V-fold cross-validation improved: V-fold penalization

Sylvain Arlot

¹University Paris-Sud XI, Orsay

²Projet Select, Inria-Futurs

Cherry Bud Workshop, Keio University, Yokohama March 26, 2008

arXiv:0802.0566

Statistical framework: regression on a random design

$$(X_1, Y_1), \dots, (X_n, Y_n) \in \mathcal{X} \times \mathcal{Y}$$
 i.i.d. $(X_i, Y_i) \sim P$ unknown

$$Y = s(X) + \epsilon$$
 $X \in \mathcal{X} \subset \mathbb{R}^d$, $Y \in \mathcal{Y} = [0; 1]$ or \mathbb{R}

noise
$$\epsilon$$
: $\mathbb{E}[\epsilon|X] = 0$ noise level $\mathbb{E}[\epsilon^2|X] = \sigma^2(X)$

Least-squares risk:

$$P\gamma(t,\cdot) = \mathbb{E}\gamma(t,(X,Y))$$
 with $\gamma(t,(x,y)) = (t(x)-y)^2$.

Loss function:

Introduction

$$\ell(s,t) = P\gamma(t,\cdot) - P\gamma(s,\cdot) = \mathbb{E}\left[(t(X) - s(X))^2\right]$$

• Empirical risk minimizer on S_m (= model):

$$\widehat{s}_m \in \arg\min_{t \in S_m} P_n \gamma(t, \cdot) = \arg\min_{t \in S_m} \frac{1}{n} \sum_{i=1}^n (t(X_i) - Y_i)^2$$
.

• e.g. histograms on a partition $(I_{\lambda})_{{\lambda}\in\Lambda_m}$ of ${\mathcal X}$.

$$\widehat{\mathsf{s}}_m = \sum_{\lambda \in \Lambda_m} \widehat{\beta}_\lambda \mathbb{1}_{I_\lambda} \qquad \widehat{\beta}_\lambda = \frac{1}{\mathsf{Card}\{X_i \in I_\lambda\}} \sum_{X_i \in I_\lambda} Y_i \,.$$

Model selection

$$(S_m)_{m\in\mathcal{M}} \longrightarrow (\widehat{s}_m)_{m\in\mathcal{M}} \longrightarrow \widehat{s}_{\widehat{m}}$$
 ???

"Classical" oracle inequality:

$$\mathbb{E}\left[\ell\left(s,\widehat{s}_{\widehat{m}}\right)\right] \leq C\inf_{m \in \mathcal{M}} \left\{\mathbb{E}\left[\ell\left(s,\widehat{s}_{m}\right)\right] + R(m,n)\right\}$$

"Pathwise" (or "conditional") oracle inequality:

$$\mathbb{P}\left(\ell\left(s,\widehat{s}_{\widehat{m}}\right) \leq C\inf_{m \in \mathcal{M}} \left\{\ell\left(s,\widehat{s}_{m}\right) + R(m,n)\right\}\right) \geq 1 - Kn^{-2}$$

• Adaptivity (e.g., α if s is α -hölder, $\sigma(X)$ in the heteroscedastic framework)

$$\underbrace{(X_1,Y_1),\ldots,(X_q,Y_q)}_{\text{Training}},\underbrace{(X_{q+1},Y_{q+1}),\ldots,(X_n,Y_n)}_{\text{Validation}}$$

$$\widehat{s}_m^{(t)} \in \arg\min_{t \in S_m} \left\{ \frac{1}{q} \sum_{i=1}^q \gamma(t,(X_i,Y_i)) \right\}$$

$$P_n^{(v)} = \frac{1}{n-q} \sum_{i=q+1}^n \delta_{(X_i,Y_i)} \Rightarrow P_n^{(v)} \gamma\left(\widehat{s}_m^{(t)}\right)$$

V-fold cross-validation: $(B_i)_{1 \le i \le V}$ partition of $\{1, ..., n\}$

$$\Rightarrow \widehat{m} \in \arg\min_{m \in \mathcal{M}} \left\{ \frac{1}{V} \sum_{j=1}^{V} P_n^{(j)} \gamma \left(\widehat{\mathbf{s}}_m^{(-j)} \right) \right\} \qquad \widetilde{\mathbf{s}} = \widehat{\mathbf{s}}_{\widehat{m}}$$

Ideal criterion: $P\gamma(\widehat{s}_m)$

Regression on an histogram model of dimension D_m , when $\sigma(X) \equiv \sigma$:

$$\mathbb{E}\left[P\gamma(\widehat{s}_m)\right] \approx P\gamma(s_m) + \frac{D_m\sigma^2}{n}$$

$$\mathbb{E}\left[P_n^{(j)}\gamma\left(\widehat{s}_m^{(-j)}\right)\right] = \mathbb{E}\left[P\gamma\left(\widehat{s}_m^{(-j)}\right)\right] \approx P\gamma(s_m) + \frac{V}{V-1}\frac{D_m\sigma^2}{n}$$

 \Rightarrow bias if V is fixed

Suboptimality of V-fold cross-validation

- $Y = X + \sigma \epsilon$ with ϵ bounded and $\sigma > 0$
- \mathcal{M}_n : family of regular histograms on $\mathcal{X} = [0, 1]$
- V fixed

$\mathsf{Theorem}$

With probability at least $1 - \lozenge n^{-2}$.

$$\ell\left(s,\widehat{s}_{\widehat{m}}\right) \geq \left(1 + \kappa(V) - \ln(n)^{-1/5}\right) \inf_{m \in \mathcal{M}} \left\{\ell\left(s,\widehat{s}_{m}\right)\right\}$$

with $\kappa(V) > 0$.

- Bias: decreases with V (can be corrected: Burman 1989)
- Variance: large if V is small (V=2), or sometimes when V is very large (V=n, unstable algorithms)
- Computation time: complexity proportional to V
- \Rightarrow trade-off
- \Rightarrow classical conclusion: "V = 10 is fine"

Simulation framework

Cross validation

$$Y_i = s(X_i) + \sigma(X_i)\epsilon_i$$
 $X_i \sim^{\text{i.i.d.}} \mathcal{U}([0;1])$ $\epsilon_i \sim^{\text{i.i.d.}} \mathcal{N}(0,1)$

$$\mathcal{M}_n = \left\{ egin{aligned} & \operatorname{regular \ histograms} \ \operatorname{with} \ D \ \operatorname{pieces}, \ 1 \leq D \leq rac{n}{\log(n)} \end{aligned}
ight.$$
 and s.t. $\min_{\lambda \in \Lambda_m} \operatorname{Card}\{X_i \in I_\lambda\} \geq 2
ight\}$

⇒ Benchmark:

$$C_{\text{classical}} = \frac{\mathbb{E}[\ell\left(s, \widehat{s}_{\widehat{m}}\right)]}{\mathbb{E}[\inf_{m \in \mathcal{M}} \ell\left(s, \widehat{s}_{m}\right)]}$$

computed with N = 1000 samples

Simulations: $s(x) = \sin(\pi x)$, n = 200, $\sigma \equiv 1$

2-fold 2.08 ± 0.04 5-fold 2.14 ± 0.04 10-fold 2.10 ± 0.05 20-fold 2.09 ± 0.04 2.08 ± 0.04 leave-one-out

Simulations: HeaviSine, n=2048, $\sigma\equiv 1$

2-fold 1.
5-fold 1.
10-fold 1.
20-fold 1.
leave-one-out 1.

 1.002 ± 0.003 1.014 ± 0.003 1.021 ± 0.003 1.029 ± 0.004 1.034 ± 0.004

Overpenalization

- penalization: $\widehat{m} \in \arg\min_{m \in \mathcal{M}} \{P_n \gamma(\widehat{s}_m) + \operatorname{pen}(m)\}$
- ideal penalty: $\operatorname{pen}_{\mathrm{id}}(m) = P\gamma\left(\widehat{s}_{m}\right) P_{n}\gamma\left(\widehat{s}_{m}\right)$
- *V*-fold cross-validation is overpenalizing:

$$\frac{\mathbb{E}\left[\frac{1}{V}\sum_{j=1}^{V}P_{n}^{(j)}\gamma\left(\widehat{s}_{m}^{(-j)}\right)-P_{n}\gamma\left(\widehat{s}_{m}\right)\right]}{\mathbb{E}\left[\mathsf{pen}_{\mathrm{id}}(m)\right]}\approx1+\frac{1}{2(V-1)}$$

• non-asymptotic phenomenon: better to overpenalize when the signal-to-noise ratio n/σ^2 is small.

Overpenalization ($s = \sin, \sigma \equiv 1, n = 200, \text{ Mallows' } C_p$)

Conclusions on V-fold cross-validation

- asymptotically suboptimal if V fixed
- optimal V*: trade-off variability-overpenalization
- $V^* = 2$ can happen for prediction
- difficult to find V^* from the data (+ complexity issue)
- low signal-to-noise ratio $\Rightarrow V^*$ unsatisfactory (highly variable)
- large signal-to-noise ratio $\Rightarrow V^*$ too large (computation time)

$$\widehat{m} \in \arg\min_{m \in \mathcal{M}} \left\{ P_n \gamma(\widehat{s}_m) + \operatorname{pen}(m) \right\}$$
Ideal penalty: $\operatorname{pen}_{\operatorname{id}}(m) = (P - P_n)(\gamma(\widehat{s}_m, \cdot))$

$$pen(m) = \frac{2\sigma^2 D_m}{n}$$
 (Mallows 1973) or $\frac{2\hat{\sigma}^2 D_m}{n}$ etc.

Linear penalties may not work: heteroscedastic regression, classification, etc.

Resampling heuristics (bootstrap, Efron 1979)

$$(P - P_n)\gamma\left(\widehat{s}_m\right) = F(P, P_n) \sim F(P_n, P_n^W) = (P_n - P_n^W)\gamma\left(\widehat{s}_m^W\right)$$

V-fold:
$$P_n^W = \frac{1}{n - \mathsf{Card}(B_J)} \sum_{i \notin B_J} \delta_{(X_i, Y_i)}$$
 with $J \sim \mathcal{U}(1, \dots, V)$

Resampling heuristics (bootstrap, Efron 1979)

Real world:
$$P \xrightarrow{\text{sampling}} P_n \Longrightarrow \widehat{s}_m$$

Bootstrap world:

$$P_n \xrightarrow{\text{subsampling}} P_n^W \Longrightarrow \widehat{s}_m^W$$

$$(P - P_n)\gamma(\widehat{s}_m) = F(P, P_n) \sim F(P_n, P_n^W) = (P_n - P_n^W)\gamma(\widehat{s}_m^W)$$

V-fold:
$$P_n^W = \frac{1}{n - \text{Card}(B_J)} \sum_{i \notin B_J} \delta_{(X_i, Y_i)}$$
 with $J \sim \mathcal{U}(1, \dots, V)$

16/26

V-fold penalization

Ideal penalty:

$$(P-P_n)(\gamma(\widehat{s}_m))$$

• V-fold penalty:

$$pen(m) = \frac{C}{V} \sum_{j=1}^{V} \left[(P_n - P_n^{(-j)}) (\gamma(\widehat{s}_m^{(-j)})) \right]$$
$$\widehat{s}_m^{(-j)} \in \arg\min_{t \in S_m} P_n^{(-j)} \gamma(t)$$

with $C \ge V - 1$ to be chosen $(C = V - 1 \Rightarrow \text{ we recover Burman's corrected } V - \text{fold, } 1989)$

• The final estimator is $\widehat{s}_{\widehat{m}}$ with

$$\widehat{m} \in \arg\min_{m \in \mathcal{M}} \left\{ P_n \gamma(\widehat{s}_m) + \operatorname{pen}(m) \right\}$$

Model selection and resampling

- Hold-out, Cross-validation, Leave-one-out, V-fold cross-validation:
 - $I \subset \{1, \dots, n\}$ random sub-sample of size q (VFCV: $q=\frac{n(V-1)}{V}$).
- Efron's bootstrap penalties (Efron 1983, Shibata 1997):

$$\operatorname{pen}(m) = \mathbb{E}\left[\left(P_n - P_n^W\right)\left(\gamma(\widehat{s}_m^W)\right)\middle|(X_i, Y_i)_{1 \le i \le n}\right]$$

 Rademacher complexities (Koltchinskii 2001; Bartlett, Boucheron, Lugosi 2002): subsampling

$$\operatorname{\mathsf{pen}}_{\operatorname{id}}(m) \leq \operatorname{\mathsf{pen}}_{\operatorname{id}}^{\operatorname{glo}}(m) = \sup_{t \in S_m} (P - P_n) \gamma(t, \cdot)$$

- idem with general exchangeable weights (Fromont 2004)
- Local Rademacher complexities (Bartlett, Bousquet, Mendelson 2004; Koltchinskii 2004)

Non-asymptotic pathwise oracle inequality

- $C \approx V 1$
- Histogram regression on a random design
- Small number of models (at most polynomial in n)
- Model pre-selection: remove m when

$$\min_{\lambda \in \Lambda_m} \left\{ \mathsf{Card} \left\{ X_i \in I_{\lambda} \right\} \right\} \le 1$$

• Fixed V or V = n

$\mathsf{Theorem}$

Under a "reasonable" set of assumptions on P, with probability at least $1 - \lozenge n^{-2}$.

$$\ell\left(s,\widehat{s}_{\widehat{m}}\right) \leq \left(\frac{1}{1} + \ln(n)^{-1/5}\right) \inf_{m \in \mathcal{M}} \left\{\ell\left(s,\widehat{s}_{m}\right)\right\}$$

Reminder: the procedure does not use any of these assumptions.

- Bounded data: $||Y||_{\infty} \le A < \infty$
- Minimal noise-level.

$$0 < \sigma_{\min} \le \sigma(X)$$

- Smoothness of the regression function s: non-constant, belongs to some hölderian ball $\mathcal{H}_{\alpha}(R)$
- Regularity of the partition: $\min_{\lambda} \mathbb{P}(X \in I_{\lambda}) \geq \Diamond D_{m}^{-1}$

and they can be relaxed...

Corollaries

Classical oracle inequality:

$$\mathbb{E}\left[\ell\left(s,\widehat{s}_{\widehat{m}}\right)\right] \leq \left(1 + \ln(n)^{-1/5}\right) \mathbb{E}\left[\inf_{m \in \mathcal{M}} \left\{\ell\left(s,\widehat{s}_{m}\right)\right\}\right] + \lozenge n^{-2}$$

• Asymptotic optimality if $C \sim_{n \to +\infty} V - 1$:

$$\frac{\ell\left(s,\widehat{s}_{\widehat{m}}\right)}{\inf_{m\in\mathcal{M}}\left\{\ell\left(s,\widehat{s}_{m}\right)\right\}}\xrightarrow[n\to+\infty]{a.s.}1$$

 Adaptation to hölderian regularity in an heteroscedastic framework (regular histograms).

Simulation framework

$$Y_i = s(X_i) + \sigma(X_i)\epsilon_i$$
 $X_i \sim^{ ext{i.i.d.}} \mathcal{U}([0;1])$ $\epsilon_i \sim^{ ext{i.i.d.}} \mathcal{N}(0,1)$ $\mathcal{M}_n = \left\{ \substack{ ext{regular histograms} \text{ with } D \text{ pieces}, \ 1 \leq D \leq \frac{n}{\log(n)} } \right.$ and s.t. $\min_{\lambda \in \Lambda_m} \operatorname{Card}\{X_i \in I_\lambda\} \geq 2 \right\}$

Benchmark:

$$C_{\mathrm{classical}} = \frac{\mathbb{E}[\ell\left(s,\widehat{s}_{\widehat{m}}\right)]}{\mathbb{E}[\inf_{m \in \mathcal{M}} \ell\left(s,\widehat{s}_{m}\right)]}$$
 computed with $N = 1000$ samples

Model selection methods

• Mallows:

$$pen(m) = 2\widehat{\sigma}^2 D_m n^{-1}$$

• "Classical" V-fold cross-validation ($V \in \{2, 5, 10, 20, n\}$):

$$\widehat{m} \in \arg\min_{m \in \mathcal{M}} \left\{ \frac{1}{V} \sum_{j=1}^{V} P_n^j \gamma\left(\widehat{\mathbf{s}}_m^{(-j)}, \cdot\right) \right\} \qquad \widetilde{\mathbf{s}} = \widehat{\mathbf{s}}_{\widehat{m}}$$

• V-fold penalties ($V \in \{2, 5, 10, n\}$), C = V - 1

Simulations: $s(x) = \sin(\pi x)$, n = 200, $\sigma \equiv 1$

Mallows	1.93 ± 0.04
2-fold	2.08 ± 0.04
5-fold	2.14 ± 0.04
10-fold	2.10 ± 0.05
20-fold	2.09 ± 0.04
leave-one-out	2.08 ± 0.04
pen 2-f	2.58 ± 0.06
pen 5-f	2.22 ± 0.05
pen 10-f	2.12 ± 0.05
pen Loo	2.08 ± 0.05
Mallows $\times 1.25$	1.80 ± 0.03
pen 2-f $ imes 1.25$	2.17 ± 0.05

pen 5-f $\times 1.25$

pen 10-f $\times 1.25$

pen Loo $\times 1.25$

 1.91 ± 0.05

 1.87 ± 0.03

 $1.84 \pm 0.03 \ 24/26$

Simulations: sin, n = 200, $\sigma(x) = x$, 2 bin sizes

Mallows	3.69 ± 0.07
2-fold	2.54 ± 0.05
5-fold	2.58 ± 0.06
10-fold	2.60 ± 0.06
20-fold	2.58 ± 0.06
leave-one-out	2.59 ± 0.06
pen 2-f	3.06 ± 0.07
pen 5-f	2.75 ± 0.06
pen 10-f	2.65 ± 0.06
pen Loo	2.59 ± 0.06
Mallows $\times 1.25$	3.17 ± 0.07
pen 2-f $ imes 1.25$	2.75 ± 0.06
pen 5-f $ imes 1.25$	2.38 ± 0.06
pen 10-f $ imes 1.25$	2.28 ± 0.05

pen Loo $\times 1.25$

 $2.21 \pm 0.05 \ 25/26$

- asymptotically optimal, even if V fixed
- optimal V^* : the largest possible one ⇒ easier to balance with the computational cost
- low signal-to-noise ratio ⇒ easy to overpenalize and decrease variability (keep V large)
- large signal-to-noise ratio ⇒ possible to stay unbiased with a small V (for computational reasons)
- flexibility improves V-fold cross-validation (according to both theoretical results and simulations)
- theory can be extended to exchangeable weighted bootstrap penalties (e.g. bootstrap, i.i.d. Rademacher, leave-one-out, leave-p-out with $p = \alpha n$).
- Open problems: consistency when $C \gg V 1$, prediction in a general framework, etc.