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e Animal behaviourists study causal factor that determine behaviour, such
as drinking, locomoting, grooming and feeding

e Feeding behaviour results from the nervous system integrating information

regarding

— physiological factors: e.g. level of nutrients in the blood,

— sensory inputs: e.g. perception of nutrients in food.

e The combined physiological and perceptual state of the animal is termed
the motivational state (MacFarland, 1999).
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I5acCKoTOUNG R aNd OPJECHIVE
Raubenheimer and Barton Browne (2000)
observed eight caterpillars Helicoverpa armigera

once per minute for 19 hours.

Recordings: feeding or not feeding
Data: 8 binary time series of length 1132
Outlier: One caterpillar was anomalous, and not modelled

Observed feeding times of eight caterpillars
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Assume there are two motivational states — hungry and sated.

Notation:
X1, Xo,... X7 sequence of observed (binary) feeding behaviour,
C1,Cs,...Cr sequence of unobserved motivational states.

behavioural state (observed) | motivational state (unobserved)
feeding Xy =1 hungry Cy =1
not feeding X; =0 sated Cy =2

The motivational state influences, but does not determine, behaviour.

A hungry animal doesn’t always feed: m =Pr(X;=1|C; =1) <1
A sated animal sometimes feeds: o =Pr(X; =1|C; =2)) >0

Objective: Infer the motivational states from the observed behaviour.
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MacDonald and Raubenheimer (1995)
used a Bernoulli-hidden Markov model (HMM) to describe this phenomon.

— motivation series: C4,C5,--- homogeneous two-state Markov chain
— behaviour series: X7, Xo,--- mixture of two Bernoulli distributions
— assumption: conditional independence

bt () () (3
(@) () (e

Definition of a HMM
Notation: X®) denotes the history up to time ¢, i.e. {X;, X¢—1,---, X1}

Pr(C, | C®*=1) = Pr(Cy|Ci—1) Markov property
Pr(X;| X®V, C®) = Pr(X;|C;) Conditional independence
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Transition probability matrix of the homogeneous Markov chain:

T :< Y11 Y12 ): < Pr<0t+1:1’0t:1) Pr(Ct+1:2]C't:1) )
PI'(Ct+1 =1 ’ Ct = 2) Pr(CH_l =2 ’ Ct = 2)

Y21 Y22
=1
Note that { 11+ 712
Y21 + Y22 =1
Initial state distribution: 0 = (01 d2)
If the chain is also stati )= —————
e chain is also stationary oo (Y21 7Y12)

P X:|Cy =1 ~ Bernoulli(m)
State-d dent distribut
ate-dependent distributions { X,[C,=2 ~ Bernoulli(r)

Model parameters:

State process (Markov chain): 11 7922 (and J; unless stationary)

State-dependent distributions: m; w9
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motivational state state-dependent distribution transitional prob. matrix

state 1 state 2 w1 = P(feed|state 1) = 0.8 0.8 0.2
0.6 0.4 my = P(feed|state 2) = 0.1 I'= < 0.3 0.7 )
observation
® I T
not feeding feeding not feeding
f/ 0.7
M I T
o o not feeding feeding not feeding
f/ 0.7
y |
r !
® O not feeding feeding feeding
0.8 Nz‘
: |
¢ O not feeding feeding not feeding
0.8 N\i
O o l

| T
not feeding feeding not feeding
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hidden
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The likelihood of an homogeneous HMM:

Ly =96P(x;) T' P(xg) T P(x3) --- T P(ap) 1/

For a two—state Bernoulli-HMM:

Pl = ( e (1= )= )

Parameter estimation via:
— an EM algorithm (Baum-Welch algorithm),
— direct numerical maximization (e.g. nlm or optim in R).

Global decoding: estimating the most likely motivational state sequence.

Maximize, w.r.t. c1,co,...,cr, the conditional probability:
Pr (C(T) — (1) |X(T) — x(T)>

This solved using a dynamic programming method, the Viterbi algorithm.
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So what’s the problem then?

1. The runlength distributions in each motivational state is (implicitly) as-
sumed to be geometric. Alcroft et al. (2004) fitted a semi-Markov model
to overcome this criticism.

2. The model does not account for feedback from behaviour to motivation:
— feeding (eventually) leads to becoming sated;
— non-feeding (eventually) leads to hunger.

hungry — feed
T !

don’t feed <«+— sated

Feedback loop:
motivation — behaviour — motivation — behaviour
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Components of proposed model:

— motivation series: C; two-state process

— behaviour series:  X; mixture of two Bernoulli distributions
— nutritional level: ~ N; determined by feeding behaviour

— assumption: conditional independence

et ()
0 (8 )
o e e e

General idea:

— The current state influences the feeding behaviour.
— Feeding behaviour determines the nutritional level.
— The nutritional level effects the probability of remaining in the current state.
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Model assumptions inferred (N

observed

hidden

1. The motivational state at time ¢ depends only on the previous
state and nutritional level.

Pr(Cy | Ct=1), No, N¢—D X)) = Pr(C; | Ci—1, Ne—1)
2. Feeding behaviour at time ¢ depends only on motivational state.

Pr(X;=1|C®, Ng, Nt~ X)) = Pr(X, =1|C})

71 lfCt:]_
T2 lfCt:2.

3. Nutritional level is determined by feeding behaviour.

Ny = h(X®)
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State-transition behaviour

current state nutritional level probable reaction corresponding transition

hungry low remain hungry 1 —1
hungry high become sated 1 —2
sated low become hungry 2 —1
sated high remain sated 2 — 2

A model for state transition behaviour

o) = (T 220 )

The state transition probabilities, v;; depend on n, as follows:

Yi1(ng) = 13;?(;0(43;?;?%) ie. logit(v11(ne)) = o+ aing

Ry e logit(a(n) = G+ B

Yoo (1¢)

a1 = 1 = 0 = no feedback from nutritional level to motivational state.
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A model for the nutritional level

The nutritional level is determined by the feeding behaviour as follows:
Ny =2Xe+(1—=A)Ny_q, t=1,2,...,T. (N isregarded as a parameter.)
A € (0,1) determines the rate of decay.

Contribution of one feeding episode has half-life = log(0.5)/log(1 — X).

Model parameters

ap 1 determine how the nutritional level affects Pr(remaining hungry)
Bo B1  determine how the nutritional level affects Pr(remaining sated)
w1 mo  Pr(feed | hungry) Pr(feed | sated)

A determines rate of nutrition depletion
Ny initial nutritional level
51 PI‘(Cl = 1)
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Likelihood of the model:

LT = 6P($1) r (7?,1) P(CEQ) r (7?,2) P($3) R A (nT) P($T) ]_,

Pla) — ( mf”(l—om)l‘f“ 0 - )

7T2$(1 — 72

1 exp(Bo+pB1in)
1+exp(Bo+HG1n) 1+exp(Bo+HB1n)

exp(ap+ain) 1
P(n) _ 14+exp(apg+ain) 14+exp(apg+tain)

Parameter estimation by direct numerical maximization (e.g. nlm in R)
(An EM algorithm would require numerical maximization in each M-step.)

Global decoding: estimating the most likely motivational state sequence.

The Viterbi algorithm is applicable.
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Back to the data

Observed feeding times of eight caterpillars
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Parameter estimates for the seven caterpillars the seven

AN

AN

subj  ag oy Bo B, o T ) o —logL
1 580 -11.19 231 222 0936 0.000 0.027 0.295 332.6
2 220 -5.16 -0.28 21.13 0.913 0.009 0.032 0.163 348.2
3 476 -10.12 3.00 1591 0.794 0.004 0.080 0.740 225.2
4 219 -7.24 131 16.23 0.900 0.000 0.059 0.062 299.3
5 3.4 727 1.68 1091 0.901 0.006 0.097 0.999 332.5
6 3.08 -522 1.37 14.01 0.879 0.001 0.043 0.263 291.0
7 389 905 0.62 13.34 0.976 0.003 0.054 0.379 315.2

— All &4 < 0 and all 31 > 0. (Expected).

— (ay, as), and (Bl, 32), differ substantially between subjects,
but the transition probabilities are not so different.

— All 71 ~ 1 and all 7 ~ 0.

— The estimates ng differ substantially. (Expected)

— The estimates A differ substantially. (Interesting)
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nutrional level

The nutritional level: Subject 2
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Transition probabilities and other estimates - caterpillar 1
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Transition probabilities - all seven caterpillars
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Global decoding: Subject 1
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Global decoding: Subject 1
Down-arrows indicate non-feeding event while hungry,
Up-arrows indicate feeding event while sated.
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nutrional level

Global decoding: Subject 2
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Global decoding: Subject 2
Down-arrows indicate non-feeding event while hungry,

Up-arrows indicate feeding event while sated.
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Runlength distributions for caterpillar 1

Notice the difference between feeding runs and hungry runs,

non-feeding runs and sated runs.
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Runlength statistics

subject feeding runs estimated hungry runs
number mean s.d. number mean @ s.d.

1 58 5.4 4.1 41 8.1 4.9

2 67 3.0 2.3 53 3.9 2.8

3 41 3.1 2.1 22 6.7 2.4

4 57 2.6 1.5 51 3.0 1.7

5 65 2.8 1.6 54 3.5 2.0

6 51 4.1 2.8 35 6.4 3.8

7 57 4.1 2.4 52 4.6 2.7

Average ( number of feeding runs ) _ 135
number of hunger runs

mean feeding runlength> — 0.73

Average ( mean hungry runlength

std. dev. feeding runlength) — 0.83

Average<8td. dev. hungry runlength
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Estimated half-life
Half-life = log(0.5)/log(1 — \)

The time taken to halve the nutritional level when not feeding.

Half-life vs. average feeding episodes per hour

20

15

10

feeds per hour

| | | | | | |
0 5 10 15 20 25 30

half-life

Half-life is related to the rate of feeding (p = 0.77)
The rate of feeding differs substantially between subjects.
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Estimating standard errors

— either the “delta method” based on the estimated information matrix
— or parametric bootstrap (very computer intensive!)

Model checking — 1. forecasts

The forecast distribution: p, = Pr(X, = 1| X®~1) is easy to compute. We test

Ho : g(E(x¢)) = g(Pe) vs. Ha : g(E(xe)) = f(g(Be)),
where ¢ is the logit function and f a smoothing spline.

Departure of f from the identity function constitutes evidence of a poor fit.

Model checking — 2. deviance residuals
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Model checking — 1. forecasts

subject 1 2 3 4 5 6 7
p-value  0.303 0.718 0.051 0.545 0.779 0.658 0.820
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Model checking — 2. deviance residuals

The solid line is a smooth of the deviance residuals.
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Looking back at the data: subject 3 stopped feeding over the last 2 hours.
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1. The number of states can be increased to m > 2.
However, the number of parameters increases rapidly with increasing m.

2. The definition of “nutritional level” can be changed.
The definition Ny = AX; + (1 — A\)N;_1 is convenient but not essential.

3. The state-dependent distribution can be changed.
— discrete-valued, continuous-valued, circular-valued distributions
— multivariate, even mixed discrete-continuous, discrete-circular, etc.

The likelihood remains of the form:

Ly =90 P(x1) T (n) P(z2) T (ng) P(zg) --- I (np) Plxy) 1/

with P(z) = < plé“") p;zx) )

T o l—x
instead of P(x) = < (1 —m) . )

0 7'('2x(1—7'('2)1_3'j
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4. Covariate information can be included almost anywhere.

@ — to influence the feedback state (nutritional level)
() — to influence the state transition probabilities
(O — to influence the state-dependent distributions

inferred

observed

hidden

Cherry Bud Workshop, Keio University, 14 March 2007
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5. Mixed models for multiple time series.

Analogous to the mixed hidden Markov models introduced by Altman (2007)

Some of the original parameters in the “caterpillar” model can be regarded as

fixed effects — the same for all caterpillars, or as
random effects — specific to individual caterpillars in a population.

Example based on the parameters of caterpillar model

The assumptions below are only approximately applicable for our data. We
make them to illustrate the technique.

effect  fixed or random, i.e. the same for all individuals, or different?

o o7 fixed

Bo 1 fixed

m o  fixed

A random
Ny random, but it’s distribution is not of interest.
01 random, but can be approximately determined via the other

parameters, and will not be regarded as a free parameter.
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Distribution for A\

Estimates of f(\);
truncated normal and truncated kernel

15

10

Density

| | | | T | T T
0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

lambda

Model: X ~ (0,1)-truncated N(\; u,o?)

A—p
f\p,0%) = @(ﬁ()_“@()w_u) , A€ (0,1)

g g
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Notation

For T' observations on each of I subjects, let
x;+ be the observation on subject ¢ at time ¢
n;:  be the nutrition level of subject 7 at time ¢

The likelihood

L= (0507 alﬂ()?ﬁla m T2, N07lu70-2; xitai:1727'°'717t:1727'”T)

= 1£[ }(5 P(z;1) T (ni1) P(xi2) - I (nir) P(xir) 1:) fp,0%) dA

'l::].o -

Ve

previous likelihood for subject i

The likelihood can be maximized numerically with respect to the parameters.

— The numerical integration at each iteration makes this slow.
— Parameter constraints need to be respected, e.g. by reparameterization.

— Rescaling is needed to avoid numerical underflow.
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Parameter estimates for the original and the mixed model (brown).

AN

subj Qo aq Bo 51 T T2 no no
1 5.80 -11.19 2.31 2.22 0.936 0.000 0.295 0.101
2 2.20 -5.16  -0.28 21.13 0.913 0.009 0.163 0.317
3 4.76  -10.12 3.00 1591 0.794 0.004 0.740 0.999
4 2.19 -7.24 1.31 16.23 0.900 0.000 0.062 0.488
5 3.14 -7.27 1.68 10.91 0.901 0.006 0.999 0.996
6 3.08 -5.22 1.37 14.01 0.879 0.001 0.263 0.381

7 3.89 -9.05 0.62 13.34 0976 0.003 0.379 0.698
1-7 3.53 -6.04 2.50 4.55 0.921 0.006

Parameter estimates for the random effect : ;1 = 0.094 o = 0.058
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Transition probabilities - all seven caterpillars

A
Y21

| | | | | | | | | | |
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nutritional level
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Model selection criteria

The estimates of the mixed model look reasonable but the model fits worse than
the original ”full model”.

Model number of parameters Akaike Information criterion
Full 56 4400
) Common 71, 7o 44 4398
Mixed effects 15 4499

*The model with common values of 71, m for all subjects (and everything else
different) achieved the best AIC of the models investigated.

Models with more than a single random effect were not investigated.
They take too long to fit (in R)!

Cherry Bud Workshop, Keio University, 14 March 2007
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Positive aspects

e The proposed models generalize the class of hidden Markov models, in
that they allow for feedback behaviour.

e Like HMMs they are satisfyingly flexible.

e They differ from the class of Markov switching models, which are
applied to model econometric time series and financial time series.

Still needed:

e Asymptotic properties of estimators need to be established.

e More efficent methods for estimating standard errors.

e More efficient methods for fitting mixed models. (It took 8 hours to fit
the model with one random effect using R.)

Cherry Bud Workshop, Keio University, 14 March 2007 -41 -



References

Allcroft, D.J., Tolkamp, B.J., Glasbey, C.A. and Kyriazakis, I. (2004), The
importance of ‘memory’ in statistical models for animal feeding behaviour. Be-
havioural Processes 67, 99—-109.

Altmann, R.M. (2007), Mixed Hidden Markov Models: An Extension of the
Hidden Markov Model to the Longitudinal Data Setting. Journal of the Amer-
ican Statistical Association 102 (477), 201-210.

MacDonald, I.L. and Raubenheimer, D. (1995), Hidden Marko,v models and
animal behaviour. Biometrical Journal 37, 701-712.

Raubenheimer, D. and Barton Browne, L. (2000), Developmental changes in the

patterns of feeding in fourth- and fifth-instar Helicoverpa armigera caterpillars.
Physiological Entomology 25, 390-399.

Cherry Bud Workshop, Keio University, 14 March 2007

_ 42 -



Other reading

Lange, K. (2002), Mathematical and Statistical Methods for Genetic Analysis,
second edition. Springer, New York.

Langton, S.D., Collett, D. and Sibly, R.M. (1995), Splitting behaviour into
bouts; a maximum likelihood approach. Behaviour 132, 781-799.

MacDonald, I.L. and Zucchini, W. (1997), Hidden Markov and Other Models
for Discrete-valued Time Series. Chapman & Hall, London.

Mira, A. (2000), Exuviae eating: a nitrogen meal? Journal of Insect Physiology
46, 605-610.

Tolkamp, B.J., Allcroft, D.J., Austin, E.J., Nielsen, B.L. and Kyriazakis, I.
(1998), Satiety splits feeding behaviour into bouts. Journal of Theoretical Bi-
ology 194, 235-250.

Tolkamp, B.J. and Kyriazakis, I. (1999), To split behaviour into bouts, log-
transform the intervals. Animal Behaviour 57, 807-817.

Yeates, M.P., Tolkamp, B.J., Allcroft, D.J. and Kyriazakis, I. (2001). The use
of mixture distribution models to determine bout criteria for analysis of animal
behaviour. Journal of Theoretical Biology 213, 413—-425.

Cherry Bud Workshop, Keio University, 14 March 2007

_ 43 -



