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Distribution for a pair of unit vectors

A distribution for a pair of d-dimensional unit vectors is a probability
distribution which is defined on two unit spheres in Rd , Sd−1 × Sd−1.

Data recorded as pairs of unit vectors

Wind directions in Milwaukee at 6 a.m. and noon (d = 2).
Directions of magnetic field in a rock sample before and after
laboratory treatment (d = 3).
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Purpose of the Study

Existing models

Mardia (1975)
Rivest (1988)

Saw (1983)
Shieh & Johnson (2005)

Purpose of the study

Our goal is to propose a distribution with the following features:
new approach to generate a model
easy interpretation of parameters
mathematical tractability
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Definition of the Proposed Model

We take a new approach to obtain a tractable model.
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Fig. 1. Brownian motion
(d = 2).

Definition

{Bt ; t ≥ 0} : Rd -valued Brownian motion,

B0 = 0,

τ1 = inf{t ≥ 0 ; ‖Bt‖ = ρ, ρ ∈ (0,1)},

τ2 = inf{t ≥ 0 ; ‖Bt‖ = 1}.

The proposed model is defined by(
Q

Bτ1

‖Bτ1‖
,Bτ2

)
,

where Q ∈ O(d), d × d orthogonal matrices.

Shogo Kato A distribution for a pair of unit vectors



Introduction
A Distribution for a Pair of Unit Vectors

A Related Distribution on R2

General dimensional case
Bivariate circular case

Probability Density Function

For brevity, write (U,V ) =

(
Q

Bτ1

‖Bτ1‖
,Bτ2

)
.

Probability density function

The density for (U,V ) is given by

c(u, v) =
1

A2
d−1

1− ρ2

(1− 2ρu′Qv + ρ2)
d/2 , u, v ∈ Sd−1, (1)

where ρ ∈ [0,1), Q ∈ O(d), Sd−1 = {x ∈ Rd ; ‖x‖ = 1},
Ad−1: a surface area of Sd−1, i.e. Ad−1 = 2πd/2/Γ(d/2),
u′ : a transpose of u.

We write (U,V ) ∼ BSd (ρQ) if r.v. (U,V ) has density (1).
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Interpretation of ρ
1. When ρ = 0, U and V are independent.
2. For any ε > 0, as ρ tends to 1, P(‖U −QV‖ < ε)→ 1.

Parameter ρ influences the dependence between U and V .
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Fig. 2. A contour plot of density (1) (variables in radians)
for d = 2, Q = I and ρ = 0.1 (left), 0.4 (middle), 0.8 (right).
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c(u, v) ∝ 1− ρ2

(1− 2ρu′Qv + ρ2)
d/2 , u, v ∈ Sd−1; ρ ∈ [0,1), Q ∈ O(d).

Mode of density (1)

Density (1) takes maximum (minimum) values at u = Qv (u = −Qv).

Interpretation of Q
Orthogonal transformation Q consists of rotation and reflection.
For d = 2, the transformation can be expressed as

x 7−→
(

cos θ − sin θ
sin θ cos θ

)
x and x 7−→

(
1 0
0 −1

)
x .
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Marginals and Conditionals

Marginals of U and V

Suppose (U,V ) ∼ BSd (ρQ). Then

U ∼ angular uniform, V ∼ angular uniform.
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Fig. 3. Angular uniform (d = 2).

Angular uniform distribution
Angular uniform distribution is
defined by density

f (x) =
1

Ad−1
, x ∈ Sd−1.
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Conditionals of V |u and U|v

Suppose (U,V ) ∼ BSd (ρQ). Then

U|v ∼ Exitd (ρQv), V |u ∼ Exitd (ρQ′u),

where
Exitd (·) denotes the exit distribution for d-dimensional sphere.
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Exit distribution
Exit distribution for d-dimensional sphere, Exitd (θ), is of the form

f (x) =
1

Ad−1

1− ‖θ‖2

‖x − θ‖d
, x ∈ Sd−1; θ ∈ {η ∈ Rd ; ‖η‖ < 1}.
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Properties
unimodality
rotational symmetry about x = θ/‖θ‖
mode at x = θ/‖θ‖;
antimode at x = −θ/‖θ‖
moment of X : E(X ) = θ

Fig. 4. Density of exit distribution for the circle (d = 2) with
θ = (0.2,0.2)′, θ = (0.4,0.4)′, θ = (0.55,0.55)′.
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Conditionals of V |u and U|v

Suppose (U,V ) ∼ BSd (ρQ). Then

U|v ∼ Exitd (ρQv), V |u ∼ Exitd (ρQ′u),

where
Exitd (·) denotes the exit distribution for d-dimensional sphere.
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Moments and Correlation Coefficient

Moments and correlation coefficient

Assume (U,V ) ∼ BSd (ρQ). Then

E(U) = E(V ) = 0, E(UU ′) = E(VV ′) = d−1I,

E(UV ′) = d−1ρQ.

Johnson & Wehrly (1977) coefficient of correlation, ρJW , is thus

ρJW ≡ λ1/2 = ρ,

where λ: the largest eigenvalue of Σ−1
UUΣUV Σ−1

VV Σ′UV ,

ΣUU = E(UU ′)− E(U)E(U ′), ΣUV = E(UV ′)− E(U)E(V ′),
ΣVV = E(VV ′)− E(V )E(V ′).
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Parameter Estimation

Method of moments estimation

(Uj ,Vj) ∼ i .i .d . BSd (ρ I ), j = 1, . . . ,n.

The method of moments estimator is obtained by equating

theoretical moment = sample moment.

E(UV ′) =
1
n

∑
j

UjV ′j .

Thus we get

ρ̂ = d

∣∣∣∣∣∣det

1
n

∑
j

UjV ′j

∣∣∣∣∣∣
1/d

.
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Maximum likelihood estimation

(Uj ,Vj) ∼ i .i .d . BSd (ρ I ), j = 1, . . . ,n.

The derivative of log-likelihood function with respect to ρ is

∂

∂ρ
log L =

−2nρ
1− ρ2 + d

∑
j

xj − ρ
1− 2ρxj + ρ2 ,

where xj = u′j vj ∈ [−1,1].

From this expression, we find that maximum likelihood estimation for
BSd (ρ I ) is essentially the same as that for Leipnik’s (1947)
distribution.
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Pivotal Statistic

Pivotal statistic for (ρ,Q)

Suppose (U,V ) ∼ BSd (ρQ). Define a random variable

T (ρ,Q) =
U ′QV − ρ

1− 2ρU ′QV + ρ2 ,

Clearly, 0 < T (ρ,Q) < 1 a.s. The r th moment of T (ρ,Q) is given by

E
{

T (ρ,Q)r} =
B{r + 1

2(d − 1), 1
2}

B{1
2(d − 1), 1

2}
,

where B(·, ·) is a beta function.

Since these moments are equal to those of a beta distribution
Beta{1

2(d − 1), 1
2}, it follows that T is a pivotal statistic for (ρ,Q) having

Beta{1
2(d − 1), 1

2}.
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Bivariate Circular Case

This subsection focuses on the bivariate circular case (d = 2) of the
proposed model.

Probability density function

Let (U,V ) ∼ BS2(ρQ). The density for (U,V ) is

c(u, v) =
1

4π2
1− ρ2

1− 2ρu′Qv + ρ2 , u, v ∈ S1,

where
ρ ∈ [0,1), Q ∈ O(2), S1 = {x ∈ R2; ‖x‖ = 1}.
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Transforming Random Vector and Parameters

To investigate further properties of model BS2(ρQ), it is advantageous
to transform the random vector and parameters as follows.

Transformation

Let (U,V ) ∼ BS2(ρQ).

We transform random variables and parameters by putting

(ZU ,ZV ) = (U1 + iU2,V1 + iV2), ψ = ρexp{i arg(Q11 + iQ21)},

where

U = (U1,U2)′, V = (V1,V2)′, Qij : (i , j) entry of Q.

Then it is clear that |ψ| < 1, ZU ,ZV ∈ Ω, Ω = {z ∈ C; |z| = 1}.
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Probability density function

Density of (ZU ,ZV ) is given by

c(zu, zv ) =
1

4π2
1− |ψ|2∣∣1− ψzv z− det Q

u
∣∣2 , zu, zv ∈ Ω,

where
|ψ| < 1 and Ω = {z ∈ C; |z| = 1}.

For det Q = 1, we write (ZU ,ZV ) ∼ BC+(ψ).

For det Q = −1, write (ZU ,ZV ) ∼ BC−(ψ).
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Properties of the Bivariate Circular Model

Multiplicative property

(ZU1,ZV 1) ∼ BC+(ψ1) ⊥ (ZU2,ZV 2) ∼ BC+(ψ2)

=⇒ (ZU1ZU2,ZV 1ZV 2) ∼ BC+(ψ1ψ2).

Infinite divisibility

Model BC+(ψ) is infinitely divisible with respect to multiplication.

Proof : Assume (ZU ,ZV ) ∼ BC+(ψ). Then for any positive integer n,
the assumption (ZU j ,ZV j ) ∼ i .i .d . BC+(n√ψ), (j = 1, . . . ,n) gives∏

j

ZU j ,
∏

j

ZV j

 d
= (ZU ,ZV ).
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Parameter Estimation

Trigonometric moment (t.m.)

(ZU ,ZV ) ∼ BC+(ψ) =⇒ E
[
ZU

jZV
k
]

=

{
ψj , j = −k ,
0, otherwise.

Method of moments estimation
(ZUj ,ZV j) ∼ i .i .d . BC+(ψ) (j = 1, . . . ,n).

The method of moments estimator (MME) based on t.m. is obtained by
equating

theoretical t.m. = sample t.m.

Thus we get

ψ̂ =
1
n

∑
j

ZUjZV j .
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Maximum likelihood estimation
(ZUj ,ZV j) ∼ i .i .d . BC+(ψ) (j = 1, . . . ,n).

For n = 1, MLE coincides with MME, i.e. ψ̂ = ZU1ZV 1.

For n ≥ 2, likelihood function can be expressed as

L ∝
∏

j

1− |ψ|2∣∣zujzv j − ψ
∣∣2 .

Then maximum likelihood estimation for BC+(ψ) is essentially
the same as that for wrapped Cauchy distribution.

Therefore we can get MLE by applying the algorithm by Kent &
Tyler (1988).
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Bilinear fractional transformation of model BC−(ψ)

Let (ZU ,ZV ) ∼ BC−(ψ). Define a random vector (X ,Y ) as

X = i
1− ZU

1 + ZU
and Y = i

1− ZV

1 + ZV
.

Then (X ,Y ) ∈ R2. The density for (X ,Y ) is

f (x , y) =
1
π2

Im(θ)

|x + y + θ(1− xy)|2
, x , y ∈ R, (2)

where θ = i(1− ψ)/(1 + ψ). Clearly, Im(θ) > 0.
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Properties of model (2)

Model (2) has the following properties:

X ∼ C(i), Y ∼ C(i),

X |y ∼ C
(
θ + y

1− θy

)
, Y |x ∼ C

(
θ + x
1− θx

)
,

where C(φ) is a Cauchy distribution on R with median Re(φ) and scale
parameter Im(φ).

Further properties of model (2) are obtainable by the inverse
transformation ZU = (1 + iX )/(1− iX ) and ZV = (1 + iY )/(1− iY ).
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Conclusion

Properties of the proposed model BSd (ρQ)

Easy interpretation of parameters.
Angular uniform marginals.
Exit conditionals.
Simple expression of moments and correlation coefficient.
Pivotal statistic having a beta distribution.

Bivariate circular case (d = 2)

Multiplicative property and infinite divisibility.
Easy parameter estimation.
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