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1. Background

The security of New Zealand’s electricity supply is largely depen-
dent on future annual patterns of hydro catchment inflows.

The NZ Electricity Commission oversees New Zealand’s electric-
ity sector. It is responsible for ensuring that demand can be met
in a 1-in-60 dry year without the need for emergency measures.

The Commission needs to estimate the risk of extreme annual
sequences of weekly inflows so that it can take steps to mitigate
the effect of dry years.



The Commission wishes to develop a stochastic model for weekly
inflows that

e captures the properties of historic inflows sufficiently accu-
rately to be suitable for

e risk forecasting, particular of extreme sequences, and
e Simulating realistic forward sample paths over

e Seasonal to multi-year timescales.

Harte, Pickup and Thomson (2004) and Harte and Thomson
(2006) recommended that a nonhomogeneous seasonal HMM
(Hidden Markov Model) be developed for NZ weekly inflows that
models the episodic seasonal regimes observed in the data.

T his presentation reports on a preliminary HMM analysis under-
taken for the Commission by SRA.



2. Strategy

Model outlier-corrected, weekly inflows X; as

ot(Xy) = p+ Tt + oYy
where

¢+(.) = suitable transformation
u = long-term mean level
Ty = smoothly evolving trend deviation
Y; = standardised, trend-adjusted, transformed data.

Objective: Use a homogeneous HMM to explore

e intra-annual seasonal dynamics of Y%;

e potential structure of seasonal HMMs for Y;.



Comments

e NoO attempt to model inter-annual trend 1; at this stage.

e Previous inflow analyses confirm episodic nature of seasonal
regimes and desirability of switching models.

e Harte and Thomson (2006) show that ¢;(z) = log(x — 6;)
(0; = 0;450) eliminates the extreme skewness present in X,
allowing HMM to focus on regime switching dynamics.

e T he non-seasonal, homogeneous HMM fitted needs to be
simple and sufficiently robust to reliably classify persistent
states.

Although a non-seasonal HMM is inappropriate for out-of-sample
prediction, its state classifications are useful for exploring the
in-sample stochastic properties of seasonal inflow regimes.



3. A non-seasonal HMM for inflows

Consider modelling the transformed weekly inflows Y; using the
non-seasonal HMM

Y = ps, + 05,2t
where

e S; is an unobserved stationary Markov chain taking on values
1,..., N,

e Z; is a Gaussian AR(1) process, independent of S;, with
E(Zy) =0, Var(Z;) = 1, cov(Zy, Zy—1) = p;

o BE(Yi|St) = ug,, Var(YylSy) = o3,
In general S; is specified by N(/N — 1) transition probabilities. For

N = 4 this yields 12 parameters to estimate for S; alone. Too
expensive unless N is small. A major weakness!!



Following Buckle, Haugh and Thomson (2004) we restrict atten-
tion to N = 4 and specify S¢ by two independent 2-state Markov
chains C%, V; where

Ct Vi
S¢ Cp Vi regime regime pug og,
O Low Low H1 01

1 Low High no 09
O High Low n3 03
1 High High U4 o4

A OWNHRH
R =L, OO

Now S; has 4 parameters compared to 12 for the general chain.

BHT model is adopted to explore episodic seasonal regimes and
dynamic structure of weekly inflows.



Note that S; can be regarded as
e an approximation to a more general 4 state Markov chain; or

e a structural model of the underlying hydrological process.

Examples.

e General: States S§; have means that approximately follow a
cyclic seasonal sequence.

e Structural: Seasonal C; indexes primary flow regimes (high
flow/charge and low flow/discharge) with non-seasonal V; de-
scribing secondary flow characteristics (eg volatility).



4. EXxploratory data analysis

Two representative hydro catchments considered.

e Arapuni is dominated by North Island rainfall and lower to-
pography.

e Benmore is dominated by South Island rainfall and snow as
well as high mountains.

e 74 years of weekly inflows (1931-2004).

e Data prior adjusted for outliers (Arapuni 4; Benmore 3).
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Transformation

Inflows X; transformed by shifted-log transformation
Wi = log(X; — 6¢)

where 6; = 9t+52 IS Minimum possible inflow.

Estimated using local maximum likelihood with moving estima-
tion window of 13 weeks. Three local models considered.

o H&T 2006: 6; = 0 and W} independent Gaussian with con-
stant mean and constant variance for each week;

e Modified: 6; = 6 and W} independent Gaussian with separate
mean and variance for each week;

e Smooth modified using smoothness weights in log-likelihood.

A global (52 week) modified model was also fitted.
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Global constant model 6; = 6 chosen since it
e is a significant improvement over log X; (6; = 0);
e iS a simple non-seasonal, time-homogeneous transformation;

e iS similar in effect to modified estimates.

The W; are now trend adjusted to give

Wiy =pu—+1 4+ oY;

with 71} estimated by STL. This vields the standardised, trend-
adjusted, transformed inflows

Y = (log(X¢ —0) —p—1T})/o.

The BHT model is fitted to the transformed weekly inflows Y;.



Arapuni

'\ —
© p—
LO p—
o~ l‘ i |J'"H |. ! j‘l
= < - b ‘m lIt — 1 L‘ : ll AU WO Y : 'l _‘w!, ‘4_“"; "'""‘!-”-"‘!‘!f 1‘” “E‘;!“"Teif“ 'rl‘-:.m-,i;
m —
N p—
Transformed . | | | |
inflows 1940 1960 1980 2000
Benmore
STL Trend ~
Mean © h
LO p—
”.lﬂ lM!.! L lll ‘|‘H l‘l'”‘.l‘, ‘I‘lli 'J_!'w]h.‘ 1 ‘i l‘\ “'l"“‘“ i.ki] = | I'“LV‘EILIL thlil\ \'dl'
z v - ’HM ' i(l "H]HMI Il i |
m —
N p—
‘_| —
| | | |
1940 1960 1980 2000

Year



Arapuni Benmore

*
<t H * <
*
* *
* % o * * ¥ *
** * *. * * *
LA AT S T * * g T L *
ToTh) ool kLK * * * * 17 T *
POUTTNTT % T 1T 1y hk x K* 7 TT T TH ,r**rr T * *
AN T T * ko E K T N I B T I LI S,
|||III |ITIII |TI§TT **i:* *T *** **I Nl N * * TlllllllllTTlll I|T||I ' TTT*“T*
| I l I T | l | T
| ||IIII NN TR **1 g % Fooor ! g1 |I:|||”|||.|I||II T T g

Boxplots of

transformed > o - o -
inflows by .
N Bt it Lt N o wh
week of year gkt gt ! R F
**ﬂ *ﬂ_ljg** Y N
x %X % 4 X % gt * *
< | * * % < | ** *
! [TTTTTTITTTIT T I I e e I I e e I T I e e e e I e I e I e araoad ! IIIIITIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
1 13 26 39 52 1 13 26 39 52

Week Week



Model fitting

BHT model fitted using EM and ML with model choice guided by
AIC. Log-likelihood and EM depend on classification probabilities

v (5) = P(St =3j1Y), %, k) = P(St = 3,541 =k[Y)
where Y denotes the data Yi7,..., Y.

The v%(5), (7, k) are useful in their own right and also to extract
S; dependent quantities. For example, the best estimate of Ks,
given the data is

4
E(ps,|Y) = > pivQ)
j=1

which we call the HMM trend.

T he classification probabilities are used in this way to construct
suitable diagnostics.



After re-labelling, the fitted parameters led to the mapping

C Vi
Sy Cp Vi regime regime pug og,
O Low High H1 01

1 O
2 0 1 Low Low uo> oo
3 1 O High High u3 03
4 1 1 High Low Ha 04
where
p1 < p2 < pgq < p3
and

01 =03 >0 =04

Note mean flow hierarchy.
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Transformed
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Transformed
inflows

ACFs of classifica-
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For any state 5, another view of its seasonality is provided by the
proportion, over years, of visits to state 5 in week k£ of the year

(k=1,...,52).

The best predictor of this proportion is

1

— 3" 4(j) = seasonal mean of ~;(5)
4

where Z; is over those t with week of the year k.
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Best predictors of the number of transitions from state 5 to state
k and number of weeks in state 5 are given by

T—1 T—1
E() I(St=4,Si+1=k)Y)= > %, k)

T T
ECY IS:i=DIY)= > %)
where 5,k =1,...,4 and I(.) is the indicator function.

Using these estimated counts, simple moment estimators of the
transition probabilities are given by

- YNGR
Py ==L 02 (jk=1,...,4)
>i—1 7t ()

If the classification probabilities are reliable, ij provides more
robust estimates of the transition probabilities than ML.



Arapuni Benmore

St41 =1 Si41=2 541 =3 541 =4 St41=1 Si41=2 541 =3 541 =4
S;=1 0.84 0.10 0.06 0.01 0.79 0.13 0.05 0.03
Sy =2 0.08 0.84 0.01 0.07 0.10 0.77 0.02 0.11
Sy =3 0.04 0.01 0.79 0.15 0.00 0.01 0.80 0.19
Sy =4 0.01 0.10 0.07 0.82 0.00 0.09 0.11 0.80
Sp=1 0.81 0.12 0.06 0.01 0.73 0.16 0.09 0.02
Sy =2 0.08 0.85 0.01 0.07 0.10 0.79 0.01 0.10
Sy =3 0.08 0.01 0.79 0.12 0.05 0.01 0.77 0.17
Sy =4 0.01 0.08 0.08 0.83 0.01 0.05 0.11 0.83

Simple moment estimates ?jk (top panel) and ML model-based
estimates ij(bottom panel) of the transition probabilities.



Since P(Cy = 0|Y) shows the strongest seasonality, consider on-
sets and durations of low and high flow regimes.

Classify inflow as low regime if P(Cy = 0|Y) > 0.5 and high
regime otherwise.

Apply a non-linear filter (censoring) that ignores short (implausi-
ble) durations.



Summary statistics for low and high flow regime classifications.

Arapuni Benmore
Low flows High flows Low flows High flows
Number of regimes 139 139 141 142
Mean duration 14.90 12.55 9.50 17.48
Onset mode 22 48.5 50 14
Number of regimes 99 99 103 104
Mean duration 21.24 17.30 13.11 23.77
Onset mode 22 48 50 14
Number of regimes 75 75 74 75
Mean duration 28.16 22.72 17.12 34.07
Onset mode 22 48 50 14

Top panel applies to original classifications. Remaining panels to
filtered regime classifications with

e durations of 3 or less months censored (middle panel);

e 6 or less months censored (bottom panel).
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Summary of findings

BHT model provides reasonably secure classification probabilities
that give a better understanding of the seasonal dynamics.

In particular, the analysis shows

e strong empirical evidence for episodic seasonal regimes with
varying onset and end times;

e that, in general, S tends to move mainly between adjacent
states in the mean flow hierarchy, with the intermediate states
used for (asymmetric) rising and falling flows;

e that, in terms of the BHT model, C; needs to be seasonal,
but V4 need not.



5. Seasonal HMMs for inflows

Consider a non-homogeneous generalisation of the BHT model
given by

P(Ciy1 = jlCr =1) = pii(r) (4,5 =0,1)
where

Poo(7) =pg]6), p11(7) =p§ki) (reky k=1,...,4)

with 7 denoting the week of the year for t.

The E; are mutually exclusive time-of-year intervals with

E1 = only low flows FE, = transition period
E3 = only high flows FE4 = transition period.



Now introduce absorbing states by requiring

(2) (2)
wm_]10 @ — | pog 1 —pgg 3) _
e [1 0] b= [0 1] e

=

o 1] PO= Lo 1 |
, P — 4 4
0 p(()o) 1_péo)

This ensures annual seasonality with just 2 free parameters.

The transition probabilities of V; are defined by

(0) _
. . q;; (Cy=0) o
P(V 1:]|‘/t:7’):{ y (7’7.]:071)
* qg-l) (Cy=1)

This is a structural, seasonal HMM which is simple, physically
interpretable, parsimonious and consistent with our findings.

A general seasonal HMM can be constructed similarly.
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Further work

These models need to be fitted to the data and their performance
benchmarked against more conventional models (eg PARMA).

T his will involve the development of suitable

e estimation procedures and algorithms;
e R programs and code;

e testing procedures.

Also need to devise ways of including the inter-annual trend.

For further details see:
http://www.electricitycommission.govt.nz/opdev/modelling/hydrology/index.html



