Research Report

KSTS/RR-16/004
November 25, 2016

On the theory of generalized Hilbert transforms
Chapter V
The spectre analysis and synthesis on the N.Wiener class S

by

Sumiyuki Koizumi

Sumiyuki Koizumi

Department of Mathematics
Faculty of Science and Technology
Keio University

Department of Mathematics
Faculty of Science and Technology
Keio University

(©2016 KSTS
3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522 Japan



KSTS/RR-16/004
November 25, 2016

ON THE THEORY OF GENERALIZED HILBERT TRANSRORMS
CHAPTER V
THE SPECTRE ANALYSIS AND SYNTHESIS ON THE N.WIENER CLASS S

Sumiyuki Koizumi

116



KSTS/RR-16/004
November 25, 2016

ON THE THEORY OF GENERALIZED HILBERT TRANSRORM V
THE SPECTRE ANALYSIS AND SYNTHESIS ON THE N.WIENER CLASS S

by

Sumiyuki Koizumi

Department of Mathematics,
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ABSTRACT
We shall continue the problem of spectrum of function of the N.Wiener class S after the
preceding section 13 in this research report IV and we shall present the more fine and

advanced results.

14. The Spectral Analysis on the N.Wiener class S.
We shall intend to construct the theory of spectral analysis on the N.Wiener class S

nuder the hypothesis of which relaxed as in section 13 of IV in this series (c.f.

pp.105~114).
We shall denote as before that the function f(x)of the N.-Wiener class S and ¢(x)of

its correlation function and also that s(u) and o(u) the G.FT. of f and ¢

respectively.

We shall set the presupposed conditions as follows. There exists
. I i —iAx
(C,) ¢ :i’l’iﬁi f(x)e™ dx (Vreal 1)
and
1 T
s —idx
(D,) d, —£z_r)i;lo—2T_J;g0(x}e dx (Vreal 1)

respectively.

Let us denote
1 %,
pu(x) = [ & |s(ure; f)=s(u=e;f)[ du
ne =,

and
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o, (u)= j o, (x)S—— dX+lAg m 7=[H ]%(x)e__‘;dx,

Then we have

—mx

PV—I¢5(X) - 1aIx= 28\1/5_?s(v+g;f)—s(v-g;f)|2dv

for any finite range of u and any positive number & and we have

u

~s(v—g& f)fdv=0,(u)+C, ae.u.

7T 4

where

c. pVE[H }%W

We shall refer the above formula to the Research Report II1,pp.55~57.
Let us notice that o,(u) is defined on the space I’ and so it is indeterminable on the

set of measure 0. Therefore we shall intend to define o,(u) on the indeterminable set
by the above formula for any point of u. Then o, (u) is defined everywhere and it is

bounded continuous and monotone increasing function.
Now we shall consider the sequence {0'8 (u )} of which just defined
Since we have
Limo,(u)=o(u) (L)

and the o,(u) isa bounded continuous and monotone increasing function of u for each
fixed positive number &. Then applying the Paley-Wiener Lemma [2](c.f. p.135),we

could conclude that

lingog(u) =o(u) aeu

and o(u) is also a bounded and monotone increasing function on the set of # where
o(u) is defined.

14.1 The refinement of properties of o(u)
First of all, we shall intend to clear the properties of o(u ). The reader should refer
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Lemma D, of I1I in this series of research report [3](c.f. pp.52~60).

Now we shall intend to refinement of the properties of the o(u) as follows.
Let us denote the set D of u where the sequence {O'g (u )} is convergent and the set E

of u where it is not convergent. Then we have DU E =(—w,4+0), m(E)=0.
We shall define

o(u)=supo(v), o(u)=infc(v) and o'*(u)_—_g_(y_%q_@

respectively.
We shall intend to investigate properties of the s (u)
(i) The o (u) is defined at every point of # and bounded, monotone increasing

function .
Proof. Since and g( u) are o(u) both to be bounded and so & (u) does too.

Since o(u) is bounded and monotone increasing on D, we have for any pair of

(u',u") suchas u'<u"

supo(Vv')<supo(v")
vi<u' vi<u”
v'eD v'eD

and so we have
o(u')<a(u").
Then o(u) is defined at every point of # and a bounded ,monotone increasing

function.
Similarly we have the same property as E( u) too.

Therefore we have

o(u)+o (W) _S(W)rS(W) _ o)
2 2
(ii) The o’ (u) satisfies at every point of u the following properties

o'(u')=

o' (u—0)<o(u) and o(u)<o'(u+0).
Proof. Since o(u) is bounded, monotone increasing function, we have for any pair of

(u',u") suchas u' <u”

o(u')=info(v' )= inf o(v )< sup o(v")=supo(v')=o(u").
u'<v' u'<v'<u” u'<v'<u” vi<u”
v'eD vieD v'eD v'eD
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Therefore we have proved for any pair of (v,u) suchas v<u,
a(v)<o(v)<a(u)

and so

<o(u).

o' (v)

Then if we tend v T u, we have by the property(i) of o (u)
c'(u-0)<o(u).

_g(v)+o(v)
B 2

Similarly we have
o(u)< o (u+0).

(iii) The o*(u)=0(u) onthe set D and continuous at any point # ofthe set D.
Proof. First of all we shall remark that

o(u)<o(u)<o(u) (YueD)j.

Let us suppose that E( u)—o(u)>0 atapoint u oftheset D.In particularlet us

suppose that o(u)—o(u)=n>0.

Since ling o,(u)=0c(u),forany 7, >0 thereexists & >0 such that
&>

(@) lo.(u)-o(u)l<n, (0<e<g').
Since o,(v)—>o.(u) as veD and vTu, we have for any £ (0<g<g') to be

fixed and for any 77, >0 there exists 6 >0 such that
(b) lo.(v)—o(u)l<n, (u-86<v<u).

Since ling o,(v)=0(v),forany 7, >0 there exists £”" >0 such that

(0 lo,(v)-o(v)l<n, (0<e<g")

Then we have for any & >0 to be fixed such as 0 <& < min(g',e")
o(v)>0o,(v)=1,>0.(u)—1m,—1m3>0(u)—m =1, —ny=0(u) = (1, +mn,+1;)
by combining the above estimations (a), (b) and (c). Then we could take 7, +7, +7, <7

and we shall prove that there exists v<u# and ve€ D such that
o(v)>o(u)-n=o(u).

This lead to the contradiction that o(v)<o(u) (Vv<u,veD).

Thus we shall conclude that

o(u)=0o(u)
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at any point # oftheset D.

Similarly we shall conclude that
o(u)=o(u) (YueD)
and

gu)ro(m) _ sy (vueD).

o'(u)= >

Now we have

o(u)=supo(v)=supo (v).
v<u v<u
veD veD
Since o'(u) is a bounded, monotone increasing function, we have for any given
positive number & > 0, there exists V' <u such that
c'(u-0)-g<o*(V'),
where since m(E)=0, we can pick up a point v’ in the set D, then we have

o' (V')<supc'(v)=supo(v)=0c(u).
e D
Therefore we have
oc'(u-0)—¢c<o(u).
Thus we have proved
o' (u—-0)<o(u).
On the other hand for any point v in the set D such as v <u#, we can pick up

v ofthe set D suchas v <V’ <u,then since
o(v)<o(v)=a(v)=0c(V)

we have

o(v)<o'(V')= g(v)+o(v) ; o(v) :

By tending V' T u, we shall conclude that
o(v)<o'(u-0),
for any point v intheset D suchas v<u.
Therefore we have
o(u)=supo(v)<o (u-0).
e
Combining the two inequalities to be obtained, we have

o' (u—-0)=0c(u).

Similarly we have
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o (u+0)=0(u).

But since we have E( u)=0(u)=o0(u)at any point of # of the set D and so

o' (u) = o(u) therefore we have
c'(u-0)=c"(u+0)=0"(u)

at any point # of the set D.

Thus we shall prove that

o' (u)=0o(u)

at any point # oftheset D and o"(u) iscontinuous bounded, and monotone
increasing function on the set D.

(iv) The o"(u) is discontinuous of the first kind for every point # of the set E

and the set E is at most countable.

Proof. In the first we shall intend to prove that
a(u)<o(u)
for any point # ofthe set E.
Let us suppose that o(u )=E( u) at a point u of the set E. Then any pairs of

g,&' >0, we have
o (u—¢')<o,(u)<o (u+e').

Since the measure of the set £ is 0 and so , for any point of # of the set E, there

exists a sequence of points {u ie"} such that u+¢&' € Dand {8'} 4 0. In the first

we shall intend {8} 4 0, then we have

O'(u—e')sli_mog(u)S@og(u)s0'(u+8')

£-0
Next we shall intend the {8'} 1 0. Since the o(u) is bounded monotone increasing

function on the set D, we have
iinga(u—s’)= supo(v)=o(u)
&> v<u
veD
and
linga(u+g')=inf0'(v) =;(u).
£ u<v
veD
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Therefore we have
o(u)<limo (u) Slimoo;(u) Sg(u).
£

>0

Since we have assumed that o(u)= E( u) at the point u, we have
limo,(u) =limo, (1)
£ £-0
and so ling 0,.(u)exists. Thus it lead to the contradiction of the point % of set E
£—>

where lzlno o.(u) does not exists.
&

Next we shall intend to prove that the set E is at most countable.

For any pair of (u,v) suchas u <v, we have

E(u)= info(u')<supo(v')=c(v)
u<u' v'<y
u'eD v'eD

and og(v)=< E( v ). Therefore we have

g(u)SG*(v)zg(v);z(V)
Now we shall tend v 4 #, then we have
o(u)< o' (u+0),

for any point # of the set F.
Similarly we have
o'(u-0)<o(u),

for any point u# of the set £ and therefore we have
o (u+0)—c"(u—0)20(u)—o(u)>0,

for any point # of the set E.

Since the ¢*(u) is bounded, monotone increasing function, we shall conclude that
the o*(u) is discontinuous of the first kind at each point u# of the set E and the set
E is at most countable.

Thus we have proved that the function o”(u) could be defined everywhere and
satisfies the following properties.

The function ¢*(u) is bounded, monotone increasing function of # and furthermore
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(a) On any point # ofthe set D, we have ¢ (u)=0c(u) and moreover
c'(u-0)=c"(u+0)=0"(u)
and so it is continuous there.

(b) On any point # of the set E, we have
o' (u-0)<o(u) and o(u)<o'(u+0)
and so it is discontinuous of the first kind and has the magnitude of jump
o (u+0)-c"(u-0)2c(u)-o(u)>0
there.

It should be remarked that the set £ is at most countable.

14.2 The spectral synthesis of function of the N.Wiener class S.
Let us begin to prove the general properties of function f(x) in the N.Wiener class

S under the hypothesis stated in the beginning of section 14.1 as follows.

There exists
(C,) cl=lim—1——}f(x)e”i“dx (Vreal 1)
row 2T 3
and
17 -idx
(D,) d,l=£z_r)ri—2—f:[(p(x)e dx (Vreal 1)

respectively.

Then we shall prove
Theorem E. Let us suppose that the function f(x) of which belongs to the N.Wiener

class S and satisfies the conditions (C,) and (D, )forallreal 4.

Then we have

(I lc, P<d, (Vreal 1)

( II ) There exist at most countable set of real number A= {ﬂn} (n=012,----+)

and it satisfies followings

(i) ¢, 20 (n=0,12,-),

where we shall denote the ¢, instead of ¢, (n=0,1,2,-----) and 4, =0 with ¢, =0

may be permitted.
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and
(ii) c,=d,=0 (VigA)
There exist B, almost periodic function g(x) of which can be expressed as its

Fourier series

(iii) g(x)~ c.e™

If we decompose f(x) as follows

(iv) f(x)=g(x)+h(x)
then we have

v) zzm—j[h( Jfde=—— Z(d,,—

After Prof.N.Wiener we shall denote f(x ) and s(u) as its G.F.T. and also ¢(x)
and o(u) as its correlation function and G.F.T. respectively. N.Wiener[1](c.f. p.159)

also introduced the following functions

(21.175) 0.(x) == [ & |s(utes f)=s(u—s; )P du
dre =
and
(21.22) o.(u)=—— ! j¢€(x)—dx+lzm ! _J‘I+T %(x)ﬂdx
\/5_ A 271- R —ix

Then R.E.A.C.Paley-N.Wiener[2l(c.f. p.135) proved that
| limo,(u)=o(u) (ae u).
We have proved in III in this research report [3] (c.f. pp.52~60)

Lemma D,. Let us suppose that f(x) belongs to the classS, then the following
limit

IIS(V+8 f)=s(v- gf)lzdv—lzm(cr (u)-0o,(-¢))

lim

-0 28 Z

exists and equals to
o(u)—o(—0) (ae. u)
over any finite range of u.
Now we shall begin to refine Lemma D), for the sake of completeness and prove
Lemma E. Let us suppose that f(x) belongs to the class.S, then the following

ute

f}s(v+g,~f)—s(v—g,-f)}2dv=1Tg(a£(uig)—ag(ig))

lim

&0 28 /
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exists and equals to
o(ux0)—-o(+0)

for any point #, respectively.

Proof of Lemma E.

(i) Let us suppose that 0 € D, then we have lingae(O) =0(0),where {8} is any

sequence of positive number & and tendto 0.

Since {Gs (u )} is bonded, monotone increasing as function of u# for each positive

number &, we have
o.(-u)<o.(-s)<0.(0) (0<e<u).
Then tending the &€ — 0, for any point # such as —u €D where o, (-u) >

o(—-u), we have

a(—u)S_li_m_ag(—g).é@as(—g)SO'(O).

£->0

In the last tending ¥ -0 such as —-u €D where o(-u) > oc(0)=0(-0) ,thus

we have

lingae(—s) =0(-0).
Similarly we have
Zingas(+£) =0(+0).
(ii) Let us suppose that 0 ¢ D, that is 0 € E. Since the following limit ling c.(0)

does not exist, we shall define

_o(=0)+ao(+0)

a(0) 3
where
0'(—O)=luz'%zo'(u) and 0'(+0)=luiﬁ)m'(u)
ueD ueD
respectively.

Let usput o(+0)—0(-0)=d >0 and define
o (u)=o(u)—dh(u)

where h(u) is the Heaviside operator, that is as follows
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1 (u>0)
h(u)= —;— (u=0)
0 (u<0).
Then o~ (u) is continuous at u =0. Because we have
o (-0)=0c(-0)

o(+0)-0(=0) o(-0)+0(+0) o(+0)-o(-0)
2 B 2 2 -
o™ (+0) =0 (+0)—(o(+0)—o(-0)) = o(-0)

respectively. Now let us put

7 (0)=0(0)- o(-0)

o7 (1) =0, (u)~dh(n)

and consider the sequence {0'5~ (u )} instead of {O'g (u )}, then it is continuous at any
point u of the set D . Because we have
limo, (u)=limo,(u)-dh(u)=o(u)-dh(u)=0"(u)
and o (u) iscontinuous at # =0. Then we have
ii_r)rgo"(—s) =0 (-0)
where
o, (-¢)=0,(-¢)-dh(-s)=0,(-¢) and o (-0)=0(-0)
Therefore we have
lima, (~¢) = o(~0)
Similarly we have
iiggo’ﬁe) =0 (+0)
where
o,(+s)=0.(+e)—dh(+s)=o0,.(+s)—(o(+0)-0c(-0))

and
o (+0)=0(+0)-d =0(+0)-(o(+0)-0oc(-0))=0(-0)

Thus we have proved
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ling{as(+8)—(o*(+0)—0‘(—0))} =o(-0)
and thus we have proved

linga€(+e)=0'(+0)

In general we shall prove by the same argument as above at a point # =0,
limoag(uif;): o(ux0)
£
at any point % .(Notice: In these cases, we should remark that we would use o (+0)etc.

instead as the ordinary notations o( 0+ ) etc. respectively).

Proof of the Theorem E. First of all let usl notice that we have
17 i
c, =lim— x)e " dx Vreal ).
2= lim— I f(x) ( )
Then we have by the hypotheses (C,) and the one sided Wiener formula,

Ate

j{s(v+g f)=s(v—g; f)dv]

1% »
2_ 1 715 —idx 2_17;
e, = tim J f(x)edic = lim—

<i’_’,’3— rls(v+s f)=s(v—se;f)fdv _”('“0"40\)/5(/1—0;40)

and we have by the hypotheses (D, ) and one-sided Wiener formula too

. 1 T . —iAx
d, = lim ﬁ_cho(x, f)e ™ dx

A+g
0'(/1+O;qo)—0'(/1—0;¢)
=[im o(u+&; o(u—g;
e>0 25\/272' ,{{ ( #)-ot ¢)} N27

for all real 4 where we should apply the Lemma £ in each of the last formula.

Then we have
1% 1 ¢
lim — x)e P dx P < lim— x; e dx
IM2T_ITf( Je ™ dx | MZT_ij /)
for all real A . Therefore we have

lc, P<d, (Vreal 1)

According to Lemma £, we shall expect as follows. Let us put the set E ={/'Ln}

(n=0,1,2,----- ) astheset A and theset D asits complement. Let us put
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r‘

00 AeD
d, = «
G(ln+0;<0)—0(ﬂn-0;(ﬂ)’ (n=012)
\ Jr
and
(0, AeD
c, = &

c, (n=0,1,2,----- )
Then we shall acknowledge that these settings are true and coincide with the
assertions of Theorem £ .
We have
Zl Cn IZS Zdn — Z G(ﬂ’n + 0; ¢)_ O-(ﬂ’n _O’qp) < O'(+OO,¢) - O'(—OO,¢) < 0.

2z 2z

Therefore we shall conclude that there exists a B, -almost periodic function g(x)of

which Fourier series is as follows
g(x)~ Y c,e™".
n

Then if we put
f(x)-g(x)=h(x)
say, and we shall consider correlation functions @(x; f),w(x,g) and y(x,/h)of
f.g,h ; their GFT. ofu;¢),0(u; ) and o(u; y) of @i, ¥ respectively. Let us

remark that
1 f 1§
T ~idx — Ji —idx
¢, =lim—— jT f(x)e = lim jT g(x)e " dx (Vreal 1)

Then by repeating the same arguments as IV in this research report [4] (c.f.
pp.105~108), we shall prove
(%, f)=w(x;8)+x(xh)
and
o(u;,@)=o(uy)+o(u x)
respectively.
Then by the Lemma E, o(u;@) is continuous on the set D and discontinuous of
the first kind with jump on the set £ such as
_0(4+0,90)-0(4,-0,9)

d, =
N2
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A,+€
J. {0'(”+5:'¢)—0'(u—8,'(0)}du (n=0,12,-----)

1
5202627 7,

On the other hand , since o(u;iv) is G.ET. of y(x;g) and w(x;g) is the

correlation function of B, -almost periodic function g(x), we have

( zSle, P (uzi,)

A <u
o(u;y)= ¢

M(th%lcﬁj (u=14,)

Ay <u

Then o(u,y ) is continuous on the set D and discontinuous of the first kind with

jump on the set E such as
o(A,+0,y)-0(4,-0;y)

2z

fe, <
Thus we have
lc, P<d, (n=012,---)
on the set E.

Furthermore we have

ontheset D.
Therefore we shall prove that o(u,; y) is bounded, monotone increasing function.

Since o(u,y) is G.FT. of y(x;h) and y(x,h)is the correlation function of A(x),
we have by the N.Wiener Theorem{1]( Theorem 24,pp. 146~149)

1 % 1
lim— | |h(x)P dx=—>>(d —|c [).
TMT_ITHM 2 2(dlen )
In particular, if it is satisfied the condition
d,—|c, ]2=O (n=0,1,2,----- )
then we have
1% X
lim— | |h(x)|dx=0.
T»szJT' (x)]

Thus we have proved the Theorem E completely.
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