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Abstract

Linear and nonlinear evolution equations have been formulated to address prob-
lems in various fields of science and technology. Recently, a method called expo-
nential integrator has been attracting some attention for solving these equations.
It requires the computation of matrix functions repeatedly. For this computation,
a new method called the Inexact Shift-invert Rational Krylov method is explored.
This method determines the appropriate shifts in the simple way. Furthermore, it
realizes efficient computation, while guaranteeing accuracy.
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1 Introduction

Evolution equations are used in various fields of science and technology, e.g., the heat
equation in building physics [24| and the Burgers equation in fluid mechanics [17]|. Let
Q) C R? be an open set, 9Q = 0Q;|J I be the boundary of €, and n; be the unit
normal vector of J€2,. In addition, the time space is defined as [0, 7], where 7" > 0 is the
maximum time we are interested in. [ € N is defined as the order of the time derivative.
The problem is defined in [0,7] x Q, and its solution is defined in V. V is the Hilbert
space contained by L2([0,T] x Q). Let D be a linear or nonlinear differential operator on
V, and &, n, 71, T be known functions. The following initial boundary value problems are
explored:

ou ,
i =Du in (0,7] X_Q,
u=¢ on {0} x Q, )
u=n on (0,7] x 0%, (1)
ou
— =T7u+ 7 on (0,7] x 0.
\ 3nb

*School of Fundamental Science and Technology, Graduate School of Science and Technology, Keio
University, 3-14-1 Hiyoshi, Kohoku, Yokohama, Kanagawa, 223-8522, JAPAN.
yukahashimoto@math.keio.ac.jp

"Department of Mathematics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi,
Kohoku, Yokohama, Kanagawa, 223-8522, JAPAN.
nodera@math.keio.ac.jp



KSTS/RR-17/001
January 27, 2017

A different algebraic equation is derived from a spatial discretization with the finite ele-
ment method or finite difference method:

{My'(t) F(y(t)),
y(0) = v,

(2)

where M € R™ ", and F is a vector valued function. It is assumed that M is invertible.
If D is linear and does not depend on ¢, equation (2) is the linear ordinally differential
equation of the first order, and its analytical solution is represented as:

y(t) = po(tM L) (v + L e) — L7 ¢, (3)

where L € R™" ¢ € R™ and ¢y(2) := €* [10]. On the other hand, if D is nonlinear or
depends on ¢, time discretization is also needed for integrating M~'F(t,y) and finding
solution y(t). The exponential integrator [12,13,15,16] is currently the popular method
for time integration [10]. In general, at each step, F'is rearranged as F(y) = L;y(t)+n;(y).
For the 1-step method, the scheme is computed as follows:

K1
Yik = Go(cr DM ™ Liiy )ys + ALY arg(AEM ™" Liyy) M~ ny(Ya),

)
Yir1 = Go(AtM " Lipq)y; + At Z b (AtM 'Ly )M 0y (Yig),
k=1

where v € R", At is the step size of time, and ay;, by are coefficients which consist of
¢-functions. ¢-function is defined as

Go(z) := €7,
i) = 2w

z

k=1,2,....

For the r-step method, the scheme is computed as follows:

r—1
Yir1 = Go(ALM " Liq)y; + At Z rYk(AtMilLi—o—l)Milkai ; (5)
k=1

where N; := n;(y;), and VFN; and 7, (2) are defined recursively by
VONZ' = Ni7 VIH_INZ‘ = VkNl - kai—l s

() = i(2), () +1= Y (),

Various methods for computing matrix ¢-functions have been developed [6, 13, 18-21|.
The Krylov subspace methods are efficient, because the matrices resulting from the spatial
discretization of problem (1) usually become large. The most simple and well-known
method is the Arnoldi method. According to Hochbruck and Lubich [13, Theorem 5],
Arnoldi method may require a number of iterations if the numerical range of AtM 1L,
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is widely distributed. The matrices coming from the spatial discretization of problem (1)
often have a wide numerical range, so the Arnoldi method is not the best choice for
computing ¢-functions in the exponential integrator. In order to resolve this issue, the
Shift-invert Arnoldi method (SIA) was proposed by Novati [21], and the Rational Krylov
method (RK) was proposed by Beckermann and Reichel [1]. RK is a generalization of
SIA, and it was also proposed by Giittel [8] and Gockler [7]. According to Gockler [7],
sIA and RK converge independently of the width of the numerical range of AtM 1L, ;.
However, the s1A and RK have drawbacks. Firstly, solving a linear equation in each
step is necessary. The computation cost of solving this linear equation is significant in
the s1A and RK. To address this issue, the Inexact Shift-invert Arnoldi method (ISIA)
was proposed by Hashimoto and Nodera [10]. This method solves the linear equations
efficiently while guaranteeing the accuracy of the solution. The computational time can
be reduced using the ISIA, but this requires a shift, and choosing the appropriate shift is
difficult. This situation also occurs in the SIA and the RK; this is the second shortcoming
of the S1A and the RK. RK needs different shifts in every step of the Krylov process, so
choosing the appropriate shifts is integral. The ways choosing the appropriate shifts in
SIA and RK for ¢y and other functions have been discussed at length, for example [5,9, 23].
However, the optimization problem must be solved for each shift, or they are only suitable
for ¢o, and not for general ¢ functions. Gockler |7] proposed a simple way of choosing
the shifts for general ¢-functions of nonsymmetric matrices. According to his paper, the
optimal shift for STA changes at every iteration, although only one shift is permitted for
the siA. He also proposed a method for the RK, but this involved complex values. Thus,
if matrices M and L are real, we must treat complex values due to the shifts. This results
in increasing the computational cost needlessly. In summary, the existing methods for
choosing the shifts are not realistic in this scenario. To resolve these issues, a new method
called the Inexact Shift-invert Rational Krylov method (ISIRK) is proposed in this study.
The Shift-invert Rational Krylov method (SIRK) is used to solve the second problem.
The appropriate shifts for ¢-functions in real value are determined in a simple way, and
this choice of shifts results in a faster convergence. In addition, the Inexact Shift-invert
Arnoldi method (ISIRK) is used to solve linear equations in the SIRK efficiently. The
similar discussion for the 1SIA is also valid for the SIRK. ISIRK makes the computation of
¢-functions efficient.

1.1 Notation

The norm is defined as ||-|| = ||||2, and the 2-norm condition number of matrix A is defined
as k(A). e; represents the jth column of identity matrix /. The n x n identity matrix is
also represented as I,, when its dimension is emphasized. Let C~ := {2z € C| R(z) < 0},
Ct:={z€C| R(z) >0}, and W(A) := {u*Au | u € C", ||u| = 1} be the numerical
range of matrix A.

2 Krylov subspace methods for computing ¢-functions

In this paper, ¢(A)v is computed to simplify the notation. The method for computing
dk(AtM ' L; )M ~'v is based on the method developed by Hashimoto and Nodera [10].
Throughout this and the next section, it is assumed that W (A) C C~.
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2.1 Shift-invert Arnoldi method (SIA)

Let 5 = ||v]|, and v; = v/f be the initial vector. The m-step Shift-invert Arnoldi process
is:

hjsr,vj01 = (W] — A)” th JVk 5
hig = vi(yI — A)"l,

(’7] A Z hk]vk

hjy1 =

where v > 0 is a shift. This relation is expressed with matrices as:

V(v I = A) 7'V, = Hy, (6)
where V,,, = [v; -+ v,] is an n X m matrix whose columns are orthonormal, and H,,
is an m x m upper Hessenberg matrix. {vy, ..., v,} is the orthonormal basis of the

Shift-invert Krylov subspace which satisfies:

Span {vi, ..., vy} =Span{v, (v[ —A)"'v, ..., (v — A"}
={r(Aw| re Pm,l/(fy— )"
where P, is the set of polynomials of a degree less than m. ¢x(A)v can be regarded as

f((vI — A)~Y) v, the function of (I — A)~!, where f(2) := ¢p (v — 27'). Therefore, if

H,, is invertible, then the matrix function is:
or(A)v ~ BV Vi f (I — A) o m Vi f (Vi(vI — A)7'V,,) Viw
= Vi f(Hp) Vv =1r(A)v. (7)
for some r € Py,_1/(y — 2)™ 1.

Gockler showed that the error bound of approximation (7) does not depend on W (A) |7,
Theorem 5.9|.

2.2 Inexact Shift-invert Arnoldi method (ISIA)

SIA requires solving the linear equation to compute (v —A)~'v; in every step of the Krylov
process. Hashimoto and Nodera [10] proposed a method for solving this linear equation
efficiently while guaranteeing that the generalized residual [14] would become smaller than
the arbitrary tolerance. This method is called the Inexact Shift-invert Arnoldi method
(1SIAP), and the exactness needed for solving the linear equation decreases with each
iteration.

2.3 Rational Krylov method (RK)

Let # and v; be the same vectors as Section 2.1. The m-step Rational Krylov process is:

hjr1,vie = (1 — A)” thgvk7
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hiy = vi(yd — A) "oy,

hjy1 =

J
(’}/]I — A)_lvj — Z hk,jvk
k=1

where v; > 0 (1 < j < m) is a different shift in every step. This results in the orthonormal
basis {v1, ..., Ums1} of the Rational Krylov subspace which satisfies:

Span {vi, ..., Umi1} =Span{v, (il —A)""v, ..., (vl — A) v}
={r(Av| r € Pu/am, @n(z)=(n—2)...(9m —2)}.

Let Vi, = [v1 +++ vp). or(A)v is approximated as

Or(A)v = Vi 10k (Vi s 1 AV 1) Vi v = 1(A)v, (8)

m

for some 7 € Pp/qm, qm(2) = (1 —2) -+ (Ym — 2).
Gockler shows that under the appropriate choice of shifts +;, the error bound of ap-
proximation (8) does not depend on W(A) [7, Theorem 7.8].

3 Shift-invert Rational Krylov method (SIRK)

We consider extending ISIA to the rational approximation with more than one poles.
However, before the extention, the shifts for the approximation, is considered. The new
method, SIRK, addresses the issue of the shifts.

The m-step Rational Krylov process derives its relations in the same manner as illus-
trated in section 2.3:

Vm = VmHmDm - Avam + ('}/m[ - A)hm+l,mvm+le:7,a
Vi (vl — A) WV = Hy(I — Hyy Doy + Y Hy) ™t =2 K, (9)

where D,, := diag{~, - ,7m}. However, in the SIRK, the shifts 7, = N — j € R, where
N € N satisfies 7; > 0 (1 <" j < m) are used. The simplest way of determining N is
setting N = m™* 41, where m™* is the maximum iteration number. If H,, is invertible,
the matrix function ¢x(A)v is approximated as:

Sr(A)v = fu (3l — A) v

= Vi S (Km) Vv

where f,,(z) = ¢r (Ym —27'). Approximation (10) is for the function depending on m
with the matrix depending on m.

The next consideration is the Rational Krylov subspace constructed by the SIRK. Let
X; = (Il =A™ (1<j<m). ~is defined as 7, = N — j, so X; is denoted as:

Xj= (il = A7 = = (ym = 9) X)X = ([ + (m = j)Xin) " X (11)

3
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From relation (11), the Rational Krylov subspace generated by the m-step SIRK is repre-
sented as:

Span{v, Xjv, ..., X, qv}
= Span{v, (I +(m —1)X,) "X, ..., (I +X,,) ' X0}
={r(Xn)v| 7€ Pn-1/¢n-1, gm(z) = 1+mz)...(1+2)}. (12)

The following proposition shown by Beckermann and Reichel [1] is valid from relation (12),
and the following theorem regarding the convergence of SIRK is deduced:

Proposition 3.1 Let ¢,,(2) := (1+mz)--- (14 2) and P,, be the set of polynomials with
a degree less than m. Furthermore, let Pp_1/¢m-1 = {p/Gm-1| P € Pm_1}. Then, for
VT € Pm—l/Qm—l;

T(Xpm)v = Viur (K Vo, (13)

Theorem 3.1 Let H(IL) be the set of holomorphic functions on a closed and bounded set
MICCtoC. Let 1 < C <11.08, and f(2) := 01 NN (1 — s (k= 1)lds. It is
possible to choose the closed and bounded set X satisfying U;V:_ll W(X;) CX CC*. With
this 32, for 1 <m < N — 1, the error bound of SIRK is estimated as

165 (A)v = Vi fon (K ) Vol < 2CJolle™ min —lf —rls, (14)

T m—l/Qm—l
where || - ||s is the norm of H(X), which is defined as ||g||s = sup,ex, |9(2)]-

Proof : Since W(A) C C~ and v, = N —j > 0, W(X;) C C* is satisfied for all j in
1 <j < N —1. In addition, W(X,) are bounded. Thus, it is possible to choose a closed
and bounded set ¥ C C* which contains U;V:_ll W(X;). From the fact ¢(A) = fi(Xon)
and Proposition 3.1,

= || fin(Xin)v — 7(Xon)v = Vi firn (K ) Vi v + Vi (K Vol (15)

is derived for r € P,,_1/¢m_1. Since all the poles of functions in P,,_1/qn_1 are real
and negative, Py,_1/¢m-1 € H(X). In addition, f,, f € H(X). From equation (9),
W(K,,) € W(X,,), and from Crouzeix [4], there is 1 < C' < 11.08 such that:

[ fin(Xin) = r (X)) | S C|| fin — 7l (16)

[ frn () = 7 (Eo) || < C[ frn = 7|
7 € Pp_1/Gm-1 is arbitrary, and ¢y, is represented as ¢y (2) = fol e (1 — s)*1/(k — 1)\ds,
so it is deduced that:

[0k (A)v = Vin fon (Kn)) V0|
< min o [[[fn(Xn) = (X [H[oll + [[fn(Bo) = (B [Holl] - (. (15))

r€Pm—1/qm—1

<20l _min Alfm—rls (- (16))

m—1/dm—1

= 2OHU“T€ min suzp|gbk(N—m—z_1) —r(z)]

’mel/mel zE

6
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— QCHUH min sup /1 es(mefz—l) (1 - S)k_l . es(me) (efs(me),,,(Z)) ds
T€Pm—1/am-1 zex | Jo (k=1

L] gkt 1
<2C|v||  min  supleNT™ {/ e ¥ 1¢d8—/ e_S(N_m)T(z)ds}
0 0

r€Pm—1/qm-1 2% (k - 1)!

1 (1= s)F 1
=2C|v|| min  suple ™ {/ N (s —/ eN=sN=m) g 7‘(2)}'
0 0

T€EPm—-1/Gm—-1 2eX (k - 1)!
1 k—1
1 (1 —
=2Cv|| min e sup / elV—s2 1¢ds —r(z)|.
r€Pm—1/qm—1 zeX |Jo (k - 1)!

O

Choosing 7; as N — j results in the space Pin-1/Gm—1 expanding with each iteration,
because ¢y, has the form ¢,,(z) = (1+mz)--- (1 + 2). Therefore, min,ep,, /g, . [|f —7x
in error bound (14) becomes smaller as m becomes larger. In addition, e”™ becomes
smaller as m becomes larger. The term e~ accelerates the convergence.

4 Inexact Shift-invert Rational Krylov method (ISIRK)

At this point, it is possible to extend the ISIA to the rational approximation with SIRK.
It will be shown that a similar discussion for ISIA is also valid for SIRK, and an Inexact
Shift-invert Rational Krylov method (ISIRK) will be proposed.

For j = 1...m, let Z; be the inexact solution of the linear equation (v;/ — A)z; = v,
and f;° := x; — Z; be the error vector for solving the linear equation, and let R;)° :=
[y <o Y], where 77 i= vy — (v;1 — A)Z; is the residual vector for solving the linear
equation. The following relation is derived by computing the m-step SIRK process in
the same way as Section 3. However, in this case, the linear equations must be solved

inexactly at every step.

j+1
(3l = A) oy = £ = higug,
k=1
1
v = D g (L — Ao+ 137,
k=1
Vin = VinHp Dy — AV Hpy + Bt i (Y — A) e, + RS,
(v — AV, = VmKn_zl — P r,m(Ymd — A)Um—kleian_ml - R%SH;17 (17)

where V,,, is the n X m matrix with orthonormal columns, H,, is an m X m upper Hes-
senberg matrix, and K,, = H,,(I — H,,D,,, + YmH,»)~'. The matrices V,,, H,, and K,, in
equation (17) are different matrices from equation (9). For the approximation, the same
fomula used by the SIRK is employed:

Let fm(z) = fm(z7'). The error of this approximation, using Cauchy’s integral formula,
is

Ep = J?m('yml — Ay - mem(Krgl)V*U

m

7
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2 Z / FnO) [AL = 3 + A) 7o = VoA — K1) 7 Vi) dA
m

=5 / Fm(N)eimd, (19)

where T is a contour enclosing the eigenvalues of v,,/ — A and K1, et = [(A] — 7,1 +
Ao — V(M — K217 'WAu]. Let f(z) = 1/(A — z71). Then, ()J — Al + A7 =
F (I — A)~Y). If SIRK is applied to function f, V(A — Kngl)—lv;v = Vi f (K ) Vv
is the approximation of f ((7,,] —A)™')v. The error bound of this approximation is
represented in the same manner as Theorem 3.1:

1F (] = A))o = Viu f(Kom) Vi
= repnfr_lj?qm_l 1f (Xm) = (X)Ll + 1 (Kom) = r(K) [ 0]]
< 20| . Pginqul 1f =l (20)

where X is the same set as Theorem 3.1. In this case, fdoes not depend on m, so the upper
bound (20) decreases as m becomes large. Therefore, this approximation converges. Using
equation (17), the residual r' of this approximation for the linear equation is represented
as

i = g — (AL = 3D + AV (A= K1) Vi
=0 = AV (M = K07 Vo + (3 — AWM — K1) Wiw
— 0= AV, (A= K07 Vi
+ [V K, = ot (v ] — A)vm+1e H,'— R¥H'| (M- K,")
— 0= VM = ;1) (M = K0 7 Vi
— Bt (Y = Avgret, Hot (M — K07 Vo — RYPHY (M — K1)
= [P m (] = Avprelt Hyl — RH,Y (M - K1) Vi,

-1
Vo

m

—1
Vo

m

Replacing e, with )" in equation (19), the generalized residual 7 [14] of the approx-
imated ¢ (A )v is

;&e?zi = —hmi1m(Ymd — A>Um+le:an_11fm(K;Ll)vntU - R%Sanlfm(Krzl)vnzv
= —Nmt1.m(Ymd — AVvppres H Loy ((HmDm — I)H;ll) Vo
— RYH 1¢,, ((HmDm — I)Hﬂ;l) Vv
= —Bhmi1m(Yml — A)vmi1€,, 0k (Dm - anl) anlel
— BRY 1, (D — H,)') Hy e (21)

In order to evaluate equation (21), the following lemma and propositions are used.

Lemma 4.1 (see [10, Proposition 2]) Let f be the holomorphic function in C* (resp.
C~ ). If the sequence of the upper Hessenberg matrices { H,, € R™™}" . satisfies

W(H,,) CC" (resp. C7) (1<"m<n), (22)

8
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then there exists o > 0 and 0 < A\ < 1 which do not depend on m and satisfy

F(H)]| <X 2 ). (23)

The proof of Lemma 4.1 is based on Benzi and Boito [2].

Proposition 4.1 Let {K,, € R™*™}" _ be the sequence of matrices which satisfies
‘(Km)@'7]’| < a\ (i >7), (24)

where o > 0 and 0 < A < 1 which do not depend on m. Let & = a+ a/1/(1 — A?). If

[ 1
As 262+ 17 (25)

A< %, (26)

then, there exist a sequence of unitary matrices {Qn, € R™™}" | and a sequence of
upper Hessenberqg matrices {H,, € R™ ™} _, such that

Km = Q:nHQO

and satisfies: o
|(Qm)w| < o/ Nl (%] < m)a
with o > 0 which does not depend on m.

Proof : The Householder reflectors for transforming K, into the upper Hessenberg
matrix are applied. Let k;,.;, ; be the vector consisting of elements from (i1, 7) to (iz, )
of Ky 1 = [kjrrmills wi = (Kjrrmg — nie)) /N kjrrmg — njeall. Then, Q1 = —2uju;
is defined. I,,_; + Qj+1 is a unitary matrix and satisfies (/,,,_; + Qj+1)kj+1;m’j = nje1.
Therefore, the matrix @,, defined as @Q,, = (I,, + Qm_l) oo (L + Q2), where Qjﬂ =
diag{0;, Qj+1}, is a unitary matrix, and there exists an upper Hessenberg matrix H,,
such that @, K,,Q;, = H,,. The vectors u; and kj1., ; —1;€1 remain the same up to the
constant. Vector kj 1., ; satisfies condition (24), and all the elements except for the first
element of n;e; are 0. In addition, 7; satisfies:

- [ 1
;(a)\’“P =T 0 A

For these reasons, |u; ;| < &\ is satisfied, where w; ; is the ith element of u; € C™ 7. Tt
is deduced that:

< dQ)\k-‘rl.

sl = |un ju
Let &« =242, For I > 2 and | < ky < ky < ... < k,, it is deduced that
dr+1)\—2(l—r—1)

(1= 22y

|(ri . @h@l)zﬂ =0 (i>k.orj>k)

1(Qr, - Qi Q)i | < AN = o (L, (6,5 < k,)  (27)

9
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Inequality (27) is proved by the induction of r. For r = 1, we have:

m

|(Qk1 Ql)i,j| < Z G \Tkitlta—ki+l 5 ya—l+l4j-1+]

a=k1
m

_ dQ)\i—}—j/\—Q(lﬁ-‘rl—Q) Z )\2(1

a=k1
aZa-20-2)
2+ . .
S ﬁ)\ J (Z,j S k'l)
For r > 2, if inequality (27) is satisfied with r — 1, then we have:

Ov[r)\f2(lfr)
1— /\2)7’—1

a+j

‘(@kr cee Qm@z)i,ﬂ < Z d)\i—kr+1+a—kr+1(
a=ky
o grtiy 2k —r—1) T
<\ \2a
dr+1)\—2(l—r_1) o
= —A’L—l-] < kr ‘
1— ) (i, < k)

This is the proof of inequality (27). In inequality (27), if A < \/1/(1 + &), then o (I, +
1) < a’(I,r) for all {. This results in o’ (I,7) < a”(l,1) for all r and .
Qmn is represented as:

Qm = (Im + Qm—l) . (]m + QQ)
1

m—1 k— m—1
:Im+zz Z Qka Q2 - Q7k - 1Q1+2Qk' (28)
k=3 k=2

=3 1=2 (a1,a2,...,ap—1—1)€{0,1}F—1-1

As a result, for 2 < min {7, j} < m — 1, under the assumption of (25), equation (28) and
inequality (27) shows that:

min {i,5} k—1 min {7,5}
|(Qm_ " Z]| < Z ZQk -1 ”l 1 )\H-j + Z k, 1 )\H‘]
k=3 [=2

Therefore, for 2 < min {i, 7} <m — 1 and i < j, under the assumptions of (25) and (26),
it is deduced that:

|<Qm - Im)z}j|

L gk—152 )4 L (2072 o s
= 1—\2 A+j(2A2)—1—1[(2A) -1

k=3

LIS .
i+ —2yi—1
+1—)\2)\ )\*2—1[()\ ) 1
ANEAD)TT ) S _
~T(1-2)(1 _2>\2)/\+] Z()‘ Q)k 2+m)‘ AT (@27 > )
k=3

10
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a’at(2a?)! \it+i AT (A2)2 ¢ Q! \i+i |2
T (1=2)(1—-2)2) A2 -1 (1 —)\2)2
<216 <214
- 2042)\ 2 N 2 )\2 2/\j_i
(1 —X2)%2(1 —2)\?) (1—)?)
<24
— '\ N7 =/ N,

(1—22)(1—2)2)

where the sum 2223 becomes 0 for £k = 2. In a similar manner, it is deduced that
|(Qm — In)ij| < /X7 for i > j. If min{i, j} = m, then we have i = j = m and

m—1 k—1 m—1
(@m = T )mm| < (LN 4y o (k, DA < o
k=3 1=2 k=2

For min {i,j} =1,

{\(Qm)m\: 1
[(Qm)ijl=0 (i#1orj#1)

is followed by the definition of @),,. Since I,, is a diagonal matrix, redefining o’ as the
sum of 1 and the previous o completes the proof.

O

Proposition 4.2 Let {H,, € R™*™}" . be the sequence of the upper Hessenberg matrices
and {D,, € R™™}" _ be the sequence of diagonal matrices which consist of shifts of the
ISIRK, D,, = diag{N — 1,..., N —m}. If the matriz D,, — H_' satisfies

W(D,,—HHcC™ (1<"m<n), (29)

then there exist « > 0 and 0 < XA < 1 which do not depend on m such that:

‘ [0 (D — H') HL'L | < %a(i + 1)ix (30)

Proof : It is based on the assumption of D, that W(D,,) C C" are derived. This fact
and condition (29) imply that the numerical range of H,' satisfies:

W(H,") C W(Dy) = W(Dy — H') S CT.
Furthermore, for matrix H € R™*™, we have

(Hx)*H *(Hzx)
[Hl?

v He = o* H*H*Hz = (Hz)*H™*(Hz) = ||Hz|)? ("z e C™, |z|| = 1),

R(z*H *x) = R(=*H 'z) (YzeC™, ||z]|=1).

Therefore, we have
W(Hy) C | Hpl[*W(H™") € C*. (31)

Since H,, is the upper Hessenberg matrix and satisfies condition (31), setting f(2) = z1

and using Lemma 4.1 derives that there exist & > 0 and 0 < A < 1 such that:

[H M s < aNTo (0> §). (32)

m

11
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D,, is a diagonal matrix, so redefining & as the sum of ||D,,|| = N — 1 and the previous
& leads to:

(D = Hypligl < 6N (i > j). (33)
& and A do not depend on m. Let G™(a,\) = {A : square matrix | [(A);;] <
aX=l (Vi j)}. From Proposition 4.1, there exists a unitary matrix @, and an up-
per Hessenberg matrix H,, such that D,, — H ' = Q* HQ,, and Q,, € G®®(c/, \) with
o’ > 0 which does not depend on m. Thus, it is deduced that:

O (D — H,,') Hyley = on(Qh Hu Q) H,y e,
= Q! on(Hn)QHuer  CH, € GoP(a, V).

~

The second equality is held, because from inequality (32), there exists H, € G*P (&, \)
which satisfies H'e; = H,,e;. From Benzi and Boito [3, Theorem 9.2], there exist o/ > 0
and )\’ which do not depend on m and satisfy Q,H,, € GP(; \"). In addition, from
condition (29), H,, satisfies

W (Hy) = W (Qu(Dy — H)@) = WDy, — Hy') € T (34)
Therefore, setting f = ¢, and using Lemma 4.1 derive that there exist & > 0 and
0 < A < 1 such that |[¢n(H,n)i | < aX—7 (i > j). Since |e?| < 1 is satisfied when z € C~,

|6 (2)| is bounded as
1 k-1
/ A—s)
=)

Using the theorem by Crouzeix [4, Theorem 2|, condition (34) and inequality (35), there
exists 1 < C' < 11.08 such that

1 .
<o (zeC). (3)

! sz(]' — S)kil

G

< |e?]

|0k (2)] =

lon(Hn)| < C sup |gi(2)] <

¢
nE

Redefining & as the sum of C'/(k!) and the previous & leads to:

From the upper bounds (36) and (37), it is deduced that:

ZO‘)‘l k //)\//k 1+ Z OZO//)\Hk 1

k=i+1
"

=\

<0G " 1_|_ >‘/, S\z‘—l
S 1o SV

‘ [ébk(g )Qm m}

Sida//A’L 1+da//

12
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=ja\"!. (38)

where @ := aa” /(1 — \’), A := max{}\, )"} < 1. As a result, using fact Q,, € GP(a/, \)
and the upper bound (38), it is deduced that:

‘ [¢k(Dm - H;Ll)H;LlL;’l

= || Q00 (Hpn) Q@ Hi
| ]

i1

< Z o NFEaNET 4 Z o/ Nt \F 1
k=1 k=i+1
141
Egs
1

< S(i+1)id'a A PO
< —(17 o Q 1= )

1 . .
< 5(2‘ + Did/a N~ 4+ d/a At

[l N

= —(i + 1)iaX™".

\)

where o == &/@(1 + 2X3%2/(1 — A2)2) and A := max{\, A} < 1.
U

If the residual of solving the linear equation satisfies ||r*¥%|| < 6 for some § > 0, then
there exist @ > 0 and 0 < A < 1 such that the first term of equation (21) becomes:

B | hons 1€ (Do — Hy VH e | [ (Y = A)va |
< ﬂ‘herl,ml ‘ [¢/€(Dm o Hﬂzl)Hﬂzl}m,l

[t = Al {[vm 1|

1 _
< Blhmsrml [lymd = Allgem(m + 1)A™ b (30)

p
2

IN

||('Ym[ - A)_lvm - fs%/s - h’l,mvl e T hm,mva

o] — Allam(m + 1)A™!

IA

1yt = A omll + LDl d — Allam(m + DA™

IA

L+ Il md = A) 7 ] = Allam(m + 1)A™

IN

SR ST ReW Sl e

(14 8)k(yml — A)am(m + 1)A™ (39)

Since 0 < A < 1, the upper bound (39) implies that under the assumptions of (25) and
(26), if k(I — A) does not increase as m becomes larger, the first term of equation (21)
decreases as m becomes larger.

Concerning the second term of equation (21), the following theorem is deduced:

Theorem 4.1 Let [p(Dy, — H, ) H, 0 =1 g7, Moreover, let toly, > 0 be the tolerance
for computing the ¢-function and m™** be the mazimum number of iterations. Under the
assumptions of (25), (26) and (29), If,

|| < t01¢
= 2m™B| ¢ (Di — Hy ) H e

I+

(40)

13
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97| .
7570 = 7w ||| il (2<)<m), (41)
"

then,
Bl R ¢y ( Dy, — Hyy VH e || S toly .

Proof: Based on the above assumptions (40), (41) and Proposition 4.2, the upper bound
is derived:

BI RS G(Dm — Hy Y H e
< B(lgt| ||rSYS|| g Il + -+ g el

Sys m ’gl,l| Sys m |gl,1‘ Sys ‘glll Sys
<\911||| I+ 1934 ] 1771 + 954 Il + il
| 1,1| |92,1|
(.- (41))
—6|911|H sys (1+ |g21| ‘931’ 4.+ |im,1‘ >
|921| |9m71,1|
+1)
< — H-Y)H T SRS W LIl k0 B B
< B6n( D — H ) H e |7} H( FIEN ) (e (30)
< Bllon(Dm — H Y Hy e || [[777]] - 2m™

<toly (- (40)).
U

The right-hand side of inequality (41) becomes larger as m becomes larger because of
Proposition 4.2. Thus, Theorem 4.1 implies that the larger m becomes, the solution of
the linear equation (v,,/ — A)x,, = v,, becomes more inexact, and the computational cost
decreases compared to the SIRK. However, if the linear equations are solved, satisfying
inequalities (40) and (41), then the second term of equation (21) is no longer an issue. In
this scenario, the first term of equation (21), T;Omp, is used as the stopping criterion for

the convergence of ISIRK.

Remark 4.1 In practical computation, the values depending on m in inequalities (40) and
(41) are unavailable in advance. Thus, for the exponential integrator at the (i+ 1)th step,
(D, — H V)V Htey is replaced with the ones in the largest Krylov subspace at the ith step.
For the computation of equation (3):

V(Y — AV = (I — Hpy Dy + Y Hy ) HE
H '~ H,D,H ' —V*AV,,

smce [( Yl A) U "We ~ VK te for all 1 < 1 < m. From Lemma 4.1, we have
( )17161. ThUS,

H;lel ~ Hmd1,1<H;11)1,161 — V,;';AVmel

~ H,(mI)H, ey — Vi AV,.e;
= V:L(’)/lf — A)Vm61

14
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Algorithm 4.1 1SIRK method for ¢-functions in the exponential integrator of the ¢th step
Require: A c C"", v e C" >0, tol, >0, m™™>* € N
Ensure: V,,¢r((HynD,, — I)H,, )e; such that |72 < tol,
i f=llln =/
2: 101 = toly /(1™ 5] £ )
33 N=mm¥* 41
4: form=1,2,... do
Ay = N —m
Compute  such that ||v,, — (dpmm! — A)Z|| < tol™®
for[=1,2,...,m do
hl,m = SZ'*’Ul
I=— hl,mvl
10:  end for
1 hgrm = |2 vmgr = T/ hingam
12 fifl = H Y (HpDy — I H ey
13 r= ’hm+1,m<frin+1)m’ | (Y — A) vy 1|
14: - bol% ) = min{tol™ [(f5 )1l /1(fn )l 0}
15:  if r < toly then

16: m(i+1)=m

17: Ym(t) = Vintor((Hy Dy — I)H, ey, break
18: end if

19: end for

Similarly, from Proposition 4.2, it is deduced that ¢((Hpy Dy —I)H, Y )ey = [og((Hp Do —
IH, Y]i1e1. Therefore,

m

IH. ok (Ho Dy — D Her || = || Hy or(Hin Do — T H ) 1aen |
~ ||V7:;(’71[ - A)Vmgbk((HmDm - I)H;zl)ﬁ“
~ ||(vid — A)y()]|
~ [|(d = A)y(0)]. (42)

Approzimation (42) is employed for inequality (40) in the computation of equation (3).
Moreover, since a and A do not depend on m, the following approximation is used:

g ~ g7 ], leral = gl (2< 5 <m).

In summary, Algorithm 4.1 is proposed, where (f,,); is the jth element of f,,. For the
computation of equation (3), the second line is replaced by tol?”® = toly /[m™3||(y1 ] —
A)y(0)|l]]. The linear equation in the sixth line of the algorithm is solved by an iterative
method, and the convergence of its solution is judged by its residual. This facilitates ensur-
ing that the residual of the solution of the linear equation satisfies the required conditions.
Any iterative methods, for example, the BICGSTAB [25]| or the GMRES [22], are viable op-
tions. (H,,D,, — I)H_! in the twelfth line is a small matrix, and it can be computed via

m

a direct method inexpensively. After computing (H,,D,, — I)H .}, ¢p((H,, D,y — I)H L)

is also computed using a direct method, such as the scaling and squaring method [11].

15
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5 Numerical experiments

A few typical numerical experiments have been implemented in this section. These ex-
periments were in a collection of problems to illustrate the effectiveness of ISIRK. All
numerical computations of these tests were executed with C on an Intel(R) Xeon(R)
X5690 3.47GHz processor with an Ubuntul4.04LTS operating system. LAPACK and BLAS
were used with ATLAS for this computation.

The Galerkin method with unstructured first order triangle elements and linear weight
functions, were used to discretize the problems. After the discretization, the GMRES
algorithm [22] with an 1LU(0) preconditioner were applied to solve the linear equation in
the sixth line of Algorithm 4.1 and in other algorithms. For SiA, RK and SIRK, the linear
equation was solved with a residual tolerance of 10714

Example 1
In order to show the advantages of the SIRK, a wave equation was implemented in region
(—=1.5,1.5) x (=1,1) C R%

( 0%u
2 Au = f(x,t) in (0,7] x €,
u= 6—10(351—0‘5)2’—10(332—05)2 on {0} x
_ (43)
u=0 on (0,77 x 9%y,
0
\ a—z —0 on (0,T] x 9,

where 9Q; = [~1.5, 1.5]x {1, =1}, 90y = 0Q\0Q, f(z,t) = —10*sin (t)e#1—08)+(z2-08)*
and ¢ = +/0.1. After the discretization:

{ My(t) = Ly(t) + b(1),

44
§(0)= 0. .

Equations (44) were transformed into equations (2), where:

o S I P I T T

F(y) = Ly + b(t).

S

In this example, the dimension of the matrices were n = 237378. The 1-step exponential
integrator [16] whose scheme was:

Yi+1 = Yi -+ At¢1<AtM_1Lz+1)M_1F<yZ)

was used.

In order to treat M ' L; 1 instead of AtM L1, v;/ At was used instead of v;. Table 1
shows the CPU time and the iteration numbers for computing ¢ (AtM~*L)M~1F(y(0)),
where At = 0.1 and the relative error tolerance is 10~% with sI1A, RK, and SIRK. Figure 3
shows the relative error of each algorithm. The shifts introduced by Gockler [7] for s1a
and RK were used. For SIA it was shown that choosing v = m® where oo = (r —2)/(r + 2)
for step m resulted in a convergence rate of O(m~*(+®)/2) Thus, r — oo provides a

16
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Table 1: Example 1: Comparison of SIA, RK, and SIRK.

Algorithm o CPU time(s) Iterations
SIRK (50 — j)/At 7.1 25
RK r=20/At, h =15/At - -
RK r=1.0/At, h=0.1/At - -

SIA 20%/3 / At 85.6 67
SIA 2012/13 | At 19.0 34
SIA 30%/3 /At 54.2 52
SIA 301%/13 ) At 10.6 29
SIA 40%/3 | At 35.3 44
SIA 40%%/13 | At 7.6 26

(x)

S o
NON
u(x)

Figure 1: Example 1: Numerical solu- Figure 2: Example 1: Numerical solu-
tion of ¢ = 1 with EI and SIRK. tion of ¢ = 2 with IE and SIRK.

convergence rate of O(m™!). However, Gockler also showed that the constant in the rate
O(m~*1+2)/2) hecame larger as r grew larger. For this reason, both » = 10 and r = 50
were tested. Concerning m, m = 20, 30, 40 were tested. For RK, Gdckler proposed setting
v =r+h-(=1)71[(j—1)/2]i at the jth step. r =20, h = 1.5, 7 = 1.0 and h = 0.1, were
tested. For SIRK, m™®* = 50 was set. In this example, SIA converged quickly for the large
m and large r, but it converged slowly for the small » and small m. RK uses complex shifts
even though the matrices and vector M, L and v are real. Thus, additional computational
costs become necessary with complex values. Moreover, it does not converge in this case.
On the other hand, SIRK uses real shifts, so its computation is faster, and the shifts in
SIRK are determined automatically. Figure 1 and 2 show the numerical solution of £ =1
and t = 2 computed with SIRK in the exponential integrator. It shows the vibration of
the wave, and we see the exactness of the computation of SIRK.

Example 2
The next problem is the convection diffusion equation in region 2 = ((—1.5,1.5) X

17
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1000 : —
SIRKP v=(50-j)/At —
100 f RKP r=20, h=1.5 ]
SIAP y=202%/At -~~~
10 SIAP 4=20"= /At .
SIAP y=4Q"%/At
.1y SIAP y=40"""/At - ]
o i,
S 01 -
(0]
2 ootf
3 0.001 |
o
0.0001F N\ T
1e-05
1e-06 |
1e-07

5 10 15 20 25 30 35 40 45
Iterations

Figure 3: Example 1: The relative error of SIA, RK, and SIRK.

(—1,1)) \ ([=0.5,0.5] x [~0.25,0.25]) C R%:

pcv% = Nu — 55—;1 in (0,7] x €,
u=0 on {0} x €,
) u=10 on (0,77 x 9%y, (4)
\ —)\% =0 on (O,T] X 892,

where 00y = {—1.5} x [-0.5,1], 00y = 00\ 0, p = 1.3, ¢, = 1000 and A = 0.025.
The 1SI1A, which were previously proposed by Hashimoto and Nodera [10], and ISIRK were
compared. After the discretization, equation (2) with F(y) = Ly + ¢ was obtained with
n = 390256. In this example, the differential operator D = 1/(pC,)(AA — 58‘9—;) was
linear and did not depend on t. Thus, the solution was obtained through computing
equation (3). Equation (3) was computed with the SIA, ISIA, SIRK, and ISIRK. The CpPU
times and iteration numbers were compared. The detailed results are shown in Table 2.
The residual tolerance for computing ¢o(tM'L)(v + L™'c), toly was 107%, and ¢ = 270.
m™* = 100. In addition, § = 0.01 for the 1SIA and ISIRK. Concerning the shift in the
SIA and 1S1A, 10/At, 80/At, and 160/At. The results show that the 1SIA and ISIRK are
efficient. It should be noted that, 1SIA does not converge or converges slowly depending
on the choice of the shift. On the other hand, 1SIRK does not require choosing shifts,
and converges in a reasonable amount of time. Figure 4 shows the residual tolerance
for solving linear equations at each Krylov step of the ISIRK. It was observed that the
exactness needed to obtain a solution for the linear equation decreased as m became
larger. The solutions computed with the ISIRK are tabulated in Figure 5. Problem (45)
represents the flow of heat coming from boundary 0¢2;. The temperature in region 2 is
0°C" at t = 0, but at this point, the heat begins to flow toward the right edge of 2. The
accuracy of the ISIRK is illustrated here.

Example 3
The third test problem was a Burgers equation in region Q2 = (—1.5,1.5) x (—1,1) C R?
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Table 2: Example 2: Comparison of SIA, RK, and SIRK.

Algorithm

Vi

CPU time(s)

Iterations

ISIRK
SIRK
ISTA
SIA
ISIA
SIA
ISIA
SIA

(100 — )/t
(100 — )/t
640/t
640/t
80/t
80,/
10/t
10/t

67.5
159.8

58.0
138.2
300.0
917.0

60
60

59
61
84
89

0.01

0.001

0.0001

1e-05

1e-06 |

sys
tol,

1e-07

1e-08 +

1e-09 |

[

+++++++++++++++++++++++++++++++

1e-10

10 20

30
lterations

20 50

Figure 4: Example 2: Iterations versus tol}>".

1

=1

-1 0

1

10

co

[=)]

o~

N

60

Figure 5: Example 2: Numerical solutions of ISIRK.

for confirming the effectiveness of ISIRK:

(Ou ou ou 1

— = Uu— — 4+ —A i T xQ
gt u%xl—i-v%@—i-}}e U in (0,7] x Q,
v v v

— = U— — 4+ —A i T xQ
T uaxl 118962 + o v in (0,7] x Q,

u=0, v=0 19 on {0} x €y,
ou ov

% %—0 on {O}XQQ,

lu=f, v=—f on (0,7 x 09,
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0.1

001 Fo* Comp”
0.001 | A t0|¢ ,,,,,,,, E

0.0001

Residual
o
o
(&)1

1€-06 | B E
1e-07

1e-08 |

1e-09

5 0 15 20 25
Iterations

Figure 6: Example 3: Iterations versus |7 || and ||’ " with toly = 107°.

where Re = 10° and f(z) = e~ 10(#1-05)*~10(z2-05)* " After the discretization, equation (2)
was obtained with F(y) = Ly + Q(y)y, where L € R™™ and @ is the matrix valued
function of R" +— R™" with n = 29649, 118689. We set L, = L + Q(y;—1) and n;(y) =
F(y) — Liy = Q(y)y — Q(yi—1)y, then used the 2-step exponential integrator [16]. The
scheme was:

2
Yir1 = Yi + At (AM ™ Liq) F(y;) — At§¢2(AtM_lLi+1)[”i(yi) —n(Yi-1))-

The computations of ¢o(AtM ' L1 1) [ni(u;)—n;i(u;—1)] in the third time step with At = 0.1
with ISIRK were observed. The residual tolerance toly for computing ¢o(AtM 'Ly q)[ni(yi)—
ni(yi—1)] was 107% or 107® and m™* = 50, § = 0.01. Figure 6 and Figure 7 show the re-
lationship between the number of iterations and the residuals of ISIRK with n = 118689.
The real residual Tf;i,ll decreases until it reaches tols, but it stops decreasing after this
point. This means that the linear equation is solved efficiently at each Krylov step. On

the other hand, the computing residual i, " decreased even after it had reached tols.

Moreover, the behavior of 7% and """ were the same before they reached tols. Thus,

r;‘ﬁp was an appropriate stopping criterion for ISIRK. Figure 8 shows the residual tol-
erance for solving linear equations at each rational Krylov step with toly, = 107 and
n = 118689. It was observed that the exactness needed to obtain a solution for the linear
equation decreased as m became larger. Table 3 shows the CPU time of ISIRK and SIRK
with toly = 1075, ISIRK was faster than the SIRK.

In view of Example 1, 2 and 3, the following observation were made: SIRK was more
effective than RK and S1A. However, solving linear equations in SIRK inexactly with ISIRK
was more effective and efficient.

6 Conclusion

The uses of SIRK and ISIRK were explored in this paper. The advantage of SIRK is
that it determines the shifts of real values automatically. These shifts enable the faster
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0.1 ‘
0.01} - Irg,m

r
0.001 | < lIrg,m
0.0001 | o ]

R 1e'05 r * T

3

© 1e-06 | - .

o)

C 1e-07 - * 1
T@-OB |- .
1e-09 1
1e-10 .

Te-11 5 10 15 20 25 30

Iterations

Figure 7: Example 3: Iterations versus |7 || and ||| with toly = 107%.

1e-04
1e-05 LT
1e-06 | E

1e-07 E

sys

ele-08 + E

tol

1e-09 + + 3
1e-10 + + i

te-11f ' 3

le-12— 5 10 15 20 25

lterations

Figure 8: Example 3: Iterations versus tol>>".

Table 3: Example 3: Comparison of SIRK and ISIRK.

Algorithm n CPU time(s) Iterations
ISIRK 29649 0.42 14
SIRK 29649 0.59 14
ISIRK 118689 2.4 16
SIRK 118689 3.6 16

convergence of SIRK. In addition, SIRK uses matrices appearing in every step of the
Krylov process. This makes SIRK the effective method for computing ¢-functions in the
exponential integrator. Further to this, the computational cost of solving linear equations
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in SIRK can be improved using ISIRK. ISIRK solves linear equations efficiently while
guaranteeing that the generalized residual becomes lower than the arbitrary tolerance.
The exactness needed for solving a linear equation decreased as the Krylov step progressed,
and the stopping criterion for the convergence of SIRK was also valid for the convergence
of the ISIRK.
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