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Abstract
Linear and nonlinear evolution equations have been formulated to address prob-

lems in various �elds of science and technology. Recently, a method called expo-
nential integrator has been attracting some attention for solving these equations.
It requires the computation of matrix functions repeatedly. For this computation,
a new method called the Inexact Shift-invert Rational Krylov method is explored.
This method determines the appropriate shifts in the simple way. Furthermore, it
realizes e�cient computation, while guaranteeing accuracy.

Key Words. Inexact Shift-invert Rational Krylov, φ-function, exponential integrator
AMS(MOS) subject classi�cations. 65F60, 65M22

1 Introduction
Evolution equations are used in various �elds of science and technology, e.g., the heat
equation in building physics [24] and the Burgers equation in �uid mechanics [17]. Let
Ω ⊆ Rd be an open set, ∂Ω = ∂Ω1

⋃
∂Ω2 be the boundary of Ω, and nb be the unit

normal vector of ∂Ω2. In addition, the time space is de�ned as [0, T ], where T > 0 is the
maximum time we are interested in. l ∈ N is de�ned as the order of the time derivative.
The problem is de�ned in [0, T ] × Ω, and its solution is de�ned in V . V is the Hilbert
space contained by L2([0, T ]×Ω). Let D be a linear or nonlinear di�erential operator on
V , and ξ, η, τ1, τ2 be known functions. The following initial boundary value problems are
explored:





∂lu

∂tl
=Du in (0, T ]× Ω,

u= ξ on {0} × Ω,
u= η on (0, T ]× ∂Ω1,

∂u

∂nb

= τ1u+ τ2 on (0, T ]× ∂Ω2.

(1)
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A di�erent algebraic equation is derived from a spatial discretization with the �nite ele-
ment method or �nite di�erence method:

{
Mẏ(t) = F (y(t)),

y(0) = v,
(2)

where M ∈ Rn×n, and F is a vector valued function. It is assumed that M is invertible.
If D is linear and does not depend on t, equation (2) is the linear ordinally di�erential

equation of the �rst order, and its analytical solution is represented as:

y(t) = φ0(tM
−1L)(v + L−1c)− L−1c, (3)

where L ∈ Rn×n, c ∈ Rn and φ0(z) := ez [10]. On the other hand, if D is nonlinear or
depends on t, time discretization is also needed for integrating M−1F (t, y) and �nding
solution y(t). The exponential integrator [12, 13, 15, 16] is currently the popular method
for time integration [10]. In general, at each step, F is rearranged as F (y) = Liy(t)+ni(y).
For the 1-step method, the scheme is computed as follows:

Yik = φ0(ck∆tM
−1Li+1)yi + ∆t

k−1∑

l=1

akl(∆tM
−1Li+1)M

−1ni(Yil),

yi+1 = φ0(∆tM
−1Li+1)yi + ∆t

s∑

k=1

bk(∆tM
−1Li+1)M

−1ni(Yik),

(4)

where v ∈ Rn, ∆t is the step size of time, and akl, bk are coe�cients which consist of
φ-functions. φ-function is de�ned as

φ0(z) := ez,

φk(z) :=
φk−1(z)− 1

(k−1)!

z
k = 1, 2, . . . .

For the r-step method, the scheme is computed as follows:

yi+1 = φ0(∆tM
−1Li+1)yi + ∆t

r−1∑

k=1

γk(∆tM
−1Li+1)M

−1∇kNi , (5)

where Ni := ni(yi), and ∇kNi and γk(z) are de�ned recursively by

∇0Ni := Ni , ∇k+1Ni := ∇kNi −∇kNi−1 ,

γ0(z) = φ1(z), zγk(z) + 1 =
k−1∑

l=0

1

k − l
γl(z).

Various methods for computing matrix φ-functions have been developed [6, 13, 18�21].
The Krylov subspace methods are e�cient, because the matrices resulting from the spatial
discretization of problem (1) usually become large. The most simple and well-known
method is the Arnoldi method. According to Hochbruck and Lubich [13, Theorem 5],
Arnoldi method may require a number of iterations if the numerical range of ∆tM−1Li+1
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is widely distributed. The matrices coming from the spatial discretization of problem (1)
often have a wide numerical range, so the Arnoldi method is not the best choice for
computing φ-functions in the exponential integrator. In order to resolve this issue, the
Shift-invert Arnoldi method (sia) was proposed by Novati [21], and the Rational Krylov
method (rk) was proposed by Beckermann and Reichel [1]. rk is a generalization of
sia, and it was also proposed by Güttel [8] and Göckler [7]. According to Göckler [7],
sia and rk converge independently of the width of the numerical range of ∆tM−1Li+1.
However, the sia and rk have drawbacks. Firstly, solving a linear equation in each
step is necessary. The computation cost of solving this linear equation is signi�cant in
the sia and rk. To address this issue, the Inexact Shift-invert Arnoldi method (isia)
was proposed by Hashimoto and Nodera [10]. This method solves the linear equations
e�ciently while guaranteeing the accuracy of the solution. The computational time can
be reduced using the isia, but this requires a shift, and choosing the appropriate shift is
di�cult. This situation also occurs in the sia and the rk; this is the second shortcoming
of the sia and the rk. rk needs di�erent shifts in every step of the Krylov process, so
choosing the appropriate shifts is integral. The ways choosing the appropriate shifts in
sia and rk for φ0 and other functions have been discussed at length, for example [5, 9, 23].
However, the optimization problem must be solved for each shift, or they are only suitable
for φ0, and not for general φ functions. Göckler [7] proposed a simple way of choosing
the shifts for general φ-functions of nonsymmetric matrices. According to his paper, the
optimal shift for sia changes at every iteration, although only one shift is permitted for
the sia. He also proposed a method for the rk, but this involved complex values. Thus,
if matrices M and L are real, we must treat complex values due to the shifts. This results
in increasing the computational cost needlessly. In summary, the existing methods for
choosing the shifts are not realistic in this scenario. To resolve these issues, a new method
called the Inexact Shift-invert Rational Krylov method (isirk) is proposed in this study.
The Shift-invert Rational Krylov method (sirk) is used to solve the second problem.
The appropriate shifts for φ-functions in real value are determined in a simple way, and
this choice of shifts results in a faster convergence. In addition, the Inexact Shift-invert
Arnoldi method (isirk) is used to solve linear equations in the sirk e�ciently. The
similar discussion for the isia is also valid for the sirk. isirk makes the computation of
φ-functions e�cient.

1.1 Notation
The norm is de�ned as ‖·‖ = ‖·‖2, and the 2-norm condition number of matrix A is de�ned
as κ(A). ej represents the jth column of identity matrix I. The n× n identity matrix is
also represented as In when its dimension is emphasized. Let C− := {z ∈ C | <(z) < 0},
C+ := {z ∈ C | <(z) > 0}, and W (A) := {u∗Au | u ∈ Cn, ‖u‖ = 1} be the numerical
range of matrix A.

2 Krylov subspace methods for computing φ-functions
In this paper, φk(A)v is computed to simplify the notation. The method for computing
φk(∆tM

−1Li+1)M
−1v is based on the method developed by Hashimoto and Nodera [10].

Throughout this and the next section, it is assumed that W (A) ⊆ C−.
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2.1 Shift-invert Arnoldi method (sia)
Let β = ‖v‖, and v1 = v/β be the initial vector. The m-step Shift-invert Arnoldi process
is:

hj+1,jvj+1 = (γI − A)−1vj −
j∑

k=1

hk,jvk ,

hk,j = v∗k(γI − A)−1vj,

hj+1,j =

∥∥∥∥∥(γI − A)−1vj −
j∑

k=1

hk,jvk

∥∥∥∥∥ (j = 1, . . . ,m),

where γ > 0 is a shift. This relation is expressed with matrices as:

V ∗
m(γI − A)−1Vm = Hm, (6)

where Vm = [v1 · · · vm] is an n × m matrix whose columns are orthonormal, and Hm

is an m × m upper Hessenberg matrix. {v1, . . . , vm} is the orthonormal basis of the
Shift-invert Krylov subspace which satis�es:

Span {v1, . . . , vm} = Span
{
v, (γI − A)−1v, . . . , (γI − A)−m+1v

}

=
{
r(A)v | r ∈ Pm−1/(γ − z)m−1

}
,

where Pm is the set of polynomials of a degree less than m. φk(A)v can be regarded as
f ((γI − A)−1) v, the function of (γI − A)−1, where f(z) := φk (γ − z−1). Therefore, if
Hm is invertible, then the matrix function is:

φk(A)v ≈ βVmV
∗
mf

(
(γI − A)−1

)
v ≈ Vmf

(
V ∗

m(γI − A)−1Vm

)
V ∗

mv

= Vmf(Hm)V ∗
mv = r(A)v. (7)

for some r ∈ Pm−1/(γ − z)m−1.
Göckler showed that the error bound of approximation (7) does not depend onW (A) [7,

Theorem 5.9].

2.2 Inexact Shift-invert Arnoldi method (isia)
sia requires solving the linear equation to compute (γI−A)−1vj in every step of the Krylov
process. Hashimoto and Nodera [10] proposed a method for solving this linear equation
e�ciently while guaranteeing that the generalized residual [14] would become smaller than
the arbitrary tolerance. This method is called the Inexact Shift-invert Arnoldi method
(isiap), and the exactness needed for solving the linear equation decreases with each
iteration.

2.3 Rational Krylov method (rk)
Let β and v1 be the same vectors as Section 2.1. The m-step Rational Krylov process is:

hj+1,jvj+1 = (γjI − A)−1vj −
j∑

k=1

hk,jvk,
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hk,j = v∗k(γjI − A)−1vj,

hj+1,j =

∥∥∥∥∥(γjI − A)−1vj −
j∑

k=1

hk,jvk

∥∥∥∥∥ (j = 1, . . . ,m),

where γj > 0 (1 ≤ j ≤ m) is a di�erent shift in every step. This results in the orthonormal
basis {v1, . . . , vm+1} of the Rational Krylov subspace which satis�es:

Span {v1, . . . , vm+1} = Span
{
v, (γ1I − A)−1v, . . . , (γmI − A)−1v

}

= {r(A)v | r ∈ Pm/qm, qm(z) = (γ1 − z) . . . (γm − z)} .

Let Vm = [v1 · · · vm]. φk(A)v is approximated as

φk(A)v ≈ Vm+1φk(V
∗
m+1AVm+1)V

∗
m+1v = r(A)v, (8)

for some r ∈ Pm/qm, qm(z) = (γ1 − z) · · · (γm − z).
Göckler shows that under the appropriate choice of shifts γj, the error bound of ap-

proximation (8) does not depend on W (A) [7, Theorem 7.8].

3 Shift-invert Rational Krylov method (sirk)
We consider extending isia to the rational approximation with more than one poles.
However, before the extention, the shifts for the approximation, is considered. The new
method, sirk, addresses the issue of the shifts.

The m-step Rational Krylov process derives its relations in the same manner as illus-
trated in section 2.3:

Vm = VmHmDm − AVmHm + (γmI − A)hm+1,mvm+1e
∗
m,

V ∗
m(γmI − A)−1Vm = Hm(I −HmDm + γmHm)−1 =: Km, (9)

where Dm := diag{γ1, · · · , γm}. However, in the sirk, the shifts γj = N − j ∈ R, where
N ∈ N satis�es γj > 0 (1 ≤∀ j ≤ m) are used. The simplest way of determining N is
setting N = mmax +1, where mmax is the maximum iteration number. If Hm is invertible,
the matrix function φk(A)v is approximated as:

φk(A)v = fm((γmI − A)−1)v

≈ Vmfm(V ∗
m(γmI − A)−1Vm)V ∗

mv

= Vmfm(Km)V ∗
mv

= Vmφk

(
γmI − (I −HmDm + γmHm)H−1

m

)
V ∗

mv

= Vmφk

(
(HmDm − I)H−1

m

)
V ∗

mv, (10)

where fm(x) := φk (γm − x−1). Approximation (10) is for the function depending on m
with the matrix depending on m.

The next consideration is the Rational Krylov subspace constructed by the sirk. Let
Xj := (γjI − A)−1 (1 ≤ j ≤ m). γj is de�ned as γj = N − j, so Xj is denoted as:

Xj = (γjI − A)−1 = (I − (γm − γj)Xm)−1Xm = (I + (m− j)Xm)−1Xm. (11)
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From relation (11), the Rational Krylov subspace generated by the m-step sirk is repre-
sented as:

Span{v, X1v, . . . , Xm−1v}
= Span{v, (I + (m− 1)Xm)−1Xmv, . . . , (I +Xm)−1Xmv}
= {r(Xm)v | r ∈ Pm−1/qm−1, qm(z) = (1 +mz) . . . (1 + z)} . (12)

The following proposition shown by Beckermann and Reichel [1] is valid from relation (12),
and the following theorem regarding the convergence of sirk is deduced:

Proposition 3.1 Let qm(z) := (1+mz) · · · (1+ z) and Pm be the set of polynomials with
a degree less than m. Furthermore, let Pm−1/qm−1 := {p/qm−1 | p ∈ Pm−1}. Then, for
∀r ∈ Pm−1/qm−1,

r(Xm)v = Vmr(Km)V ∗
mv. (13)

Theorem 3.1 Let H(Π) be the set of holomorphic functions on a closed and bounded set
Π ⊆ C to C. Let 1 ≤ C ≤ 11.08, and f(z) :=

∫ 1

0
eN−sz−1

(1 − s)k−1/(k − 1)!ds. It is
possible to choose the closed and bounded set Σ satisfying

⋃N−1
j=1 W (Xj) ⊆ Σ ⊆ C+. With

this Σ, for 1 ≤ m ≤ N − 1, the error bound of sirk is estimated as

‖φk(A)v − Vmfm(Km)V ∗
mv‖ ≤ 2C‖v‖e−m min

r∈Pm−1/qm−1

‖f − r‖Σ, (14)

where ‖ · ‖Σ is the norm of H(Σ), which is de�ned as ‖g‖Σ = supz∈Σ |g(z)|.
Proof : Since W (A) ⊆ C− and γj = N − j > 0, W (Xj) ⊆ C+ is satis�ed for all j in
1 ≤ j ≤ N − 1. In addition, W (Xj) are bounded. Thus, it is possible to choose a closed
and bounded set Σ ⊆ C+ which contains

⋃N−1
j=1 W (Xj). From the fact φk(A) = fm(Xm)

and Proposition 3.1,

‖φk(A)v − Vmfm(Km)V ∗
mv‖

= ‖fm(Xm)v − r(Xm)v − Vmfm(Km)V ∗
mv + Vmr(Km)V ∗

mv‖, (15)

is derived for ∀r ∈ Pm−1/qm−1. Since all the poles of functions in Pm−1/qm−1 are real
and negative, Pm−1/qm−1 ⊆ H(Σ). In addition, fm, f ∈ H(Σ). From equation (9),
W (Km) ⊆ W (Xm), and from Crouzeix [4], there is 1 ≤ C ≤ 11.08 such that:

‖fm(Xm)− r(Xm)‖ ≤C‖fm − r‖Σ,
‖fm(Km)− r(Km)‖ ≤C‖fm − r‖Σ.

(16)

r ∈ Pm−1/qm−1 is arbitrary, and φk is represented as φk(z) =
∫ 1

0
esz(1− s)k−1/(k − 1)!ds,

so it is deduced that:

‖φk(A)v − Vmfm(Km)V ∗
mv‖

≤ min
r∈Pm−1/qm−1

[‖fm(Xm)− r(Xm)‖ ‖v‖+ ‖fm(Km)− r(Km)‖ ‖v‖] (∵ (15))

≤ 2C‖v‖ min
r∈Pm−1/qm−1

‖fm − r‖Σ (∵ (16))

= 2C‖v‖ min
r∈Pm−1/qm−1

sup
z∈Σ

|φk(N −m− z−1)− r(z)|
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= 2C‖v‖ min
r∈Pm−1/qm−1

sup
z∈Σ

∣∣∣∣
∫ 1

0

es(N−m−z−1) (1− s)k−1

(k − 1)!
− es(N−m)

(
e−s(N−m)r(z)

)
ds

∣∣∣∣

≤ 2C‖v‖ min
r∈Pm−1/qm−1

sup
z∈Σ

∣∣∣∣eN−m

{∫ 1

0

e−sz−1 (1− s)k−1

(k − 1)!
ds−

∫ 1

0

e−s(N−m)r(z)ds

}∣∣∣∣

= 2C‖v‖ min
r∈Pm−1/qm−1

sup
z∈Σ

∣∣∣∣e−m

{∫ 1

0

eN−sz−1 (1− s)k−1

(k − 1)!
ds−

∫ 1

0

eN−s(N−m)ds r(z)

}∣∣∣∣

= 2C‖v‖ min
r∈Pm−1/qm−1

e−m sup
z∈Σ

∣∣∣∣
∫ 1

0

eN−sz−1 (1− s)k−1

(k − 1)!
ds− r(z)

∣∣∣∣ .

¤

Choosing γj as N − j results in the space Pm−1/qm−1 expanding with each iteration,
because qm has the form qm(z) = (1+mz) · · · (1+ z). Therefore, minr∈Pm−1/qm−1 ‖f − r‖Σ

in error bound (14) becomes smaller as m becomes larger. In addition, e−m becomes
smaller as m becomes larger. The term e−m accelerates the convergence.

4 Inexact Shift-invert Rational Krylov method (isirk)
At this point, it is possible to extend the isia to the rational approximation with sirk.
It will be shown that a similar discussion for isia is also valid for sirk, and an Inexact
Shift-invert Rational Krylov method (isirk) will be proposed.

For j = 1 . . .m, let x̃j be the inexact solution of the linear equation (γjI −A)xj = vj,
and f sys

j := xj − x̃j be the error vector for solving the linear equation, and let Rsys
m :=

[rsys
1 · · · rsys

m ], where rsys
j := vj − (γjI − A)x̃j is the residual vector for solving the linear

equation. The following relation is derived by computing the m-step sirk process in
the same way as Section 3. However, in this case, the linear equations must be solved
inexactly at every step.

(γjI − A)−1vj − f sys
j =

j+1∑

k=1

hk,jvk,

vj =

j+1∑

k=1

hk,j(γjI − A)vk + rsys
j ,

Vm = VmHmDm − AVmHm + hm+1,m(γmI − A)vm+1e
∗
m +Rsys

m ,

(γjI − A)Vm = VmK
−1
m − hm+1,m(γmI − A)vm+1e

∗
mH

−1
m −Rsys

m H−1
m , (17)

where Vm is the n ×m matrix with orthonormal columns, Hm is an m ×m upper Hes-
senberg matrix, and Km = Hm(I −HmDm + γmHm)−1. The matrices Vm, Hm and Km in
equation (17) are di�erent matrices from equation (9). For the approximation, the same
fomula used by the sirk is employed:

φk(A)v ≈ Vmfm(Km)V ∗
mv. (18)

Let f̃m(z) = fm(z−1). The error of this approximation, using Cauchy's integral formula,
is

Em = f̃m(γmI − A)v − Vmf̃m(K−1
m )V ∗

mv
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=
1

2πi

∫

Γ

f̃m(λ)
[
(λI − γmI + A)−1v − Vm(λI −K−1

m )−1V ∗
mv

]
d λ

=
1

2πi

∫

Γ

f̃m(λ)elinm dλ, (19)

where Γ is a contour enclosing the eigenvalues of γmI − A and K−1
m , elinm = [(λI − γmI +

A)−1v − Vm(λI − K−1
m )−1V ∗

mv]. Let f̂(z) = 1/(λ − z−1). Then, (λI − γmI + A)−1 =
f̂ ((γmI − A)−1). If sirk is applied to function f̂ , Vm(λI −K−1

m )−1V ∗
mv = Vmf̂(Km)V ∗

mv
is the approximation of f̂ ((γmI − A)−1) v. The error bound of this approximation is
represented in the same manner as Theorem 3.1:

‖f̂((γmI − A))v − Vmf̂(Km)V ∗
mv‖

≤ min
r∈Pm−1/qm−1

[
‖f̂(Xm)− r(Xm)‖ ‖v‖+ ‖f̂(Km)− r(Km)‖ ‖v‖

]

≤ 2C‖v‖ min
r∈Pm−1/qm−1

‖f̂ − r‖Σ, (20)

where Σ is the same set as Theorem 3.1. In this case, f̂ does not depend onm, so the upper
bound (20) decreases asm becomes large. Therefore, this approximation converges. Using
equation (17), the residual rlin

m of this approximation for the linear equation is represented
as

rlin
m = v − (λI − γmI + A)Vm

(
λI −K−1

m

)−1
V ∗

mv

= v − λVm

(
λI −K−1

m

)−1
V ∗

mv + (γmI − A)Vm(λI −K−1
m )−1V ∗

mv

= v − λVm

(
λI −K−1

m

)−1
V ∗

mv

+
[
VmK

−1
m − hm+1,m(γmI − A)vm+1e

∗
mH

−1
m −Rsys

m H−1
m

] (
λI −K−1

m

)−1
V ∗

mv

= v − Vm(λI −K−1
m )

(
λI −K−1

m

)−1
V ∗

mv

− hm+1,m(γmI − A)vm+1e
∗
mH

−1
m

(
λI −K−1

m

)−1
V ∗

mv −Rsys
m H−1

m

(
λI −K−1

m

)−1
V ∗

mv

=
[−hm+1,m(γmI − A)vm+1e

∗
mH

−1
m −Rsys

m H−1
m

] (
λI −K−1

m

)−1
V ∗

mv.

Replacing elinm with rlin
m in equation (19), the generalized residual rreal

φ,m [14] of the approx-
imated φk(A)v is

rreal
φ,m = −hm+1,m(γmI − A)vm+1e

∗
mH

−1
m f̃m(K−1

m )V ∗
mv −Rsys

m H−1
m f̃m(K−1

m )V ∗
mv

= −hm+1,m(γmI − A)vm+1e
∗
mH

−1
m φk

(
(HmDm − I)H−1

m

)
V ∗

mv

−Rsys
m H−1

m φk

(
(HmDm − I)H−1

m

)
V ∗

mv

= −βhm+1,m(γmI − A)vm+1e
∗
mφk

(
Dm −H−1

m

)
H−1

m e1

− βRsys
m φk

(
Dm −H−1

m

)
H−1

m e1 (21)

In order to evaluate equation (21), the following lemma and propositions are used.

Lemma 4.1 (see [10, Proposition 2]) Let f be the holomorphic function in C+ (resp.
C−). If the sequence of the upper Hessenberg matrices {Hm ∈ Rm×m}n

m=1 satis�es

W (Hm) ⊆ C+ (resp. C−) (1 ≤∀ m ≤ n), (22)
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then there exists α > 0 and 0 < λ < 1 which do not depend on m and satisfy
∣∣∣[f(Hm)]i,j

∣∣∣ ≤ αλi−j (i ≥ j). (23)

The proof of Lemma 4.1 is based on Benzi and Boito [2].

Proposition 4.1 Let {Km ∈ Rm×m}n
m=1 be the sequence of matrices which satis�es

|(Km)i,j| ≤ αλi−j (i ≥ j), (24)

where α > 0 and 0 < λ < 1 which do not depend on m. Let α̂ = α+ α
√

1/(1− λ2). If

λ ≤
√

1

2α̂2 + 1
, (25)

λ <
1√
2
, (26)

then, there exist a sequence of unitary matrices {Qm ∈ Rm×m}n
m=1 and a sequence of

upper Hessenberg matrices {Hm ∈ Rm×m}n
m=1 such that

Km = Q∗mHmQm

and satis�es:
|(Qm)i,j| ≤ α′λ|i−j| (i, j ≤ m),

with α′ > 0 which does not depend on m.
Proof : The Householder re�ectors for transforming Km into the upper Hessenberg
matrix are applied. Let ki1:i2,j be the vector consisting of elements from (i1, j) to (i2, j)
of Km, ηj = ‖kj+1:m,j‖, uj = (kj+1:m,j − ηje1)/‖kj+1:m,j − ηje1‖. Then, Q̃j+1 = −2uju

∗
j

is de�ned. Im−j + Q̃j+1 is a unitary matrix and satis�es (Im−j + Q̃j+1)kj+1:m,j = ηje1.
Therefore, the matrix Qm de�ned as Qm = (Im + Q̂m−1) . . . (Im + Q̂2), where Q̂j+1 =
diag{Oj, Q̃j+1}, is a unitary matrix, and there exists an upper Hessenberg matrix Hm

such that QmKmQ
∗
m = Hm. The vectors uj and kj+1:m,j − ηje1 remain the same up to the

constant. Vector kj+1:m,j satis�es condition (24), and all the elements except for the �rst
element of ηje1 are 0. In addition, ηj satis�es:

ηj ≤
√√√√

∞∑

k=1

(αλk)2 = α

√
1

1− λ2
λ.

For these reasons, |ui,j| < α̂λi is satis�ed, where ui,j is the ith element of uj ∈ Cm−j. It
is deduced that:

|[uju
∗
j ]k,l| = |uk,jul,j| ≤ α̂2λk+l.

Let α̌ = 2α̂2. For l ≥ 2 and l < k1 < k2 < . . . < kr, it is deduced that




|(Q̂kr . . . Q̂k1Q̂l)i,j| ≤ α̌r+1λ−2(l−r−1)

(1− λ2)r
λi+j =: α′′(l, r)λi+j (i, j ≤ kr)

|(Q̂kr . . . Q̂k1Q̂l)i,j|= 0 (i > kr or j > kr)

(27)
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Inequality (27) is proved by the induction of r. For r = 1, we have:

|(Q̂k1Q̂l)i,j| ≤
m∑

a=k1

α̌λi−k1+1+a−k1+1α̌λa−l+1+j−l+1

= α̌2λi+jλ−2(k1+l−2)

m∑

a=k1

λ2a

≤ α̌2λ−2(l−2)

1− λ2
λi+j (i, j ≤ k1).

For r ≥ 2, if inequality (27) is satis�ed with r − 1, then we have:

|(Q̂kr . . . Q̂k1Q̂l)i,j| ≤
m∑

a=kr

α̌λi−kr+1+a−kr+1 α̌
rλ−2(l−r)

(1− λ2)r−1
λa+j

≤ λi+j α̌
r+1λ−2(kr+l−r−1)

(1− λ2)r−1

m∑

a=kr

λ2a

=
α̌r+1λ−2(l−r−1)

(1− λ2)r
λi+j (i, j ≤ kr).

This is the proof of inequality (27). In inequality (27), if λ ≤
√

1/(1 + α̌), then α′′(l, r +
1) ≤ α′′(l, r) for all l. This results in α′′(l, r) ≤ α′′(l, 1) for all r and l.

Qm is represented as:

Qm = (Im + Q̂m−1) . . . (Im + Q̂2)

= Im +
m−1∑

k=3

k−1∑

l=2

∑

(a1,a2,...,ak−l−1)∈{0,1}k−l−1

Q̂kQ̂
a1
k−1Q̂

a2
k−1 . . . Q̂

ak−l−1

l−1 Q̂l +
m−1∑

k=2

Q̂k. (28)

As a result, for 2 ≤ min {i, j} ≤ m− 1, under the assumption of (25), equation (28) and
inequality (27) shows that:

|(Qm − Im)i,j| ≤
min {i,j}∑

k=3

k−1∑

l=2

2k−l−1α′′(l, 1)λi+j +

min {i,j}∑

k=2

α′′(k, 1)λi+j.

Therefore, for 2 ≤ min {i, j} ≤ m− 1 and i ≤ j, under the assumptions of (25) and (26),
it is deduced that:

|(Qm − Im)i,j|

≤
i∑

k=3

2k−1α̌2λ4

1− λ2
λi+j (2λ2)−2

(2λ2)−1 − 1
[(2λ2)−k+2 − 1]

+
α̌2λ4

1− λ2
λi+j λ−4

λ−2 − 1
[(λ−2)i−1 − 1]

≤ 2
α̌2λ4(2λ2)−1

(1− λ2)(1− 2λ2)
λi+j

i∑

k=3

(λ−2)k−2 +
α̌2λ4

(1− λ2)2
λi+jλ−2i (∵ (2λ2)−1 > 1)
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≤ 2
α̌2λ4(2λ2)−1

(1− λ2)(1− 2λ2)
λi+j λ−2

λ−2 − 1
(λ−2)i−2 +

α̌2λ4

(1− λ2)2
λi+jλ−2i

=
α̌2λ6

(1− λ2)2(1− 2λ2)
λj−i +

α̌2λ4

(1− λ2)2
λj−i

=
α̌2λ4

(1− λ2)(1− 2λ2)
λj−i =: α′λj−i,

where the sum
∑i

k=3 becomes 0 for k = 2. In a similar manner, it is deduced that
|(Qm − Im)i,j| ≤ α′λi−j for i > j. If min {i, j} = m, then we have i = j = m and

|(Qm − Im)m,m| ≤
m−1∑

k=3

k−1∑

l=2

2k−l+1α′′(l, 1)λi+j +
m−1∑

k=2

α′′(k, 1)λi+j ≤ α′.

For min {i, j} = 1, { |(Qm)1,1|= 1

|(Qm)i,j|= 0 (i 6= 1 or j 6= 1)

is followed by the de�nition of Qm. Since Im is a diagonal matrix, rede�ning α′ as the
sum of 1 and the previous α′ completes the proof.

¤

Proposition 4.2 Let {Hm ∈ Rm×m}n
m=1 be the sequence of the upper Hessenberg matrices

and {Dm ∈ Rm×m}n
m=1 be the sequence of diagonal matrices which consist of shifts of the

isirk, Dm = diag{N − 1, . . . , N −m}. If the matrix Dm −H−1
m satis�es

W (Dm −H−1
m ) ⊂ C− (1 ≤∀ m ≤ n), (29)

then there exist α > 0 and 0 < λ < 1 which do not depend on m such that:
∣∣∣
[
φk

(
Dm −H−1

m

)
H−1

m

]
i,1

∣∣∣ ≤ 1

2
α(i+ 1)iλi−1. (30)

Proof : It is based on the assumption of Dm that W (Dm) ⊆ C+ are derived. This fact
and condition (29) imply that the numerical range of H−1

m satis�es:

W (H−1
m ) ⊆ W (Dm)−W (Dm −H−1

m ) ⊆ C+.

Furthermore, for matrix H ∈ Rm×m, we have

x∗Hx = x∗H∗H−∗
m Hx = (Hx)∗H−∗(Hx) = ‖Hx‖2 (Hx)∗H−∗(Hx)

‖Hx‖2
(∀x ∈ Cm, ‖x‖ = 1),

<(x∗H−∗x) = <(x∗H−1x) (∀x ∈ Cm, ‖x‖ = 1).

Therefore, we have
W (Hm) ⊆ ‖Hm‖2W (H−∗) ⊆ C+. (31)

Since Hm is the upper Hessenberg matrix and satis�es condition (31), setting f(z) = z−1

and using Lemma 4.1 derives that there exist α̂ > 0 and 0 < λ̂ < 1 such that:

|[H−1
m ]i,j| ≤ α̂λ̂i−j (i ≥ j). (32)
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Dm is a diagonal matrix, so rede�ning α̂ as the sum of ‖Dm‖ = N − 1 and the previous
α̂ leads to:

|[Dm −H−1
m ]i,j| ≤ α̂λ̂i−j (i ≥ j). (33)

α̂ and λ̂ do not depend on m. Let Gexp(α, λ) = {A : square matrix | |(A)i,j| ≤
αλ|i−j| (∀i, j)}. From Proposition 4.1, there exists a unitary matrix Qm and an up-
per Hessenberg matrix H̃m such that Dm −H−1

m = Q∗mH̃Qm and Qm ∈ Gexp(α′, λ̂) with
α′ > 0 which does not depend on m. Thus, it is deduced that:

φk

(
Dm −H−1

m

)
H−1

m e1 = φk(Q
∗
mH̃mQm)H−1

m e1,

= Q∗mφk(H̃m)QĤme1 (∃Ĥm ∈ Gexp(α̂, λ̂)).

The second equality is held, because from inequality (32), there exists Ĥm ∈ Gexp(α̂, λ̂)
which satis�es H−1

m e1 = Ĥme1. From Benzi and Boito [3, Theorem 9.2], there exist α′′ > 0
and λ′′ which do not depend on m and satisfy QmĤm ∈ Gexp(α′′, λ′′). In addition, from
condition (29), H̃m satis�es

W (H̃m) = W
(
Qm(Dm −H−1

m )Q∗m
)

= W (Dm −H−1
m ) ⊂ C−. (34)

Therefore, setting f = φk and using Lemma 4.1 derive that there exist α̌ > 0 and
0 < λ̌ < 1 such that |[φk(H̃m)]i,j| ≤ α̌λ̌i−j (i ≥ j). Since |ez| ≤ 1 is satis�ed when z ∈ C−,
|φk(z)| is bounded as

|φk(z)| =
∣∣∣∣
∫ 1

0

esz (1− s)k−1

(k − 1)!
ds

∣∣∣∣ ≤ |ez|
∣∣∣∣
∫ 1

0

(1− s)k−1

(k − 1)!
ds

∣∣∣∣ ≤
1

k!
(z ∈ C−). (35)

Using the theorem by Crouzeix [4, Theorem 2], condition (34) and inequality (35), there
exists 1 ≤ C ≤ 11.08 such that

‖φk(H̃m)‖ ≤ C sup
z∈W (H̃m)

|φk(z)| ≤ C

k!
.

Rede�ning α̌ as the sum of C/(k!) and the previous α̌ leads to:
∣∣∣∣
[
φk(H̃m)

]
i,j

∣∣∣∣ ≤ α̌λ̌i−j (i ≥ j), (36)
∣∣∣∣
[
φk(H̃m)

]
i,j

∣∣∣∣ ≤ ‖φk(H̃m)‖ ≤ α̌ (i < j). (37)

From the upper bounds (36) and (37), it is deduced that:
∣∣∣∣
[
φk(H̃m)QmĤm

]
i,1

∣∣∣∣ ≤
i∑

k=1

α̌λ̌i−kα′′λ′′k−1 +
m∑

k=i+1

α̌α′′λ′′k−1

≤ iα̌α′′λ̄i−1 + α̌α′′
λ′′i

1− λ′′

≤ iα̌α′′
(

1 +
λ′′

1− λ′′

)
λ̄i−1
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= iᾱλ̄i−1. (38)

where ᾱ := α̌α′′/(1− λ′′), λ̄ := max{λ̌, λ′′} < 1. As a result, using fact Qm ∈ Gexp(α′, λ̂)
and the upper bound (38), it is deduced that:

∣∣∣
[
φk(Dm −H−1

m )H−1
m

]
i,1

∣∣∣ =

∣∣∣∣
[
Q∗mφk(H̃m)QmĤm

]
i,1

∣∣∣∣

≤
i∑

k=1

α′λ̂i−kkᾱλ̄k−1 +
m∑

k=i+1

α′λ̂k−ikᾱλ̄k−1

≤ 1

2
(i+ 1)iα′ᾱλi−1 + α′ᾱ

i+ 1

(1− λ2)2
λi+1

≤ 1

2
(i+ 1)iα′ᾱ

(
1 +

2λ2

(1− λ2)2

)
λi−1

=
1

2
(i+ 1)iαλi−1.

where α := α′ᾱ(1 + 2λ̃2/(1− λ̃2)2) and λ := max{λ̂, λ̄} < 1.
¤

If the residual of solving the linear equation satis�es ‖rsys
m ‖ ≤ δ for some δ > 0, then

there exist α > 0 and 0 < λ < 1 such that the �rst term of equation (21) becomes:

β
∣∣hm+1,me

∗
mφk(Dm −H−1

m )H−1
m e1

∣∣ ‖(γmI − A)vm+1‖
≤ β|hm+1,m|

∣∣∣
[
φk(Dm −H−1

m )H−1
m

]
m,1

∣∣∣ ‖γmI − A‖ ‖vm+1‖

≤ β|hm+1,m| ‖γmI − A‖1

2
αm(m+ 1)λm−1 (∵ (30))

≤ β

2
‖(γmI − A)−1vm − f sys

m − h1,mv1 − . . .− hm,mvm‖

‖γmI − A‖αm(m+ 1)λm−1

≤ β

2
(‖(γmI − A)−1vm‖+ ‖f sys

m ‖)‖γmI − A‖αm(m+ 1)λm−1

≤ β

2
(1 + ‖rsys

m ‖)‖(γmI − A)−1‖ ‖γmI − A‖αm(m+ 1)λm−1

≤ β

2
(1 + δ)κ(γmI − A)αm(m+ 1)λm−1. (39)

Since 0 < λ < 1, the upper bound (39) implies that under the assumptions of (25) and
(26), if κ(γmI −A) does not increase as m becomes larger, the �rst term of equation (21)
decreases as m becomes larger.

Concerning the second term of equation (21), the following theorem is deduced:

Theorem 4.1 Let [φk(Dm −H−1
m )H−1

m ]i,j =: gm
i,j. Moreover, let tolφ > 0 be the tolerance

for computing the φ-function and mmax be the maximum number of iterations. Under the
assumptions of (25), (26) and (29), If,

‖rsys
1 ‖ ≤ tolφ

2mmaxβ‖φk(Dm −H−1
m )H−1

m e1‖ , (40)
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‖rsys
j ‖ ≤ |gm

1,1|
|gm

j−1,1|
‖rsys

1 ‖ (2 ≤ j ≤ m), (41)

then,
β‖Rsys

m φk(Dm −H−1
m )H−1

m e1‖ . tolφ .

Proof : Based on the above assumptions (40), (41) and Proposition 4.2, the upper bound
is derived:

β‖Rsys
m φk(Dm −H−1

m )H−1
m e1‖

≤ β(|gm
1,1| ‖rsys

1 ‖+ |gm
2,1| ‖rsys

2 ‖+ . . .+ |gm
m,1| ‖rsys

m ‖)

≤ β

(
|gm

1,1| ‖rsys
1 ‖+ |gm

2,1|
|gm

1,1|
|gm

1,1|
‖rsys

1 ‖+ |gm
3,1|
|gm

1,1|
|gm

2,1|
‖rsys

1 ‖+ . . .+ |gm
m,1|

|gm
1,1|

|gm
m−1,1|

‖rsys
1 ‖

)

(∵ (41))

= β|gm
1,1| ‖rsys

1 ‖
(

1 +
|gm

2,1|
|gm

1,1|
+
|gm

3,1|
|gm

2,1|
+ . . .+

|gm
m,1|

|gm
m−1,1|

)

. β‖φk(Dm −H−1
m )H−1

m e1‖ ‖rsys
1 ‖

(
1 + 3λ+ 2λ . . .+

m(m+ 1)

(m− 1)m
λ

)
(∵ (30))

≤ β‖φk(Dm −H−1
m )H−1

m e1‖ ‖rsys
1 ‖ · 2mmax

≤ tolφ (∵ (40)).

¤

The right-hand side of inequality (41) becomes larger as m becomes larger because of
Proposition 4.2. Thus, Theorem 4.1 implies that the larger m becomes, the solution of
the linear equation (γmI−A)xm = vm becomes more inexact, and the computational cost
decreases compared to the sirk. However, if the linear equations are solved, satisfying
inequalities (40) and (41), then the second term of equation (21) is no longer an issue. In
this scenario, the �rst term of equation (21), rcomp

φ,m , is used as the stopping criterion for
the convergence of isirk.

Remark 4.1 In practical computation, the values depending onm in inequalities (40) and
(41) are unavailable in advance. Thus, for the exponential integrator at the (i+1)th step,
φk(Dm−H−1

m )H−1
m e1 is replaced with the ones in the largest Krylov subspace at the ith step.

For the computation of equation (3):

V ∗
m(γmI − A)Vm ≈ (I −HmDm + γmHm)H−1

m

H−1
m ≈ HmDmH

−1
m − V ∗

mAVm,

since [(γmI − A)−1]
−1
Vmel ≈ VmK

−1
m el for all 1 ≤ l ≤ m. From Lemma 4.1, we have

H−1
m e1 ≈ (H−1

m )1,1e1. Thus,

H−1
m e1 ≈ Hmd1,1(H

−1
m )1,1e1 − V ∗

mAVme1

≈ Hm(γ1I)H
−1
m e1 − V ∗

mAVme1

= V ∗
m(γ1I − A)Vme1
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Algorithm 4.1 isirk method for φ-functions in the exponential integrator of the ith step
Require: A ∈ Cn×n, v ∈ Cn, δ > 0, tolφ > 0, mmax ∈ N
Ensure: βVmφk((HmDm − I)H−1

m )e1 such that ‖rreal
m ‖ ≤ tolφ

1: β = ‖v‖v1 = v/β
2: tolsys

1 = tolφ /(m
maxβ‖f i

m(i)‖)
3: N = mmax + 1
4: for m = 1, 2, . . . do
5: dm,m = N −m
6: Compute x̃ such that ‖vm − (dm,mI − A)x̃‖ ≤ tolsys

7: for l = 1, 2, . . . ,m do
8: hl,m = x̃∗vl

9: x̃ = x̃− hl,mvl

10: end for
11: hm+1,m = ‖x̃‖, vm+1 = x̃/hm+1,m

12: f i+1
m = H−1

m ψk((HmDm − I)H−1
m )e1

13: r = |hm+1,m(f i+1
m )m| ‖(γmI − A)vm+1‖

14: tolsys
m+1 = min{tolsys

1 |(f i+1
m )1|/|(f i+1

m )m|, δ}
15: if r ≤ tolφ then
16: m(i+ 1) = m
17: ym(t) = Vmψk((HmDm − I)H−1

m )e1, break
18: end if
19: end for

Similarly, from Proposition 4.2, it is deduced that φk((HmDm−I)H−1
m )e1 ≈ [φk((HmDm−

I)H−1
m )]1,1e1. Therefore,

‖H−1
m φk((HmDm − I)H−1

m )e1‖ ≈ ‖H−1
m [φk((HmDm − I)H−1

m )]1,1e1‖
≈ ‖V ∗

m(γ1I − A)Vmφk((HmDm − I)H−1
m )e1‖

≈ ‖(γ1I − A)y(t)‖
≈ ‖(γ1I − A)y(0)‖. (42)

Approximation (42) is employed for inequality (40) in the computation of equation (3).
Moreover, since α and λ do not depend on m, the following approximation is used:

|gm
1,1| ≈ |gj−1

1,1 |, |gm
1,j−1| ≈ |gj−1

1,j−1| (2 ≤ j ≤ m).

In summary, Algorithm 4.1 is proposed, where (fm)j is the jth element of fm. For the
computation of equation (3), the second line is replaced by tolsys

1 = tolφ /[m
maxβ‖(γ1I −

A)y(0)‖]. The linear equation in the sixth line of the algorithm is solved by an iterative
method, and the convergence of its solution is judged by its residual. This facilitates ensur-
ing that the residual of the solution of the linear equation satis�es the required conditions.
Any iterative methods, for example, the bicgstab [25] or the gmres [22], are viable op-
tions. (HmDm − I)H−1

m in the twelfth line is a small matrix, and it can be computed via
a direct method inexpensively. After computing (HmDm − I)H−1

m , φk((HmDm − I)H−1
m )

is also computed using a direct method, such as the scaling and squaring method [11].
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5 Numerical experiments
A few typical numerical experiments have been implemented in this section. These ex-
periments were in a collection of problems to illustrate the e�ectiveness of isirk. All
numerical computations of these tests were executed with C on an Intel(R) Xeon(R)
X5690 3.47GHz processor with an Ubuntu14.04lts operating system. lapack and blas
were used with atlas for this computation.

The Galerkin method with unstructured �rst order triangle elements and linear weight
functions, were used to discretize the problems. After the discretization, the gmres
algorithm [22] with an ilu(0) preconditioner were applied to solve the linear equation in
the sixth line of Algorithm 4.1 and in other algorithms. For sia, rk and sirk, the linear
equation was solved with a residual tolerance of 10−14.

Example 1
In order to show the advantages of the sirk, a wave equation was implemented in region
(−1.5, 1.5)× (−1, 1) ⊆ R2:





∂2u

∂t2
− c2∆u = f(x, t) in (0, T ]× Ω,

u = e−10(x1−0.5)2−10(x2−0.5)2 on {0} × Ω,
u = 0 on (0, T ]× ∂Ω1,

∂u

∂n
= 0 on (0, T ]× ∂Ω2,

(43)

where ∂Ω1 = [−1.5, 1.5]×{1,−1}, ∂Ω2 = ∂Ω\∂Ω1, f(x, t) = −104 sin (t)e(x1−0.8)2+(x2−0.8)2 ,
and c =

√
0.1. After the discretization:

{
M̃ ¨̃y(t) = L̃ỹ(t) + b̃(t),

ỹ(0) = ṽ.
(44)

Equations (44) were transformed into equations (2), where:

M =

[
M̃

I

]
, L =

[
L̃

I

]
, b =

[
b̃
0

]
, y =

[
˙̃y
ỹ

]
, v =

[
ṽ
0

]
,

F (y) = Ly + b(t).

In this example, the dimension of the matrices were n = 237378. The 1-step exponential
integrator [16] whose scheme was:

yi+1 = yi + ∆tφ1(∆tM
−1Li+1)M

−1F (yi).

was used.
In order to treatM−1Li+1 instead of ∆tM−1Li+1, γj/∆t was used instead of γj. Table 1

shows the cpu time and the iteration numbers for computing φ1(∆tM
−1L)M−1F (y(0)),

where ∆t = 0.1 and the relative error tolerance is 10−6 with sia, rk, and sirk. Figure 3
shows the relative error of each algorithm. The shifts introduced by Göckler [7] for sia
and rk were used. For sia it was shown that choosing γ = mα where α = (r− 2)/(r+ 2)
for step m resulted in a convergence rate of O(m−k(1+α)/2). Thus, r → ∞ provides a
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Table 1: Example 1: Comparison of sia, rk, and sirk.

Algorithm γj cpu time(s) Iterations
sirk (50− j)/∆t 7.1 25
rk r = 20/∆t, h = 1.5/∆t � �
rk r = 1.0/∆t, h = 0.1/∆t � �
sia 202/3/∆t 85.6 67
sia 2012/13/∆t 19.0 34
sia 302/3/∆t 54.2 52
sia 3012/13/∆t 10.6 29
sia 402/3/∆t 35.3 44
sia 4012/13/∆t 7.6 26

Figure 1: Example 1: Numerical solu-
tion of t = 1 with ei and sirk.

Figure 2: Example 1: Numerical solu-
tion of t = 2 with ie and sirk.

convergence rate of O(m−1). However, Göckler also showed that the constant in the rate
O(m−k(1+α)/2) became larger as r grew larger. For this reason, both r = 10 and r = 50
were tested. Concerning m, m = 20, 30, 40 were tested. For rk, Göckler proposed setting
γj = r+h · (−1)j−1d(j−1)/2ei at the jth step. r = 20, h = 1.5, r = 1.0 and h = 0.1, were
tested. For sirk, mmax = 50 was set. In this example, sia converged quickly for the large
m and large r, but it converged slowly for the small r and small m. rk uses complex shifts
even though the matrices and vectorM , L and v are real. Thus, additional computational
costs become necessary with complex values. Moreover, it does not converge in this case.
On the other hand, sirk uses real shifts, so its computation is faster, and the shifts in
sirk are determined automatically. Figure 1 and 2 show the numerical solution of t = 1
and t = 2 computed with sirk in the exponential integrator. It shows the vibration of
the wave, and we see the exactness of the computation of sirk.

Example 2
The next problem is the convection di�usion equation in region Ω = ((−1.5, 1.5) ×

17

KSTS/RR-17/001 
January 27, 2017



 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 5  10  15  20  25  30  35  40  45

R
el

at
iv

e 
er

ro
r

Iterations

SIRKP γj=(50-j)/∆t
RKP r=20, h=1.5
SIAP γ=202/3/∆t
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Figure 3: Example 1: The relative error of sia, rk, and sirk.

(−1, 1)) \ ([−0.5, 0.5]× [−0.25, 0.25]) ⊆ R2:




ρcv
∂u

∂t
= λ∆u− 5

∂u

∂x1

in (0, T ]× Ω,

u = 0 on {0} × Ω,
u = 10 on (0, T ]× ∂Ω1,

−λ∂u
∂n

= 0 on (0, T ]× ∂Ω2,

(45)

where ∂Ω1 = {−1.5} × [−0.5, 1], ∂Ω2 = ∂Ω \ ∂Ω1, ρ = 1.3, cv = 1000 and λ = 0.025.
The isia, which were previously proposed by Hashimoto and Nodera [10], and isirk were
compared. After the discretization, equation (2) with F (y) = Ly + c was obtained with
n = 390256. In this example, the di�erential operator D = 1/(ρCv)(λ∆ − 5 ∂u

∂x1
) was

linear and did not depend on t. Thus, the solution was obtained through computing
equation (3). Equation (3) was computed with the sia, isia, sirk, and isirk. The cpu
times and iteration numbers were compared. The detailed results are shown in Table 2.
The residual tolerance for computing φ0(tM

−1L)(v + L−1c), tolφ was 10−6, and t = 270.
mmax = 100. In addition, δ = 0.01 for the isia and isirk. Concerning the shift in the
sia and isia, 10/∆t, 80/∆t, and 160/∆t. The results show that the isia and isirk are
e�cient. It should be noted that, isia does not converge or converges slowly depending
on the choice of the shift. On the other hand, isirk does not require choosing shifts,
and converges in a reasonable amount of time. Figure 4 shows the residual tolerance
for solving linear equations at each Krylov step of the isirk. It was observed that the
exactness needed to obtain a solution for the linear equation decreased as m became
larger. The solutions computed with the isirk are tabulated in Figure 5. Problem (45)
represents the �ow of heat coming from boundary ∂Ω1. The temperature in region Ω is
0◦C at t = 0, but at this point, the heat begins to �ow toward the right edge of Ω. The
accuracy of the isirk is illustrated here.

Example 3
The third test problem was a Burgers equation in region Ω = (−1.5, 1.5)× (−1, 1) ⊆ R2
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Table 2: Example 2: Comparison of sia, rk, and sirk.

Algorithm γj CPU time(s) Iterations
isirk (100− j)/t 67.5 60
sirk (100− j)/t 159.8 60
isia 640/t � �
sia 640/t � �
isia 80/t 58.0 59
sia 80/t 138.2 61
isia 10/t 300.0 84
sia 10/t 917.0 89
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Figure 4: Example 2: Iterations versus tolsys
m .

Figure 5: Example 2: Numerical solutions of isirk.

for con�rming the e�ectiveness of isirk:



∂u

∂t
= u

∂u

∂x1

+ v
∂u

∂x2

+
1

Re
∆u in (0, T ]× Ω,

∂v

∂t
= u

∂v

∂x1

+ v
∂v

∂x2

+
1

Re
∆v in (0, T ]× Ω,

u = 0, v = 0 on {0} × Ω1,

∂u

∂n
= 0,

∂v

∂n
= 0 on {0} × Ω2,

u = f, v = −f on (0, T ]× ∂Ω,
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Figure 6: Example 3: Iterations versus ‖rreal
φ,m‖ and ‖rcomp

φ,m ‖ with tolφ = 10−6.

where Re = 106 and f(x) = e−10(x1−0.5)2−10(x2−0.5)2 . After the discretization, equation (2)
was obtained with F (y) = Ly + Q(y)y, where L ∈ Rn×n and Q is the matrix valued
function of Rn 7→ Rn×n with n = 29649, 118689. We set Li = L + Q(yi−1) and ni(y) =
F (y) − Liy = Q(y)y − Q(yi−1)y, then used the 2-step exponential integrator [16]. The
scheme was:

yi+1 = yi + ∆tφ1(∆tM
−1Li+1)F (yi)−∆t

2

3
φ2(∆tM

−1Li+1)[ni(yi)− ni(yi−1)].

The computations of φ2(∆tM
−1Li+1)[ni(ui)−ni(ui−1)] in the third time step with ∆t = 0.1

with isirk were observed. The residual tolerance tolφ for computing φ2(∆tM
−1Li+1)[ni(yi)−

ni(yi−1)] was 10−6 or 10−8 and mmax = 50, δ = 0.01. Figure 6 and Figure 7 show the re-
lationship between the number of iterations and the residuals of isirk with n = 118689.
The real residual rreal

φ,m decreases until it reaches tolφ, but it stops decreasing after this
point. This means that the linear equation is solved e�ciently at each Krylov step. On
the other hand, the computing residual rcomp

φ,m decreased even after it had reached tolφ.
Moreover, the behavior of rreal

φ,m and rcomp
φ,m were the same before they reached tolφ. Thus,

rcomp
φ,m was an appropriate stopping criterion for isirk. Figure 8 shows the residual tol-
erance for solving linear equations at each rational Krylov step with tolφ = 10−6 and
n = 118689. It was observed that the exactness needed to obtain a solution for the linear
equation decreased as m became larger. Table 3 shows the cpu time of isirk and sirk
with tolφ = 10−6. isirk was faster than the sirk.

In view of Example 1, 2 and 3, the following observation were made: sirk was more
e�ective than rk and sia. However, solving linear equations in sirk inexactly with isirk
was more e�ective and e�cient.

6 Conclusion
The uses of sirk and isirk were explored in this paper. The advantage of sirk is
that it determines the shifts of real values automatically. These shifts enable the faster
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Figure 8: Example 3: Iterations versus tolsys
m .

Table 3: Example 3: Comparison of sirk and isirk.

Algorithm n cpu time(s) Iterations
isirk 29649 0.42 14
sirk 29649 0.59 14
isirk 118689 2.4 16
sirk 118689 3.6 16

convergence of sirk. In addition, sirk uses matrices appearing in every step of the
Krylov process. This makes sirk the e�ective method for computing φ-functions in the
exponential integrator. Further to this, the computational cost of solving linear equations

21

KSTS/RR-17/001 
January 27, 2017



in sirk can be improved using isirk. isirk solves linear equations e�ciently while
guaranteeing that the generalized residual becomes lower than the arbitrary tolerance.
The exactness needed for solving a linear equation decreased as the Krylov step progressed,
and the stopping criterion for the convergence of sirk was also valid for the convergence
of the isirk.
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