On the Jones–Pewsey Distribution

Department of Mathematics Keio University

Kunio Shimizu

The Jones-Pewsey (2005) distribution is a very flexible symmetric model on the sphere. It includes the von Mises as a special case as well as wrapped Cauchy, cardioid and Cartwright's power-of-cosine or equivalently Minh-Farnum (2003) distributions. The distribution is closely connected with t-distributions on the sphere (Shimizu and Iida, 2002), which are obtained by the conditioning method.

von Mises Distribution VM (μ, κ) $0 \le \mu < 2\pi, \ \kappa \ge 0$

$$f(\theta) = \frac{1}{2\pi I_0(\kappa)} \exp\left[\kappa \cos(\theta - \mu)\right], \quad 0 \le \theta < 2\pi$$

 I_p : modified Bessel function of the first kind of order p

$$I_p(\kappa) = \frac{1}{2\pi} \int_0^{2\pi} \cos(p\theta) \, e^{\kappa \cos \theta} d\theta = \sum_{r=0}^{\infty} \frac{1}{\Gamma(p+r+1)r!} \left(\frac{\kappa}{2}\right)^{2r+p}$$

 μ : mean direction, κ : concentration

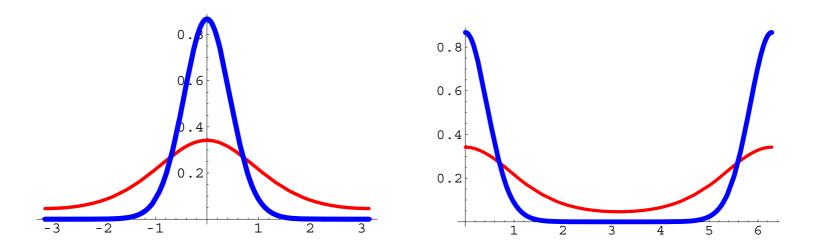


Figure 1: von Mises Distributions ($\mu = 0$, $\kappa = 1$ (red), $\mu = 0$, $\kappa = 5$ (blue), left: $-\pi \le \theta < \pi$, right: $0 \le \theta < 2\pi$)

Circular Data: wind directions, vanishing angles of birds, gene locations of bacterial genomes, etc.

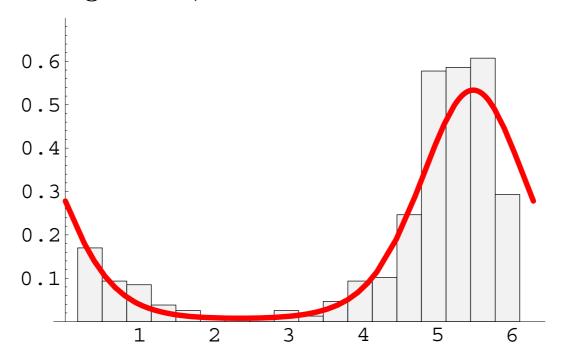


Figure 2: Histogram of mallard data with ML fit (von Mises)

Jones-Pewsey (2005) Distribution $0 \le \mu < 2\pi, \ \kappa \ge 0, \ \psi \ne 0$

$$f(\theta) = \frac{\left(\cosh(\kappa\psi) + \sinh(\kappa\psi)\cos(\theta - \mu)\right)^{1/\psi}}{2\pi P_{1/\psi}\left(\cosh(\kappa\psi)\right)}, \quad 0 \le \theta < 2\pi$$

 $P_{1/\psi}$: associated Legendre function of the first kind of degree $1/\psi$

$$\int_0^{\pi} (z + \sqrt{z^2 - 1} \cos x)^{1/\psi} dx = \pi P_{1/\psi} \quad (\psi > 0),$$

$$\int_0^{\pi} \frac{1}{(z + \sqrt{z^2 - 1} \cos x)^{-1/\psi}} dx = \pi P_{-1/\psi - 1} = \pi P_{1/\psi} \quad (\psi < 0)$$

Special Cases:

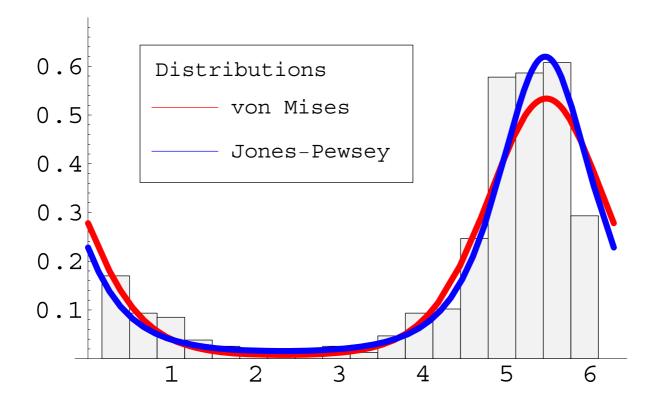
 $\psi \to 0$, von Mises distribution $\psi = 1$, cardioid distribution $\psi = -1$, wrapped Cauchy distribution $\psi > 0$, $\kappa \to \infty$, Cartwright's power-of-cosine or Minh–Farnum (2003) distribution

$$f(\theta) = \frac{2^{1/\psi - 1} \Gamma^2 (1/\psi + 1)}{\pi \Gamma(2/\psi + 1)} (1 + \cos \theta)^{1/\psi}$$

Jones-Pewsey

$$f(\theta) = C(1 + \tanh(\kappa \psi) \cos \theta)^{1/\psi}$$

Figure 3: Histogram of the mallard data with ML fits (von Mises and Jones–Pewsey)



Methods of Construction:

ad-hoc, maximum entropy, characterization, wrapping, conditioning, offset, stereographic projection, Brownian motion, scale mixtures, etc.

von Mises distribution: conditioning method (Downs, 1966)

$$(X,Y)' \sim N_2(\eta,I_2)$$

polar transformation

$$\begin{cases} X = R\cos\Theta \\ Y = R\sin\Theta \end{cases} \qquad \eta = \rho(\cos\tau, \sin\tau)'$$

conditional distribution of Θ given R = r

$$(\Theta|R=r) \sim \mathbf{VM}(\tau, \rho r)$$

t-distribution on the circle: conditioning method (Shimizu and Iida, 2002)

$$(X,Y)'|\sigma \sim N_2(\eta,\sigma^2 I_2), \ \frac{dG(\sigma)}{d\sigma} = \frac{2^{1-n/2}n^{n/2}}{\Gamma(n/2)}\sigma^{-1-n} \exp\left(-\frac{n}{2\sigma^2}\right)$$

polar transformation

$$\begin{cases} X = R\cos\Theta \\ Y = R\sin\Theta \end{cases} \qquad \eta = \rho(\cos\tau, \sin\tau)'$$

conditional distribution of Θ given R = r

$$f_t(\theta|r) = \frac{\{1 - (2/n)\kappa_n(\rho|r)\cos(\theta - \tau)\}^{-n/2 - 1}}{2\pi \,_2F_1\left(n/4 + 1/2, n/4 + 1; 1; (2\kappa_n(\rho|r)/n)^2\right)},$$
$$\kappa_n(\rho|r) = \frac{\rho r}{1 + (\rho^2 + r^2)/n}$$

Gauss hypergeometric function

$$_{2}F_{1}(a,b;c;z) = \sum_{n=0}^{\infty} \frac{(a)_{n}(b)_{n}}{(c)_{n}} \frac{z^{n}}{n!}, \quad |z| < 1,$$

$$(a)_{n} = a(a+1) \times \cdots \times (a+n-1) \text{ if } n \geq 1; = 1 \text{ if } n = 0$$

Relation between t- and Jones–Pewsey distributions

$$\frac{1}{\psi} = -\frac{n}{2} - 1$$
, $\tanh(\kappa \psi) = \frac{2}{n} \kappa_n(\rho|r)$

Relation between associated Legendre and Gauss hypergeometric functions

$$P_{1/\psi}(z) = z^{1/\psi} {}_{2}F_{1}\left(-\frac{1}{2\psi}, -\frac{1}{2\psi} + \frac{1}{2}; 1; \frac{z^{2}-1}{z^{2}}\right)$$

The Jones–Pewsey distribution is a reparametrization of the *t*-distribution on the circle:

$$f(\theta) = \frac{\cosh^{1/\psi}(\kappa\psi) \left(1 + \tanh(\kappa\psi)\cos(\theta - \mu)\right)^{1/\psi}}{2\pi P_{1/\psi}\left(\cosh(\kappa\psi)\right)}, \ 0 \le \theta < 2\pi$$

$$f_t(\theta|r) = \frac{\left\{1 - (2/n)\kappa_n(\rho|r)\cos(\theta - \tau)\right\}^{-n/2 - 1}}{2\pi \ _2F_1\left(n/4 + 1/2, n/4 + 1; 1; (2\kappa_n(\rho|r)/n)^2\right)}, \ -\pi \le \theta < \pi$$

However, the Jones-Pewsey distribution is more flexible than the t-distribution on the circle because the range of parameters is extended.

Spherical case

Jones-Pewsey ditribution on the sphere

$$f(\mathbf{x}) = \frac{\left|\sinh(\kappa\psi)\right|^{p/2-1}}{2^{p/2-1}\Gamma(p/2)} \frac{\left(\cosh(\kappa\psi) + \sinh(\kappa\psi)\mathbf{x}'\boldsymbol{\mu}\right)^{1/\psi}}{P_{1/\psi+p/2-1}^{1-p/2}\left(\cosh(\kappa\psi)\right)}, \quad \mathbf{x} \in S^{p-1}$$

$$\kappa \ge 0, \ \psi \ne 0, \ \mu \in S^{p-1} = \{ \mathbf{y} \in \mathbb{R}^p | \ \| \ \mathbf{y} \| = 1 \}$$

 P^{η}_{ν} : associated Legendre function of the first kind of degree ν and order η

an alternative form

$$f(\mathbf{x}) = \frac{(1 + \tanh(\kappa \psi) \mathbf{x}' \boldsymbol{\mu})^{1/\psi}}{{}_{2}F_{1}\left(-1/(2\psi), -1/(2\psi) + 1/2; p/2; \tanh^{2}(\kappa \psi)\right)}, \quad \mathbf{x} \in S^{p-1}$$

Relation between the associated Legendre and Gauss hypergeometric functions

$$P_{1/\psi+p/2-1}^{1-p/2}\left(\cosh(\kappa\psi)\right) = P_{-1/\psi-p/2}^{1-p/2}\left(\cosh(\kappa\psi)\right)$$

$$= \frac{2^{1-p/2}}{\Gamma(p/2)} \frac{\left(\cosh(\kappa\psi)\right)^{1/\psi}}{\left(\sinh^2(\kappa\psi)\right)^{(2-p)/4}} \,_{2}F_{1}\left(-\frac{1}{2\psi}, -\frac{1}{2\psi} + \frac{1}{2}; \frac{p}{2}; \tanh^2(\kappa\psi)\right)$$

If $\psi < 0$, ${}_2F_1$ converges and takes a positive value since $|\tanh(\kappa\psi)| < 1$.

If $\psi > 0$, from the transformation formula

$$_{2}F_{1}(a,b;c;z) = (1-z)^{c-a-b} \, _{2}F_{1}(c-a,c-b;c;z),$$

we have

$${}_{2}F_{1}\left(-\frac{1}{2\psi}, -\frac{1}{2\psi} + \frac{1}{2}; \frac{p}{2}; \tanh^{2}(\kappa\psi)\right)$$

$$= \frac{1}{\left(\cosh(\kappa\psi)\right)^{p-1+2/\psi}} {}_{2}F_{1}\left(\frac{p}{2} + \frac{1}{2\psi}, \frac{p}{2} + \frac{1}{2\psi} - \frac{1}{2}; \frac{p}{2}; \tanh^{2}(\kappa\psi)\right),$$

whose value is positive since $p \geq 2$.

Thus, the situation is almost similar to the circular case.

Discussions

- (a) The J-P distribution is a very flexible model for symmetric data sets on the circle/sphere, but the wrapped Cauchy, a special case of the J-P distribution, plays the central role of circular-circular regression (Kato, Shimizu and Shieh, to appear).
- (b) The *t*-distributions on the sphere are derived from a scale mixture of normals. Generalized Laplace distributions on the sphere are obtainable by using a different weight from that for *t*-distributions (Siew, poster session of this workshop).

(c) The Minh–Farnum distribution, a special case of the J–P, is induced by a stereographic projection (Möbius transformation) of the t-distribution with n degrees of freedom (df) on the real line:

$$x = u + v \frac{\sin \theta}{1 + \cos \theta} = u + v \tan \frac{\theta}{2}, \quad -\pi \le \theta < \pi$$

with u = 0, $v = \sqrt{m}$, m = 2n + 1. The *t*-distribution on the line goes to the standard normal as *n* tends to infinity, but the Minh–Farnum distribution goes to a one-point distribution as *n* tends to infinity.

This problem is solved by introducing the stereographic projection with u = 0 and v > 0 independent of n.

The resulting distribution (not included in the J–P family) induced by the t-distribution with df m = 2n + 1 on the line has the density function

$$f_n(\theta) = \frac{1}{2\sqrt{m}B(m/2, 1/2)}v\left(1 + \tan^2\frac{\theta}{2}\right)\left(1 + \frac{v^2}{m}\tan^2\frac{\theta}{2}\right)^{-(m+1)/2},$$

which converges to a circular distribution with density

$$f(\theta) = \frac{v}{2\sqrt{2\pi}} \left(1 + \tan^2 \frac{\theta}{2} \right) \exp\left(-\frac{v^2}{2} \tan^2 \frac{\theta}{2} \right)$$

as n tends to infinity, which is just the circular distribution induced by the stereographic projection of the standard normal on the line. A more extended form is proposed by Abe (poster session of this workshop).

References

- [1] Jones, M. C. and Pewsey, A. (2005). A family of symmetric distributions on the circle, *Journal of the American Statistical Association*, 100(472), 1422-1428.
- [2] Kato, S., Shimizu, K. and Shieh, G. S. (to appear). A circular-circular regression model, Statistica Sinica.
- [3] Minh, D-L. and Farnum, N. R. (2003). Using bilinear transformations to induce probability distributions, Communications in Statistics—Theory and Methods, 32(1), 1–9.
- [4] Shimizu, K. and Iida, K. (2002). Pearson type VII distributions on spheres, Communications in Statistics-Theory and Methods, 31(4), 513-526.