A LATENT-STATE MODEL FOR TIME SERIES OF ANIMAL BEHAVIOUR

Walter Zucchini University of Göttingen David Raubenheimer University of Auckland Iain MacDonald University of Cape Town

Outline

- 1. Background and objective
- 2. Two-state Bernoulli hidden Markov model
- 3. Structure of the proposed model
- 4. Caterpillar feeding experiment
 - Estimation and interpretation of the parameters
 - Decoding, Runlengths, Model checking
- 5. Extensions to the model
 - General state-dependent distributions
 - Incorportating covariates
 - Including random effects
- 6. Summary

Background and objective

- Animal behaviourists study causal factor that determine behaviour, such as drinking, locomoting, grooming and feeding
- Feeding behaviour results from the nervous system integrating information regarding
 - physiological factors: e.g. level of nutrients in the blood,
 - sensory inputs: e.g. perception of nutrients in food.
- The combined physiological and perceptual state of the animal is termed the **motivational state** (MacFarland, 1999).

Background and objective

Raubenheimer and Barton Browne (2000)

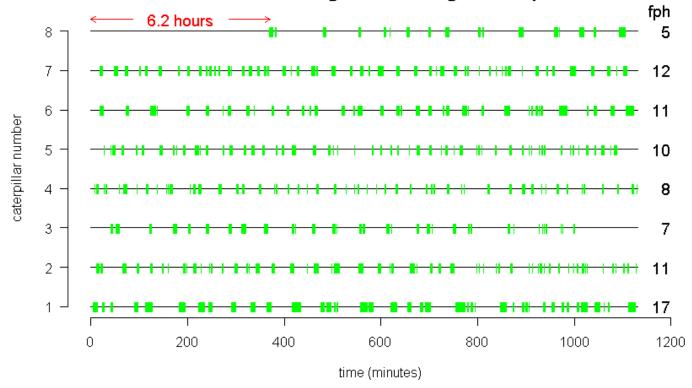
observed eight caterpillars *Helicoverpa armigera* once per minute for 19 hours.

Recordings: feeding or not feeding

Data: 8 binary time series of length 1132

Outlier: One caterpillar was anomalous, and not modelled

Observed feeding times of eight caterpillars



Background and objective

Assume there are two motivational states — hungry and sated.

Notation:

 $X_1, X_2, \dots X_T$ sequence of observed (binary) feeding behaviour, $C_1, C_2, \dots C_T$ sequence of unobserved motivational states.

behavioural state	(observed)	motivational state	(unobserved)
feeding	$X_t = 1$	hungry	$C_t = 1$
not feeding	$X_t = 0$	sated	$C_t = 2$

The motivational state influences, but does not determine, behaviour.

A hungry animal doesn't always feed: $\pi_1 = \Pr(X_t = 1 | C_t = 1) < 1$

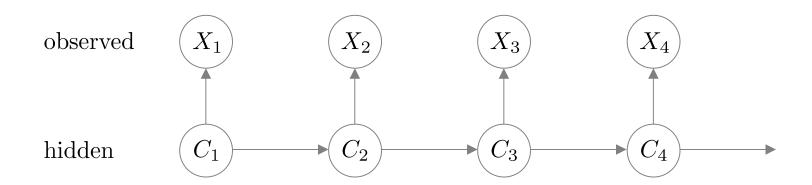
A sated animal sometimes feeds: $\pi_2 = \Pr(X_t = 1 | C_t = 2)) > 0$

Objective: Infer the motivational states from the observed behaviour.

MacDonald and Raubenheimer (1995)

used a Bernoulli-hidden Markov model (HMM) to describe this phenomon.

- motivation series: C_1, C_2, \cdots homogeneous two-state Markov chain
- behaviour series: X_1, X_2, \cdots mixture of two Bernoulli distributions
- assumption: conditional independence



Definition of a HMM

Notation: $X^{(t)}$ denotes the history up to time t, i.e. $\{X_t, X_{t-1}, \dots, X_1\}$.

$$\Pr(C_t \mid C^{(t-1)}) = \Pr(C_t \mid C_{t-1})$$
 Markov property

$$\Pr(C_t | C^{(t-1)}) = \Pr(C_t | C_{t-1})$$
 Markov property
 $\Pr(X_t | X^{(t-1)}, C^{(t)}) = \Pr(X_t | C_t)$ Conditional independence

Transition probability matrix of the homogeneous Markov chain:

$$\Gamma = \begin{pmatrix} \gamma_{11} & \gamma_{12} \\ \gamma_{21} & \gamma_{22} \end{pmatrix} = \begin{pmatrix} \Pr(C_{t+1} = 1 \mid C_t = 1) & \Pr(C_{t+1} = 2 \mid C_t = 1) \\ \Pr(C_{t+1} = 1 \mid C_t = 2) & \Pr(C_{t+1} = 2 \mid C_t = 2) \end{pmatrix}$$

Note that
$$\begin{cases} \gamma_{11} + \gamma_{12} = 1 \\ \gamma_{21} + \gamma_{22} = 1 \end{cases}$$

Initial state distribution: $\delta = (\delta_1 \ \delta_2)$

If the chain is also stationary: $\delta = \frac{1}{\gamma_{12} + \gamma_{21}} (\gamma_{21} \ \gamma_{12})$

State-dependent distributions $\begin{cases} X_t \mid C_t = 1 & \sim & \text{Bernoulli}(\pi_1) \\ X_t \mid C_t = 2 & \sim & \text{Bernoulli}(\pi_2) \end{cases}$

Model parameters:

State process (Markov chain): γ_{11} γ_{22} (and δ_1 unless stationary)

State-dependent distributions: π_1 π_2

motivational state

state-dependent distribution

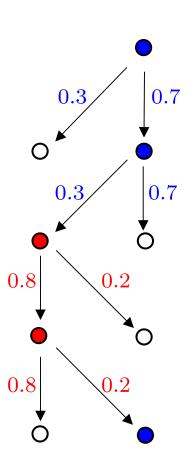
transitional prob. matrix

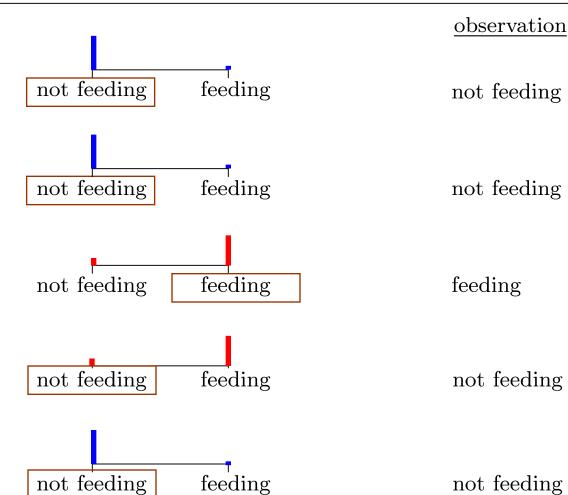
state 1 state 2 0.6 0.4

$$\pi_1 = P(\text{feed} | \text{state 1}) = 0.8$$

 $\pi_2 = P(\text{feed} | \text{state 2}) = 0.1$

$$\Gamma = \left(\begin{array}{cc} 0.8 & 0.2\\ 0.3 & 0.7 \end{array}\right)$$





hidden

 $\underline{observation}$

not feeding

not feeding

feeding

not feeding

not feeding

The likelihood of an homogeneous HMM:

$$L_T = \delta P(x_1) \Gamma P(x_2) \Gamma P(x_3) \cdots \Gamma P(x_T) \mathbf{1'}$$

For a two-state Bernoulli-HMM:

$$\mathbf{P}(x) = \begin{pmatrix} \pi_1^x (1 - \pi_1)^{1-x} & 0 \\ 0 & \pi_2^x (1 - \pi_2)^{1-x} \end{pmatrix}$$

Parameter estimation via:

- an EM algorithm (Baum-Welch algorithm),
- direct numerical maximization (e.g. nlm or optim in R).

Global decoding: estimating the most likely motivational state sequence.

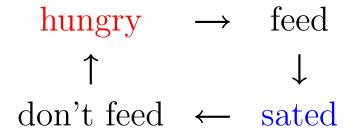
Maximize, w.r.t. c_1, c_2, \ldots, c_T , the conditional probability:

$$\Pr\left(C^{(T)} = c^{(T)} \,|\, X^{(T)} = x^{(T)}\right)$$

This solved using a dynamic programming method, the Viterbi algorithm.

So what's the problem then?

- 1. The runlength distributions in each motivational state is (implicitly) assumed to be **geometric**. Alcroft *et al.* (2004) fitted a semi-Markov model to overcome this criticism.
- 2. The model does not account for **feedback** from behaviour to motivation:
 - feeding (eventually) leads to becoming sated;
 - non-feeding (eventually) leads to hunger.



Feedback loop:

 $motivation \rightarrow behaviour \rightarrow motivation \rightarrow behaviour$

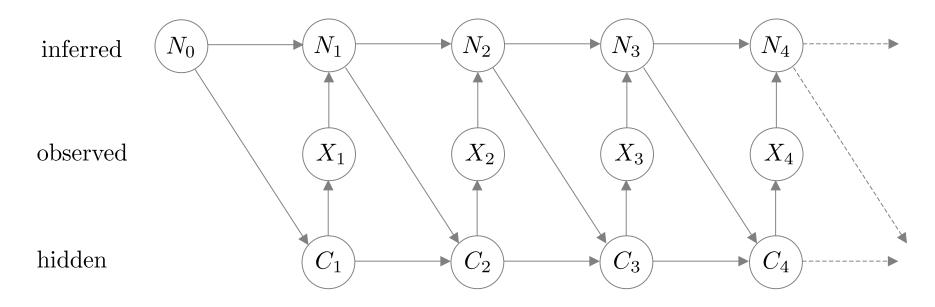
Components of proposed model:

— motivation series: C_t two-state process

— behaviour series: X_t mixture of two Bernoulli distributions

— nutritional level: N_t determined by feeding behaviour

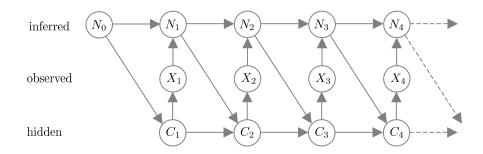
— assumption: conditional independence



General idea:

- The current state influences the feeding behaviour.
- Feeding behaviour determines the nutritional level.
- The nutritional level effects the probability of remaining in the current state.

Model assumptions



1. The motivational state at time t depends **only** on the previous state and nutritional level.

$$Pr(C_t \mid C^{(t-1)}, N_0, N^{(t-1)}, X^{(t-1)}) = Pr(C_t \mid C_{t-1}, N_{t-1})$$

2. Feeding behaviour at time t depends only on motivational state.

$$Pr(X_t = 1 | C^{(t)}, N_0, N^{(t-1)}, X^{(t-1)}) = Pr(X_t = 1 | C_t)$$

$$= \begin{cases} \pi_1 & \text{if } C_t = 1 \\ \pi_2 & \text{if } C_t = 2 \end{cases}.$$

3. Nutritional level is determined by feeding behaviour.

$$N_t = h(X^{(t)})$$

State-transition behaviour

current state	nutritional level	probable reaction	corresponding transition
hungry	low	remain hungry	$1 \rightarrow 1$
hungry	high	become sated	1 o 2
sated	low	become hungry	2 o 1
sated	high	remain sated	$2 \rightarrow 2$

A model for state transition behaviour

$$\mathbf{\Gamma}(n_t) = \left(egin{array}{ccc} \gamma_{11}(n_t) & \gamma_{12}(n_t) \\ \gamma_{21}(n_t) & \gamma_{22}(n_t) \end{array}
ight)$$

The state transition probabilities, γ_{ij} depend on n_t as follows:

$$\gamma_{11}(n_t) = \frac{\exp(\alpha_0 + \alpha_1 n_t)}{1 + \exp(\alpha_0 + \alpha_1 n_t)}$$
 i.e. $\operatorname{logit}(\gamma_{11}(n_t)) = \alpha_0 + \alpha_1 n_t$

$$\gamma_{22}(n_t) = \frac{\exp(\beta_0 + \beta_1 n_t)}{1 + \exp(\beta_0 + \beta_1 n_t)}$$
 i.e. $\log it(\gamma_{22}(n_t)) = \beta_0 + \beta_1 n_t$

 $\alpha_1 = \beta_1 = 0 \Longrightarrow$ no feedback from nutritional level to motivational state.

A model for the nutritional level

The nutritional level is determined by the feeding behaviour as follows:

$$N_t = \lambda X_t + (1 - \lambda) N_{t-1}$$
, $t = 1, 2, ..., T$. (N₀ is regarded as a parameter.)

 $\lambda \in (0,1)$ determines the rate of decay.

Contribution of one feeding episode has half-life = $\log(0.5)/\log(1-\lambda)$.

Model parameters

```
\alpha_0 \alpha_1 determine how the nutritional level affects Pr(remaining hungry)
```

 β_0 β_1 determine how the nutritional level affects Pr(remaining sated)

 $\pi_1 \pi_2$ Pr(feed | hungry) Pr(feed | sated)

 λ determines rate of nutrition depletion

 N_0 initial nutritional level

 δ_1 $\Pr(C_1 = 1)$

Likelihood of the model:

$$L_T = \delta P(x_1) \ \Gamma(n_1) P(x_2) \ \Gamma(n_2) P(x_3) \cdots \Gamma(n_T) P(x_T) \ \mathbf{1'}$$

$$P(x) = \begin{pmatrix} \pi_1^x (1 - \pi_1)^{1-x} & 0 \\ 0 & \pi_2^x (1 - \pi_2)^{1-x} \end{pmatrix}$$

$$\Gamma(n) = \begin{pmatrix} \frac{\exp(\alpha_0 + \alpha_1 n)}{1 + \exp(\alpha_0 + \alpha_1 n)} & \frac{1}{1 + \exp(\beta_0 + \beta_1 n)} \\ \frac{1}{1 + \exp(\beta_0 + \beta_1 n)} & \frac{\exp(\beta_0 + \beta_1 n)}{1 + \exp(\beta_0 + \beta_1 n)} \end{pmatrix}$$

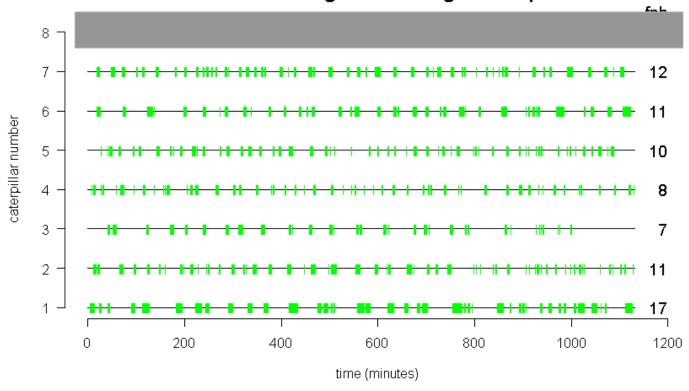
Parameter estimation by direct numerical maximization (e.g. nlm in R) (An EM algorithm would require numerical maximization in each M-step.)

Global decoding: estimating the most likely motivational state sequence. The Viterbi algorithm is applicable.

Caterpillar feeding experiment — Observations

Back to the data

Observed feeding times of eight caterpillars

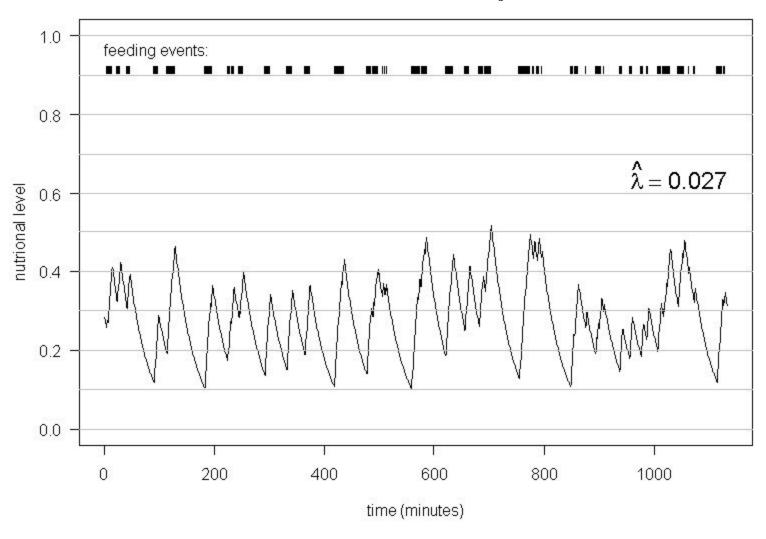


Parameter estimates for the seven caterpillars the seven

subj	\widehat{lpha}_0	\widehat{lpha}_1	\widehat{eta}_0	$\widehat{\beta}_1$	$\widehat{\pi}_1$	$\widehat{\pi}_2$	$\widehat{\lambda}$	\widehat{n}_0	$-\log L$
1	5.80	-11.19	2.31	2.22	0.936	0.000	0.027	0.295	332.6
2	2.20	-5.16	-0.28	21.13	0.913	0.009	0.032	0.163	348.2
3	4.76	-10.12	3.00	15.91	0.794	0.004	0.080	0.740	225.2
4	2.19	-7.24	1.31	16.23	0.900	0.000	0.059	0.062	299.3
5	3.14	-7.27	1.68	10.91	0.901	0.006	0.097	0.999	332.5
6	3.08	-5.22	1.37	14.01	0.879	0.001	0.043	0.263	291.0
7	3.89	-9.05	0.62	13.34	0.976	0.003	0.054	0.379	315.2

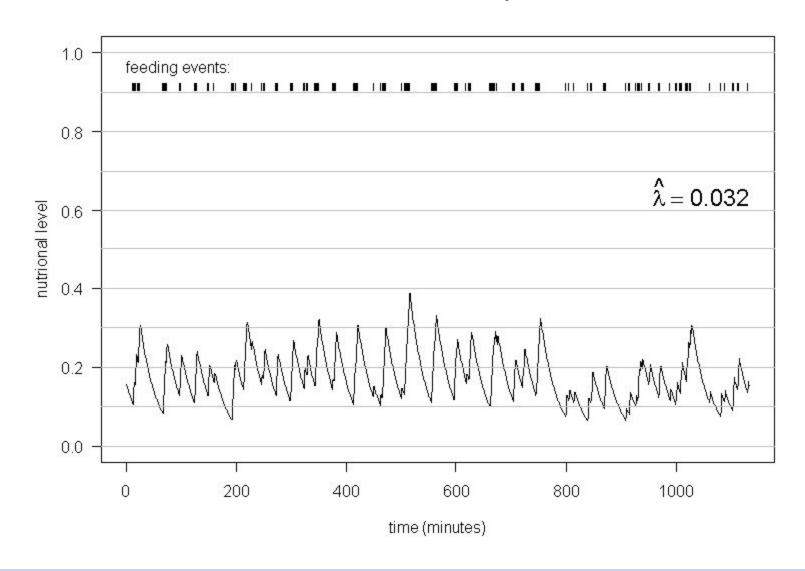
- All $\widehat{\alpha}_1 < 0$ and all $\widehat{\beta}_1 > 0$. (Expected).
- $(\widehat{\alpha}_1, \widehat{\alpha}_2)$, and $(\widehat{\beta}_1, \widehat{\beta}_2)$, differ substantially between subjects, but the transition probabilities are not so different.
- All $\widehat{\pi}_1 \approx 1$ and all $\widehat{\pi}_2 \approx 0$.
- The estimates \hat{n}_0 differ substantially. (Expected)
- The estimates $\hat{\lambda}$ differ substantially. (Interesting)

The nutritional level: Subject 1

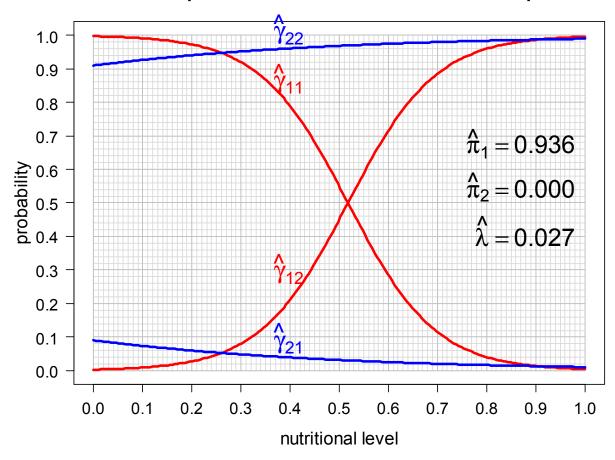


$$N_t = \lambda X_t + (1 - \lambda) N_{t-1}$$

The nutritional level: Subject 2

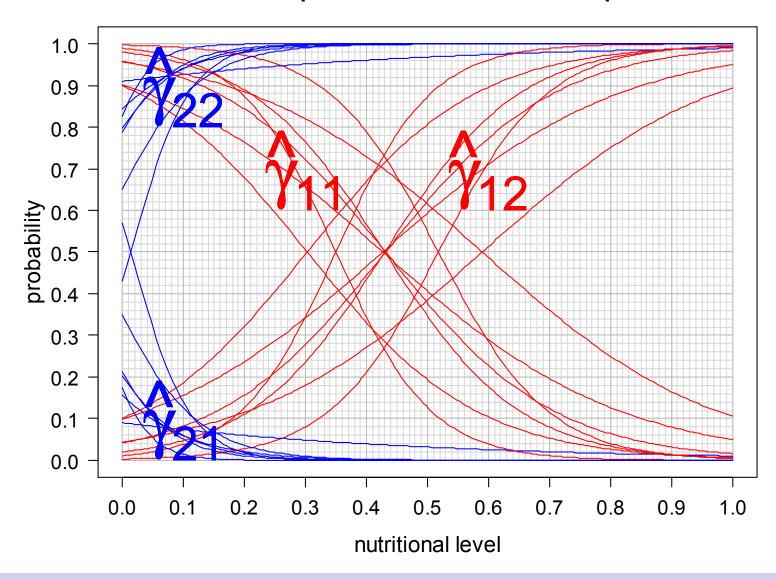


Transition probabilities and other estimates - caterpillar 1

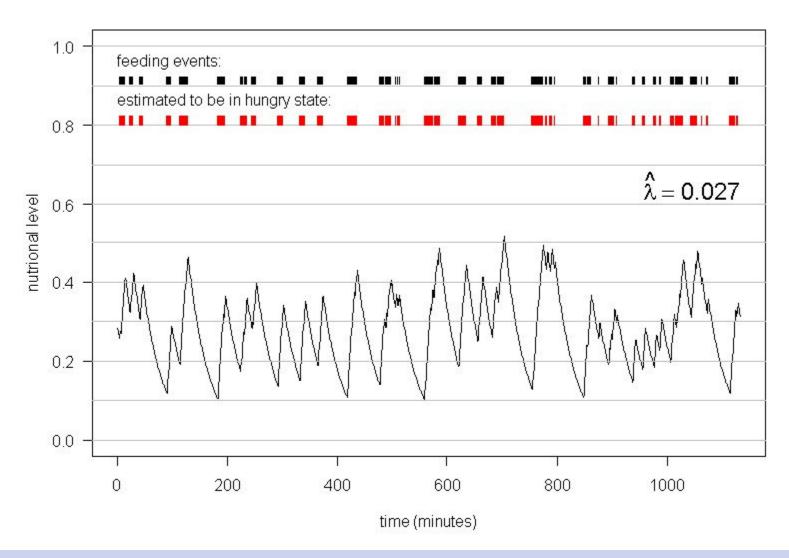


$$\mathbf{\Gamma}(n_t) = \begin{pmatrix} \gamma_{11}(n_t) & \gamma_{12}(n_t) \\ \gamma_{21}(n_t) & \gamma_{22}(n_t) \end{pmatrix}$$

Transition probabilities - all seven caterpillars

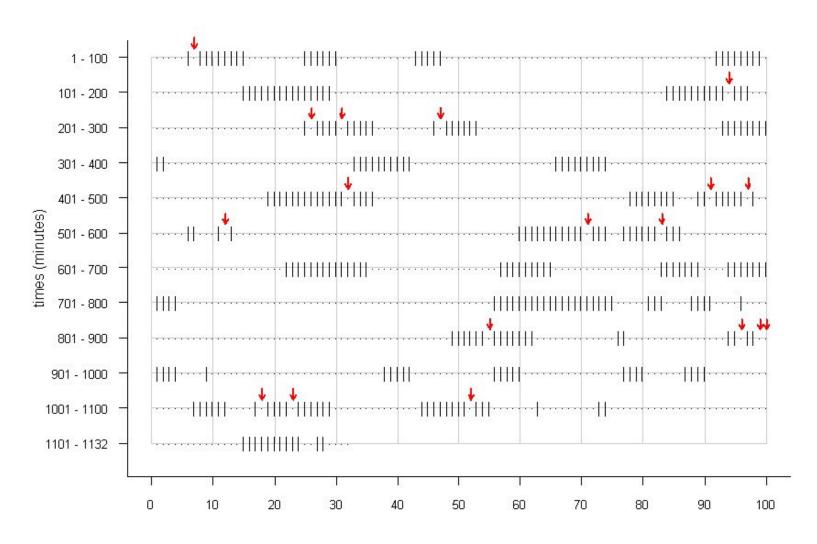


Global decoding: Subject 1

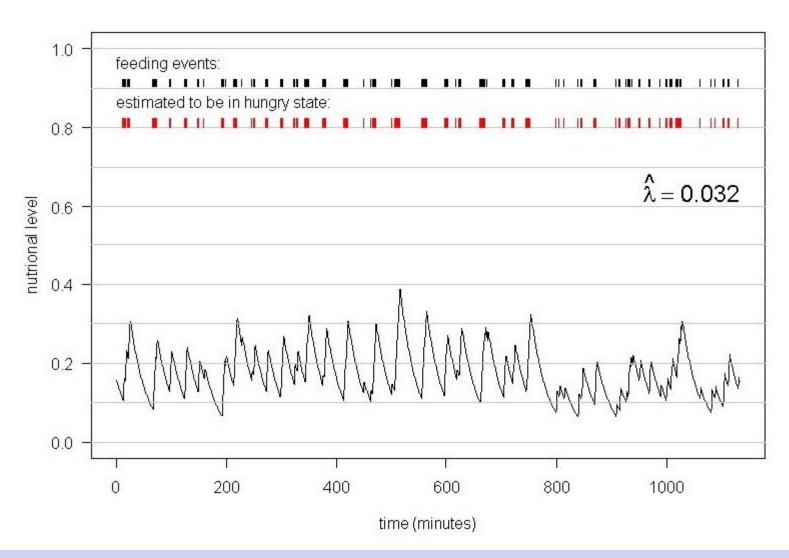


Global decoding: Subject 1

Down-arrows indicate non-feeding event while hungry, Up-arrows indicate feeding event while sated.

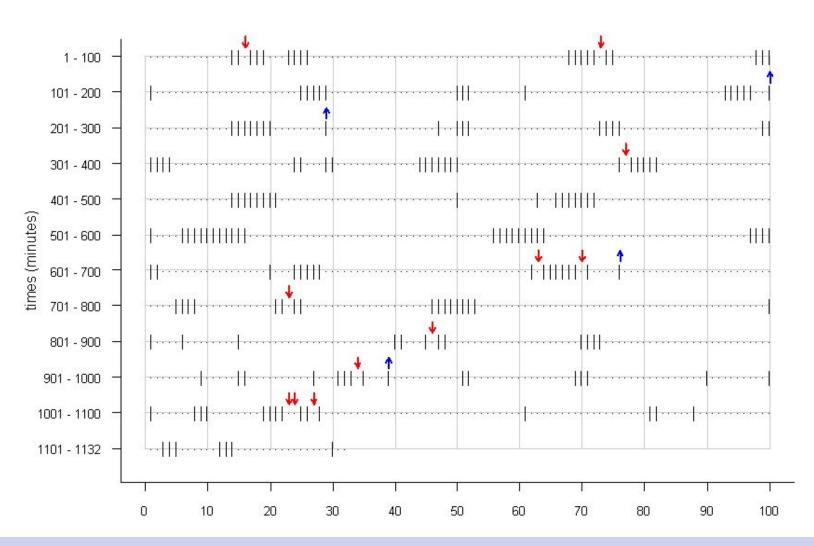


Global decoding: Subject 2



Global decoding: Subject 2

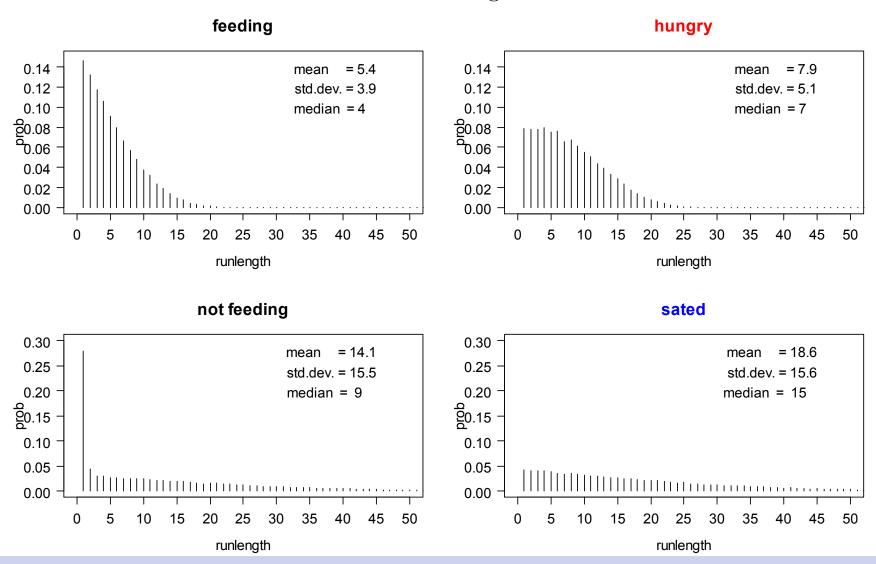
Down-arrows indicate non-feeding event while hungry, Up-arrows indicate feeding event while sated.



Runlengths

Runlength distributions for caterpillar 1

Notice the difference between feeding runs and hungry runs, non-feeding runs and sated runs.



Caterpillar feeding experiment - Runlengths

Runlength statistics

subject	feeding runs				estimated	d hungry	runs
	number	mean	s.d.	•	number	mean	s.d.
1	58	5.4	4.1		41	8.1	4.9
2	67	3.0	2.3		53	3.9	2.8
3	41	3.1	2.1		22	6.7	2.4
4	57	2.6	1.5		51	3.0	1.7
5	65	2.8	1.6		54	3.5	2.0
6	51	4.1	2.8		35	6.4	3.8
7	57	4.1	2.4		52	4.6	2.7

Average
$$\left(\frac{\text{number of feeding runs}}{\text{number of hunger runs}}\right) = 1.35$$

Average
$$\left(\frac{\text{mean feeding runlength}}{\text{mean hungry runlength}}\right) = 0.73$$

Average
$$\left(\frac{\text{std. dev. feeding runlength}}{\text{std. dev. hungry runlength}}\right) = 0.83$$

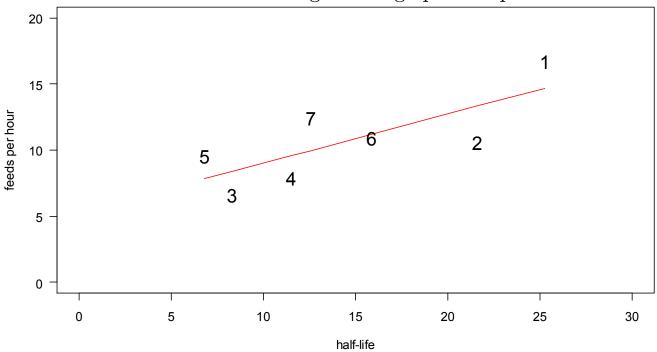
Caterpillar feeding experiment — Halflife

Estimated half-life

Half-life = $\log(0.5)/\log(1-\lambda)$

The time taken to halve the nutritional level when not feeding.

Half-life vs. average feeding episodes per hour



Half-life is related to the rate of feeding ($\hat{\rho} = 0.77$)

The rate of feeding differs substantially between subjects.

Caterpillar feeding experiment — Model checking

Estimating standard errors

- either the "delta method" based on the estimated information matrix
- or parametric bootstrap (very computer intensive!)

Model checking -1. forecasts

The forecast distribution: $\hat{p}_t = \Pr(X_t = 1 \mid X^{(t-1)})$ is easy to compute. We test

$$\mathbf{H}_0: g(\mathbf{E}(x_t)) = g(\hat{p}_t) \quad ext{vs.} \quad \mathbf{H}_{\mathbf{A}}: g(\mathbf{E}(x_t)) = f(g(\hat{p}_t)),$$

where g is the logit function and f a smoothing spline.

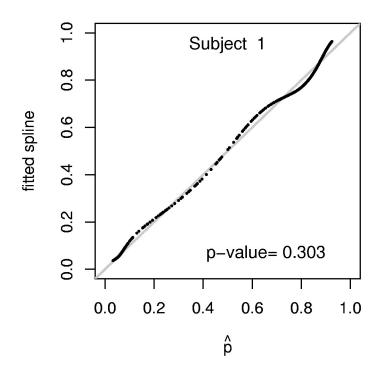
Departure of f from the identity function constitutes evidence of a poor fit.

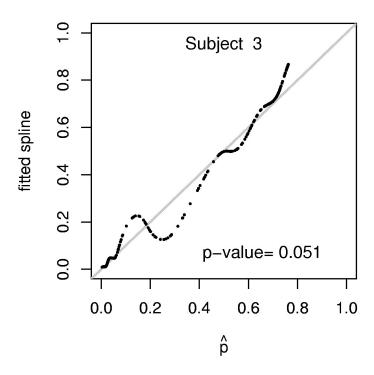
Model checking -2. deviance residuals

Caterpillar feeding experiment — Model checking

Model checking -1. forecasts

subject	1	2	3	4	5	6	7
<i>p</i> -value	0.303	0.718	0.051	0.545	0.779	0.658	0.820

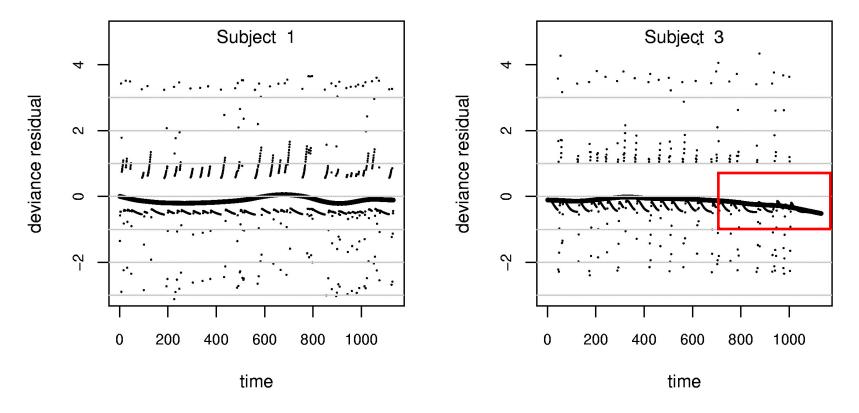




Caterpillar feeding experiment — Model checking

Model checking -2. deviance residuals

The solid line is a smooth of the deviance residuals.



Looking back at the data: subject 3 stopped feeding over the last 2 hours.

Extensions of the model

1. The number of states can be increased to m > 2.

However, the number of parameters increases rapidly with increasing m.

2. The definition of "nutritional level" can be changed.

The definition $N_t = \lambda X_t + (1 - \lambda) N_{t-1}$ is convenient but not essential.

- 3. The state-dependent distribution can be changed.
 - discrete-valued, continuous-valued, circular-valued distributions
 - multivariate, even mixed discrete-continuous, discrete-circular, etc.

The likelihood remains of the form:

$$\boldsymbol{L_T} = \boldsymbol{\delta} \, \boldsymbol{P}(x_1) \, \boldsymbol{\Gamma}(n_1) \, \boldsymbol{P}(x_2) \, \boldsymbol{\Gamma}(n_2) \, \boldsymbol{P}(x_3) \, \cdots \, \boldsymbol{\Gamma}(n_T) \, \boldsymbol{P}(x_T) \, \boldsymbol{1'}$$

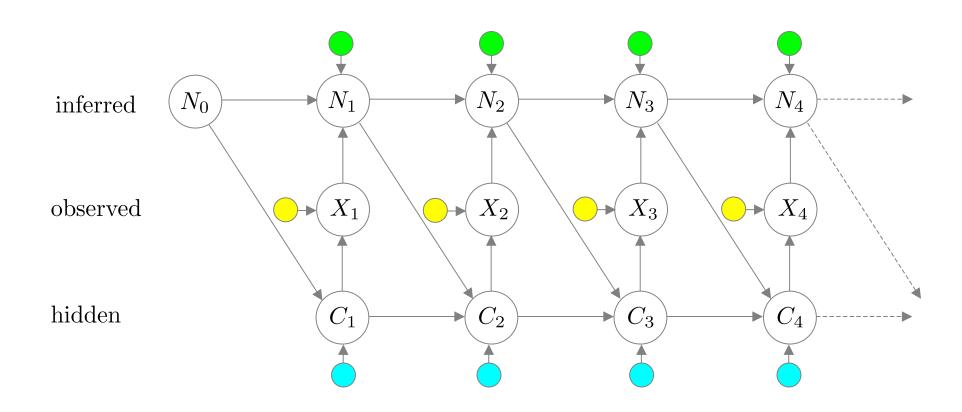
with
$$\mathbf{P}(x) = \begin{pmatrix} p_1(x) & 0 \\ 0 & p_2(x) \end{pmatrix}$$

instead of
$$\mathbf{P}(x) = \begin{pmatrix} \pi_1^x (1 - \pi_1)^{1-x} & 0 \\ 0 & \pi_2^x (1 - \pi_2)^{1-x} \end{pmatrix}$$

Extensions of the model

4. Covariate information can be included almost anywhere.

- to influence the feedback state (nutritional level)
- to influence the state transition probabilities
- to influence the state-dependent distributions



Extensions of the model

5. Mixed models for multiple time series.

Analogous to the mixed hidden Markov models introduced by Altman (2007)

Some of the original parameters in the "caterpillar" model can be regarded as **fixed effects** — the same for all caterpillars, or as

random effects — specific to individual caterpillars in a population.

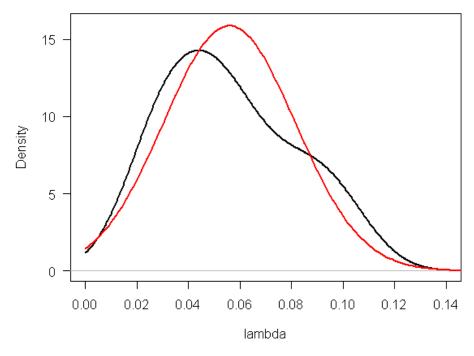
Example based on the parameters of caterpillar model

The assumptions below are only approximately applicable for our data. We make them to illustrate the technique.

effect	fixed or random, i.e. the same for all individuals, or different?
$\alpha_0 \alpha_1$	fixed
$eta_0 eta_1$	fixed
π_1 π_2	fixed
λ	random
N_0	random, but it's distribution is not of interest.
δ_1	random, but can be approximately determined via the other
	parameters, and will not be regarded as a free parameter.

Distribution for λ

Estimates of $f(\lambda)$; truncated normal and truncated kernel



Model: $\lambda \sim (0,1)$ -truncated $N(\lambda; \mu, \sigma^2)$

$$f(\lambda; \mu, \sigma^2) = \frac{\phi(\frac{\lambda - \mu}{\sigma})}{\Phi(\frac{1 - \mu}{\sigma}) - \Phi(\frac{0 - \mu}{\sigma})} , \qquad \lambda \in (0, 1)$$

Notation

For T observations on each of I subjects, let

 x_{it} be the observation on subject i at time t

 n_{it} be the nutrition level of subject i at time t

The likelihood

$$L = (\alpha_0, \alpha_1 \beta_0, \beta_1, \pi_1 \pi_2, N_0, \mu, \sigma^2; x_{it}, i = 1, 2, \dots, I, t = 1, 2, \dots T)$$

$$= \prod_{i=1}^{I} \int_{0}^{1} (\delta P(x_{i1}) \Gamma(n_{i1}) P(x_{i2}) \cdots \Gamma(n_{iT}) P(x_{iT}) \Gamma(n_{iT}) \Gamma(n_{iT}$$

The likelihood can be maximized numerically with respect to the parameters.

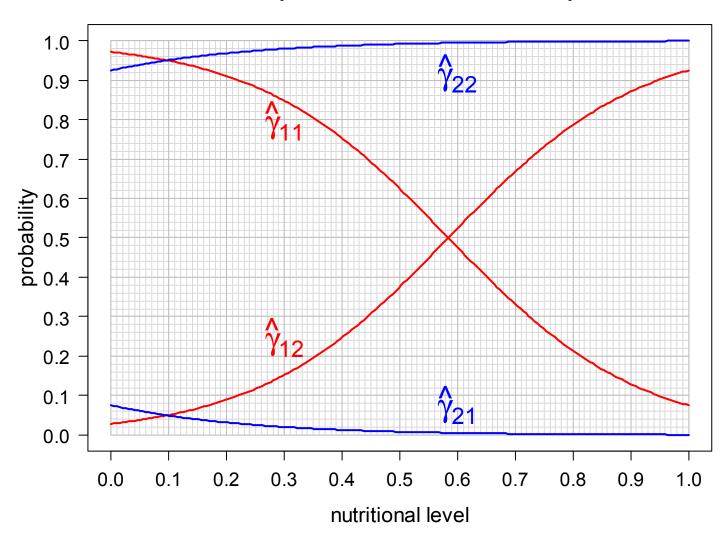
- The numerical integration at each iteration makes this slow.
- Parameter constraints need to be respected, e.g. by reparameterization.
- Rescaling is needed to avoid numerical underflow.

Parameter estimates for the original and the mixed model (brown).

subj	\widehat{lpha}_0	\widehat{lpha}_1	\widehat{eta}_0	\widehat{eta}_1	$\widehat{\pi}_1$	$\widehat{\pi}_2$	\widehat{n}_0	$\widehat{\mathbf{n}}_{0}$
1	5.80	-11.19	2.31	2.22	0.936	0.000	0.295	0.101
2	2.20	-5.16	-0.28	21.13	0.913	0.009	0.163	0.317
3	4.76	-10.12	3.00	15.91	0.794	0.004	0.740	0.999
4	2.19	-7.24	1.31	16.23	0.900	0.000	0.062	0.488
5	3.14	-7.27	1.68	10.91	0.901	0.006	0.999	0.996
6	3.08	-5.22	1.37	14.01	0.879	0.001	0.263	0.381
7	3.89	-9.05	0.62	13.34	0.976	0.003	0.379	0.698
1-7	3.53	-6.04	2.50	4.55	0.921	0.006		

Parameter estimates for the random effect : $\hat{\mu} = 0.094$ $\hat{\sigma} = 0.058$

Transition probabilities - all seven caterpillars



Model selection criteria

The estimates of the mixed model *look* reasonable *but* the model fits worse than the original "full model".

Model	number of parameters	Akaike Information criterion
Full	56	4400
$^{(*)}$ Common π_1, π_2	44	4398
Mixed effects	15	4499

Models with more than a single random effect were not investigated. They take too long to fit (in \mathbf{R})!

^{*}The model with common values of π_1, π_2 for all subjects (and everything else different) achieved the best AIC of the models investigated.

Summary

Positive aspects

- The proposed models generalize the class of **hidden Markov models**, in that they allow for **feedback behaviour**.
- Like HMMs they are satisfyingly flexible.
- They differ from the class of **Markov switching models**, which are applied to model econometric time series and financial time series.

Still needed:

- Asymptotic properties of estimators need to be established.
- More efficient methods for estimating standard errors.
- More efficient methods for fitting mixed models. (It took 8 hours to fit the model with **one random effect** using **R**.)

Literature

References

Allcroft, D.J., Tolkamp, B.J., Glasbey, C.A. and Kyriazakis, I. (2004), The importance of 'memory' in statistical models for animal feeding behaviour. *Behavioural Processes* **67**, 99–109.

Altmann, R.M. (2007), Mixed Hidden Markov Models: An Extension of the Hidden Markov Model to the Longitudinal Data Setting. *Journal of the American Statistical Association* **102** (477), 201–210.

MacDonald, I.L. and Raubenheimer, D. (1995), Hidden Marko, w models and animal behaviour. *Biometrical Journal* 37, 701–712.

Raubenheimer, D. and Barton Browne, L. (2000), Developmental changes in the patterns of feeding in fourth- and fifth-instar *Helicoverpa armigera* caterpillars. *Physiological Entomology* **25**, 390–399.

Literature

Other reading

Lange, K. (2002), Mathematical and Statistical Methods for Genetic Analysis, second edition. Springer, New York.

Langton, S.D., Collett, D. and Sibly, R.M. (1995), Splitting behaviour into bouts; a maximum likelihood approach. *Behaviour* **132**, 781–799.

MacDonald, I.L. and Zucchini, W. (1997), *Hidden Markov and Other Models for Discrete-valued Time Series*. Chapman & Hall, London.

Mira, A. (2000), Exuviae eating: a nitrogen meal? Journal of Insect Physiology 46, 605–610.

Tolkamp, B.J., Allcroft, D.J., Austin, E.J., Nielsen, B.L. and Kyriazakis, I. (1998), Satiety splits feeding behaviour into bouts. *Journal of Theoretical Biology* **194**, 235–250.

Tolkamp, B.J. and Kyriazakis, I. (1999), To split behaviour into bouts, log-transform the intervals. *Animal Behaviour* **57**, 807–817.

Yeates, M.P., Tolkamp, B.J., Allcroft, D.J. and Kyriazakis, I. (2001). The use of mixture distribution models to determine bout criteria for analysis of animal behaviour. *Journal of Theoretical Biology* **213**, 413–425.