} + 2+ 5,1 )+ An(u+e.f) = [Za( f)F du

sz
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Here we can apply the Minkowski inequality, and we have by the use of condition

(R,) (cf ibid.I, p.19) and hypothesis (C,) (e.f. ibid. VI, p.133)

L=—— [{su+e,f)-s(u-e.f)}~NZzal(f)F du+0(1) (s-0)

dne wise

=L j |s(u+e f)-s(u—cg,f)Fdu

4”8 iulse

+i\/2;r;(f) .“

wige

iN2za( f) .H
4ne

e

s(u+s,f)~s(u—g,f)du— s(u+e,f)-s(u-€,1)}

|iN2za(f) [ au
4ne

B

nige

=L [ \stute.f)=s(u-s,1)Pdu +icyal )~ iZa( f )+  a(f )T

dre wise

=7S"" j iS(u+$,f)—S(u-—€,f)§2d“ +|ic, }2 +iico‘*‘a(f)f2

tjge

:4—25 [Is(u+e, f)-stu=e.f)fdu~|c, P +&F,
tulse

where & =ic, +a( f)
Therefore we have proved the required formula and we can conclude that f; €S,.

(ii) On the case Theorem B, . We have

Theorem B; Let us suppose that f € S and the hypothesis (C,) and the condition

(R,) are satisfied. Then we have that J?; € S and the following equality

me—%-— e |s(u+e,f)-s(u—g,f ) du
s——»047[g_m

Lo}

lim—— [ & |s(u+g,f)—s(u—g, f)F du=|c, |} +|&,
-0 4ore -
Moreover ,we have by Theorem W, (c.f. II, ibid. pp.25~28)
. 1 A > = » 1 A T 2 ~ 32
fim s [ Ao odi=lim o [ 1Ces if -1y 416

Proof. We have
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20

J= [ |surs, )= s(u-e.F ) du
4ne

—0

1

Z;; !ntz A + e J'em"u du J +J2, say.

iufze luise

We have by the ’I‘heoremA (c.f. ibid. p.4)
gy -~:---— J e‘“"ls(u+£f) s(u— 8,f)§

4 ulze
=-—_-—-je"“[( —isignu){s(u+e,f)-s(u—¢e [ )} du
E (e
_.—————f ™ |s(u+e, f)—s(u—¢g, f)} du.
4re ize

and also we have

J, :mje““is(u+gf) s(u~ sf)j du

lu}<£

=Z-«— f (e -1)|s(u+s.f)-s(u-e.f )} du

lui<e
+T [Istu+e f)~s(u—z,f)F du.
huise

Since f,eS{} by Theorem B, and ¢™ ~1=0(¢) (&> 0), we have

Ex—j(ew Yis(u+s,f)-s(u—e1 )} du= 0{5)lzm—jlf(x)lzdx

ui<e

=0(l) (¢—>0)
(c.f 1. ibid. pp.21~22).
Moreover applyiﬂg the condition (R, ), we have

— [ Is(u+e,f,)-s(u-e7,) au

47[ hise

=L [1su+e f)-stu=e,f)f du~|c,[ +|&[

4rs i
Thus we have

Jy=—— [ & |s(uts, f)=s(u-e,f)F du-|cy +15,F +o(1) (5->0)
dre

Therefore we have

luise

i [ tus ) -stua. )

~_r3
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= lim [ st f)=fu=e, /)P du=ley P 415, P

Thus we can conclude that f,(x)e S by the TheoremW, (c.f. 11, ibid. pp.25~28) and
we have

zfm-’--ff(xw)f”(:)dzm zz'mmL}f(xw)f(t)dt-;c P+lé, P

T QT > ! ' T-» 2T o 0 0

(iii) On the case Theorem C. We have
Theorem C" . Let us suppose that f(x) isa B’-almost periodic function and satisfies

condition (R, ). Let us write its Fourier series as follows

f(x)~ Y ce™

Then its G.H.T. f; (x) is also a function of B’ -almost periodic and has its Fourier
series as follows
h(x)~ 2.~

where
j (~isigni, jc, (n=123..)
C, = <
)\ ic,+a(f) (n=0).
Proof. Since f(x) is a function of B’-almost periodic and so it belongs to the class

S and satisfies the condition (R, ), we have that its G.H.T. f;( x) belongs to the
class § and satisfies the hypothesis (’ ¢ ) (Yreal ).

Let us denote the set A = {ﬂ,,,n = 0,1,2,,..} . Then we have

Ats

,,mmff(x)e i g = lzngzrfg{s(u+s,f)-s(u—£,f)}du

0 (AgA)

. (A€A, A=4,n=012..).
Then we have by the Theorem 4 and condition (R,)
(i) 120

C,
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A+ .
Hazg\/.__.zjg{s(u+s f) s(u—e,f,)}
sﬁo(;:f.n_%) gg{s{u«%a,f)*s(u—s,f)}du
. 1% At s s
:(—zs:gnﬂ)%z_ﬁ-z?if(x)e A dx = (~isigni Jc,
(ii) A=0

i{gg28\1/2_”.:@{3(244«5,;‘,)-—5'(21_&,]?)}

= lim

£->0 23\/_—

js(u+gf) s(u—g,f Ydu+a(f)=ic,+a(f).

Therefore we have by the Theorem F, (c.f. ibid.V1,15.4) the hypothesis ( ¢ 1) (Yreal 1)

is satisfied and we have
"0 (A¢A)
lim —— T Fi(x)e ™ dx=
T 2T .
¢ (AeA, A=24,n=012,..).

"

Since f(x) istobe B’-almost periodic, we have Y |c, f<oand Y |&, < too.

Therefore we shall conclude that fl (x) is to be almost periodic and has its Fourier
series as follows

fi(x)~ > & e

16.5 On the spectral analysis and synthesis of G.H.T. fl( x)

Now we shall going to construct the theory of spectral analysis and synthesis of G.H.T.

fi(x).

First of all we should remark the following results.
Let us suppose that f(x) belongs to the class S and satisfies the hypothesis (C, )and
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the condition({ R, }. Then }; (x) belongs to the classS by the Theorem B, (c.f. ibid.

VI,p.149) and it satisfies the hypothesis (C ) by the Theorem F, (c.f ibid. VI, p147).

Let us denote that @(x) = ¢(x, f ) as the auto-correlation function of f(x) and
o(u)=0o(u,p) asthe GFT of ¢(x). Then since o(u) is a function to be bounded

and monotone increasing , there exist the set A ={4,,n=0,1,2,,..} at most countable

and the o(u) is discontinuous of first kind there and continuous elsewhere. Then we

have
1% it
c, =£%Ef£f(x)e d

Ats
1

.—.,&ng26@l‘L{s(u+£,f)-s{u—8,f)}du

where ¢; =0 (1¢A) and ¢, #0 (1€ A).Weshalldenote ¢, instead of ¢,

and promise that 4, =0 and we may permit ¢, =0.

We have also

. 1 A 2 G(’% + O’ ¢’) - G(l o 0, ¢)
t;%z;;ij;ls(u+a,f)~s{u-s,f)i du = VTS

by the Lemma £ * (c.f. ibid. VI, p.135). Then we have by the Schwaltz inequality
o(A+0,¢)—0c(A-0,¢)
V27

Now let us suppose that f(x) belongs to the class S and satisfies the hypothesis

le, < (Vreal 1)

(C, )and condition( R, ). We shall try the same problem as f(x) toits G.H.T. f;( x).
We shall state them step by step steadily for the sake of completeness.

Step(i) Let us define @(x)= ¢(x, f; ) as the auto-correlation function of /}1( xjand

6(u)= o(u,p) asthe G.F.T. of @(x) respectively. Then we have
if %0

AtE
1

¢, =lim su+£,~ -5 u~8,~ du
) HOZS@;AL{( F)-stu-e. )}
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( zszgn,%)
s(u+e, s(u—g,
=lim—— = j (ut6,f)=s(u=s.f o
= (~isigni)c,
andif A =0

= [lim

£-50 zgﬁ_j;{s(u+3,ﬁ)*s(u~g,;;)}du

mi%zg\f_—;f{s(u+gf) s(u~¢, f)}du

&

2 % T
+£27528\/....j‘r(u+8 f)du+£gnozg\/.?:;:{{rz(u+a,f)-\/;a(f)}duw\»a(f)

=ic, +a( f)
by the Theorem 4 (c.f. ibid. I, p.4) and hypotheses (C, ), ( ¢ .) and condition (R,)

(c.f. ibid. VI, Theorem F,, 147 and p.143). Therefore we have
(—isignA)c, (A#0)

~

c, =

icy+a( f) (A=0).

Step (ii) Let us denote @(x)=¢(x,f) and @(x)=¢(x, f; ) the auto-correlation

function of f(x) and f,( x) respectively. Let us also denote o(u)=o(u,p) and

6(u)=0oc(u,p) the GFT. of ¢(x) and @(x) respectively. Then we have

Arg
] 2y = o(A+0,9)~0(A~0,9) 72
1m-——ﬂ£{s{u+€ Sf)=s(u—sg,1)| Nors (Vreal 1)

by the Lemma E (c.f. ibid. VI, p.153). Since j~§( x ) satisfies the hypothesis( ¢ ) with

the condition (R, jasfor f(x), we have also

A+s

ﬁi’;g""' j | s(u+e, f) s(u~— sf,)l du = a(/%+0,q3\)[;;(/1—0,¢) (VYreal 2)
&-—e

Therefore we have by the Theorem A
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1 A+s . -
if %0 lim— [ |s(u+e,f,)-s(u—¢.7,) du
20 4ng 7
1 A+g . 5
=z”§zw |(—isignu){s(u+¢&,f)—s(u—& )} du
By 7[1_8
Ate
wizﬁz—m_fls(ui-g f)-s(u~z, f)[du
andif 4A=0 i%mf!s(u+g f) s(u~ sf)] du

»~zzm——j;z s(u+e,f)=s(u—g,f )} +2n(u+e,f)+2n(u+e,f)f d

-0 4ze

where the integrand rewrite as follows

i{s(u+se,f)-s(u—g,[)} +2r(u+e, f)+2n(u+e, f)
=i{s(u+e,f)-s(u=¢,f)-iN2za(f )} +2n(u+e,f)+ Z{rz(u +e,f)- %-a(f)}
and since we could apply the Minkowski inequality , we have

Izm——---fls(u+sf) s(u—¢,f,)Pdu

&0

-lzm————j|z{s(u+8f) s(u—¢,f)}~iN2za( f)} du

&-»0

Furthermore we shall expand the integrand as follows

_}__f|z{s(u+a,f)~s(u~g,f)}—z\/i?a(f);z du
4ne

z—}-j‘}s(u+€,f)—s(u-s,f)}zdu
4ne °,
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- AL i{s(u+a,f)-8(u—6’,f)}d“ a(f) .{{S(“““gf) s(u=&.f dut|a(f)F

2627 2,

and we shall also remark that

mlzmwj'f(x)dx s-»og J_;_f{s(u%»g,f)-s(u-‘&f)}du

by the one-sided Wiener formula (c.f. ibid. VI, p.185). Therefore we have

lzm:‘i—— |s(u+e,f,)-s(u—s,f ) du

m,,,,,_._f;, s(u+s,f)~s(u-g,f )} ~iN2na( f )} d

-0 4re

~zzm_--jg,s(u+gf) s(u—s,f)Pdu +|icy+a( ) ~lc, |

&30

Thus we shall conclude that
~
o(A+0,¢)—0c(A1—-0,¢) (A#0)

V2r

o(A+0,4)-o(A-0.) _ |

2z

004 0) OO0 y|icy +a(£)F ~Ic,

V2r

.

P (A=0)

Since ]; (x) belongs to the classS and satisfies hypothesis (| ¢ . )., we have that

6(u)=o(u,$) isabounded and monotone increasing function. and so there exists A
the set of A to be at most countable and &(u ) is discontinuous of the first kind there
and continuous elsewhere. By the arguments of Step(i) and Step(ii Jabove, we shall

conclude that the set A is just the same the set A and we have
F —o(A-0
o(A+0)-0c(A-0) (A%0)

2z

G(A+0)-5(2-0) _ |

2z

IO) () 4 \icy +a(£)P ~1cy P

N
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and furthermore we shall write the above formula as follows

(0,  (AgA)

G(A+0)—-6(A-0) = o(A, +0)~0(A,~0)
2z 2r ’

o(0+)— (0~ .

(O) =900 4 icy+a(£)F ~1c, B, (A=0)

2z

Step(iii) In the first we shall remark that the following formula is satisfied

(A, eA,n=123,..)

Are

Izm—«-—m j Ji(x)edx = lim j[.;z_lgg{s(u+s,fl)~s(u~£, Fldu  (¥real 2).

in the sense that either of the limit exists, then the other limit exists and assume the
same value {(c.f. ibid.VI, Theorem F} ,pp.141~2; Hypothesis( (8 2 /) p.146;Theore B; ,p149).

Then we have by the Schwaltz inequality

Ate

1 7 7 2
| P lim | (st f)=s(u=s,J )]

Avs

jts(u+sf) stu-sf)f &

< lim
&0 25 ”-

_0(A+0,9)-0(A-0,9)
2r ’

Therefore we have

Z{E” 125 o-(w>é§)\}"§;("°°:¢) <00

and so there exists B’ -almost periodic function g2(x) and its Fourier series

B(x)~ ) G,e™
n
where we shall denote ¢, instead of ¢, .

Since we have already shown that f,( x) satisfies the hypothesis ( ¢ ./, we have
17~ 17
. ~iAx g I P —iAs
lim — jT Ax)e e = lim— jT g(x)eMdx  (Vreal 1).
Then we shall set

Filx)—-8(x)=h(x), say
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and we shall prove that l;( x) belongs to the N.Wiener class S . This can be done just

the same arguments as the decomposition
f(x)—g(x)=h(x)
of the Theorem E” (c.f. ibid. VI, 15.3, Step.(iii ), p.137).

Thus we have proved

1 L. - 1 7. - 17 _

lim— | h(x+1t)h(t)dt = lim — x+1)fi(t)dt —lim— | g(x+1t)g(t)dt
Tesz_fT( Jh(1)d MZT_ITfl( )fi(1)d MzT_jTg( )&(t)
Step. (iv) We shall also consider the auto-correlation functions of f’ , £ and h

P(x)=p(x.f,), W(x)=y(xg) and Z(x)=x(xh)
and their G.FT. o(u,¢),0(u,y)ando(u,y)
Then we have proved in the Step (iii)

o(x, f,)=w(x,8)+ x(xh)

and therefore we have also
o(u,p)=c(uy)+o(u,z).
Thus we have proved that o(u,}) isa bounded, monotone increasing function.

Therefore we could apply the N.-Wiener theorem (c.f. N.Wiener[1], Theorem 24,pp.146-9)

T ~ ~
llmij‘lﬁ(x) !ZCZ)C:Z{O-(/I” +0’¢) O.(ﬂ'n O’¢)_ En |2}
T—)oozT_T - (27[

In particular o(u)=o(u,) is continuous everywhere, then it is satisfied by the
results of the Step (ii)
O-(ﬂ'n + O’ (5) - O-(ﬂ‘n - 0/‘ @) _ O.(/’i’n + O’ ¢) - O-(ﬂ’n - O’ ¢)

2z 2r

=0, (4 €A, n=123.)

and

0 ,-~ - 0—7~ 2 ~ 12 2
"(””jg( P yafIP, & Paa(f)P  (A=0).

Therefore we have proved
17 -
lim— | |h(x)[dx=0.
lim — j e

We shall call it Theorem G; .
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17 'The Spectral Analysis and Synthesis of the G.C.I. C\(z,f).
We shall define the G.C.I.of f(x) as follows

F(2)=2C (2 f) =Py EE! f f(t) dt

27i J t+i z—t
and we shall going to construct the theory of spectral analysis and synthesis of G.C.1.
C\(z, ). We shall state them step by step steadily for the sake of completeness.
Step (i) Let us suppose that f(x) belongs to the class § and satisfies condition

(z=x+iy, y>0)

(R,) Letusput F(x)r—'f(x)«}»i;‘,(x) then f,(x)amil"’(x)belongtotheclasst

and then we could apply Theorem 4 and Theorem D, to f{(z) = C,(z, F )and therefore

we have
If |u|> & ,then we have

s(u+g,']ﬂ(z))»s(ums,'ﬁ(z))={—i—ifzi‘g—nu—z[{s(u+g;F)ms(uw$;F)}+t;,(°u,y,6’;F)}

where

s(u+g;F)—s(u~s;F)={s(u+g;f)~s(u—-a;f)}+i{s(u+g;j~§)—s(u~e;f’,)}

= (1+signu){s(u+&; [ )—s(u—&; )}

and then we have

s(u+e; fi(z))-s(u—¢g; fi(z))
=Q‘%—W[2{s(u+e,f)—s(u—s,f)} +ro(u,y,s;F)]

where ﬁz)gél;m;[s{ rn(uye F) Pdu=0.
If |u |< £ ,then we have
s(u+e; fi(z))-s(u—¢g; fi(z))=in(u+e F)+in(u+e; F)+r(u+e,y, F)
where
in(utre F)+in(ut+e; F)=s(ut+e;F)-s(u—eF)
={s(u+e;f)-s(u-—£;f)}+z‘{s{u+s;f;)—s(u—-£;f§)}

= 2in(u+g f)+2in(ute; f)
and then we have
s(u+e; fi(z)-s(u—¢; fi(z))
=2n(u+g; f)+2in(u+e, fl+n(ut+ey F)
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where

Zimifitg(u,y,s;f)lz du=0 and lim— j (n(u+ey;F)F du=0
50 23“ 5@0285‘"‘( \e

u<s

and there exist constant af f )such as

1 V4
(R,) {;{ig*i;w;[glfz(%% &1 f)=\za( 1)} du.

Step (ii) Now we shall intend to prove that f,(z) belongs to the class.S . This can be
done by the application of Theorem W, . We shall estimate it by the integration by parts

and apply the Lemma E~ .
Let us estimate the following integral

Z;g;je”‘" | s(u+e: fi(z))~s(u~e; fi(z))[" du

=L f e | du+—— I e |"Fdu=1+1, say.
4?33 luize julse
We have
1 ar o (1+signu) 2
b= [ V2 st e, f) = s(ums. )} iy, F)] P
T 5 2

, :Jm?e""‘ le™ {s(u+e f)-s(u—e f)}} du+to(l) (¢-0)
2me

by the Minkowski inequality and we have

(x-2yju %

wﬂg’«ief‘“iz”“ Is(u+é&,f)~s(u—s,f)F du= ¢ j}s(v-}-e;f)ms(v-—s;f) P avi

wwieﬁuw“ ﬁ’ s(ve f)-s(v-&f) }2 dv]d“
e & £

by the integration by parts.
Now we have by the Lemma E’

2z

—-I-—?is(v+g,-f)—s(v-g,~f);2dv»M (€-0)
4rze z
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and
é:‘ls(v+e,‘f)—s(v—s;f)lzdv»ﬂ—zf-)—:\/é%@-ﬂ aeu (£->0)

boundedly. Therefore we have

I =—4(ix-2y )?e( -2y e wdu +0(1) (£->0)
% .4

2z

Next we have
1, :ZL j e \s(ure; fi(z))—-s(u—¢g;f,(z)F du

i<e

=—~—L j e | 2in(u+e; f)+2in(u+e fl+n(u+ey, F)I du
4z v,

where let us remark the following properties

2 - : 1 . 2 -
[1ncu+e f)f du=0 lim— [In(u+e,y,F)f du=0

.1
l im——
£ 28 lujge n|se

and the condition

(R) 3 atf): lim [ In(ure f)-|Za(f)P du=0.
0 Qg 2

ujss

Then we have by the Minkowski inequality

L= [ In(use.f)=\Za(£)F dutla( 1)1 +o) = a()F +o)

4” 7
(€—>0)
Therefore we have proved
tim —— [eIs(u+e fi(z)-s(u~s;f,(z)) du
&0 4pg 7

=—a(ix=29)[ e S 2O gy o .

V27

Thus we have proved  f,(z)=2C,(z; f)=C\(z; F )where F(x) = f(x)+if,(x)

belongs to the class S by the Theorem W, . We shall present it as follows

161



KSTS/RR-17/005
June 8, 2017

T
(35 () = fim e | ACx 0y 0y

-lmgz—1-~ e |s(u+e; fi(z)—s(u—¢; fi(z)) du (z=x+iy, y>0)
-0 4ore
Step (iii) Let us suppose that f(x) belongs to the class S and satisfies the

hypothesis(C, ) and the condition(R, ). Then we shall notice that G.H.T. f; (x)

satisfies the hypothesis(C, ) too.

Now we shall prove

W e, (A#0)
;Z;;mjf(z)e*’*"dx <
ia(f) (A=0)

where z=x+1y, y>0. =

For this purpose we shall need the support of the Theorem F; (ibid. IV, p.141). There
we have

Ave

hmmff(z)e i = iz_iréz \/.__. j {stu+e fi(z))-s(u—g; f(z))}du

where z=Xx+1{y, y>0.Then we shall intend to estimate the formula in the right

hand side with aide of the Theorems D, , D, (c.£. ibid. I11, pp.47~8) and Theorem 4 (c.f.

ibid. I, p.4).
(i) Thecase A#0.
We have by the Theorem D,
st 3 fi(2) = (u=s; f(2) = LB e (63 F ) = stu-:F )} + (2,85 F)

where F(x):f(x)-&if;{x) and we have by the Theorem 4
s(u+e, F)—s(u—¢g;F)

={s(u+e;f)—s(u—a;f)}+i{s(u+e;f§)-—s(u~s;f’1)}
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={s(u+& f)—s(u—s; f)} +i(~isignu){s(u+¢; f)~s(u-&: f )}

=(1+signu){s(u+¢&; f)-s(u—¢; f)}

Therefore we have

Avs

[ (ot sifiz)=stu=sify(z )

lim
&0 25 ,‘

A+rg
=lim ngf“ims'zgw " {s(u-+s: )= s(u=s f

» . Ate
e e [ st e

where we shall use the condition

lzmw—» j v (w36, F)F du=0

for the estimation of the remamdet term.
Since we have by the Theorem F,

A+g

_" {s(u+se; f)-s(u—s; f)}du

A-g

_ PR
ol [ Sty

we have proved

sz——-ff(z)e“‘“dx M—'—)—w e,

T 2
(ii) The case A=0.We h,ave by the Theorem D,
s(u+e; fi(z)—s(u—¢g; fi(z))
=in(u+e F)+in(u+e F)+rn(u+ey F)
where in(u+ e F)+in(u+e F)=s(u+e F)—s(u—¢g; F).
and we have by the Theorem 4

s(u+s;F)~s(u-8;F)n{s(u+8;f)——s(u——5‘;f)}+i{s(‘u+a;ﬁ)-s(uwe;f1)}

=2in(u+e; f)+2ir(u+e; f)
Therefore we have
s(ute; fi(z))~s(u~¢g; fi(z))=2in(u+sg; f)+2in(u+e f)+n(u+sy;F)

where we shall notice the following properties
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lzm———— [ r(uye f)P du=0 and lzm-m- [ m(uyeF)f du=0

e~«)0
wi<s iulsS

and the condition

(R,) lzm— j bt 3,85 1) =\ Zal f) P du=0

Therefore we have by the condition( R, )

%zg i) j {s(u+e; f,(z))~s(u—g; f(z)}du=

1
e | 200 (U + E; f U+ 2ir(u+¢g; f )du+ ri{u+eg,y F)du
> ,-—ML (u+s;f) f'",lg (5 f e+ — ,-.ML 3

= 283;'_._.({"2(2%8 f)- [a(f)}du+ia(f)+o(1)= ia(f)+o(1), (£-0).

e

Thus we have proved

J' {stu+s; fi(z)-s(u-g f,(z)}du

lulze

17 1
lim — z)dx = lim
Tow 2T _";ﬁ( / 0 2g4/2
= ia( f).
Remark. We shall consider as for f,(z)=2C,(z,f) insteadof f(z)=C,(z,F),
F(x)= f(x)+ iji( x) and apply the first half part of the Theorem D; . Then we have

the followings.
(i) |ulz e

s(u+&; fi(z))=s(u—g; fi(z)) = (1+ signuje™ ({s(u+¢; f )= s(u—&;; f )} +ro(u,,8; f))
where

= [ 10wy f)F du=ol), (0.

26" (25

(i) |ul<e
S(ute; fi(z))—s(u—g; fi(z))=2in(u+e f)+2in(u+e f)+2r(u+ey,F)
where F(x)= f(x)+if,(x) and

= [ Rursif)P du=o(), — [ In(u+eyiF)F du=o(l), (s-0)

luise i<
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and
(R) o= [Wuss:f)-[Za(f)f duzol) (s->0).
fuiss

Then we have

(i) 2120
lim— ‘/_Jjg{s(u-u: fi(2)—s(u—g; f,(z)}du
Ate
=(1+ signu Je {gygz }wi{S(u-*'g’f) s(u—¢g; f)}du
(ii) =0

%Zsf—wiﬂ S(u+&; fi(z))~s(u—e;; f(2))}du

. — ._ﬂ; 7, =7
=tim WL{'&(H& f) \[;a(f)}duwa(f) ia( f).

Therefore if we apply the Theorem F;, then we have

((1+signije™c, (1%0)

2 1 T ~iAX —
Y{%ﬁaj;ﬁ(z)e d = <

ia(f) (A=

.

where z=x+iy, y>0 and

mlzm———— j f(x)e™dx (V¥ reall)

T 3T
Thus we have obtained the same results as above. The second proof, it may be more
simple than that of the first.

Step (iv) There exists B, -almost periodic function G(z) (z=x+iy,y > 0)as for
variablex and any y >0 of which Fourier series are as follows

G(z)~ Y (1+signd, Je,e* (z=x+iy,y>0)

nxl

where
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. 1 T ~idyx
cnmgmﬁif(x)e dx (n=0,123..)

Beeause we shall remark that

G(x,y)~ia( f)+ Z (1+signl, Jc,e ™ ™
A, >0

where

c,e et = e = ¢ gt

therefore we shall write G(z)} asfor G(x,y).

Then we have

lzmmjf(z)e ""afxwlzm——f(}(z)e"‘“dx (Vreal 1).
T 2T
Becauseif A €A, then A =4, forsome 7 and so we have

((1+signi, Je™c., (n%0)

;. 1 r iRy x . 1 % ~ihyk 3 _
;%ﬁiﬂ(z)e dme{ﬁ%LG(z)e dx={

ia(f), (n=0).
and if 4¢ A, then we have

hniw j fi(z)e P dx = lzm---— J‘G(z) =0,

Therefore if we set f;(z) G(z)-—H(z),then H(z) belongs to the class § and we

have

Izm~»—-fH{x+t+gr)H(t+zy)dz hm—-~jf(x+iwy)f(t~i~zy)dt ltm——-—_[G(xHMy)G(t-l—ty}a’t

Now let us denote @(x,y; f,(z)), w(x,y;G(z)), and y(x,y;H(z)) as for their
auto -correlation function of f,(z), G(z),and H(z) respectively. Let us denote also
o(u,y; @), o(u,y;w), and o(u,y;y) asfor their G.F.T. respectively.

Then we have
o(x,y; [(2) =w(x%,y;G(z))+ x(x,y; H(z))
and
o(uwy;p)=oc(u,y;y)+o(uy x).
Since the o(u,y; y) is bounded and monotone increasing function, we have by the
N.Wiener Theorem (c.f. N.Wiener| 1 ] Theorem 24, pp.146~9)
wawslim ?,.t Hex+ip)P o =ZC20 OO _ig01 )0

N
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. {0'(/1,, +0.9:0) = 0(%, =0.y:0) _ ). v ,z},
N2 "

A,>0

Step (v) We have by the Lemma E"

o(0+.yi9) =00~y 0) 4y, 1 f\ S(u+&,y; fi(z))=s(u-£,; f,(z))[" du

27 =>047e 7
We have also by the Theorem 4 and Theorem D,
(i) 1>0
o(A+0,y,0)-0(A-0,y,9)

2z

Ate

—lzm——-———f}s(u+gy,f(z)) s(u— gy,f(z))l du

0 47¢

(ii) A=0 If |ul< &, we have
s(u+e,y; [i(z)—s(u—g,y, fi(z))=2in(u+e; f)+2ir,(u+e; f)+2r(u+ey, F)

where F(x)= f(x)+if,(x).

We have also by the hypothesis (R,) and he Minkowski inequality
o(0+,y:;¢)-0(0-y:p)

N
=tim—— [ Is(u+ s,y fi(2)~s(us,y; ()P du=ia( )P

-0 471

[u|<e

Therefore we have

{am +0;0)-0(A,-0;0) lce""ylz}
2z " '

In particular if the o(u,¢) is continuouson u >0, then we have

lzm-—«~I|H(x+ly) Pdx =4
A, >0

17 o
£%E£‘|H(x+ly)|dx—0 (Vy>0).

We shall call it as Theorem G, .
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