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1. Copulas

@ Copulas provide convenient tool for describing dependence
between variables.

Applications in Finance, Insurance, Risk Management, EVT.

Software: SPlus( S+FinMetrics), R, MatLab, Mathematica
etc.

Copula: multivariate distribution whose marginal distributions
are uniform on (0, 1).

Copulas allow to model marginal distributions and dependence
struture of multivariate distribution separately.
@ Some critical remarks (Mikosch, 2005):

o not all problems related with stochastic dependences and
multivariate distributions can be solved via copulas;

o "curse of dimensionality";

o why do we transform marginals to uniform?

e do copulas fit in stochastic processes and time series?
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2. Fitting Copulas

Estimation of copulas: complicated for multivariate time series in
finance, given the presence of time dependences, serial
autocorrelation, heteroskedasticity in asset returns, interest rates
and exchange rates.

Copula estimates were developed basically in the context of iid
samples.
(i) if the copula belongs to some parametric family consistent and
asymptotically normal estimators of parameters can be
obtained by maximum likelihod (ML)

Procedure in two stages:

e estimate marginal distributions;

e estimate copula.
The choice of marginals determines the copula, hence the
dependence structure. Therefore, different instruments to fit
marginals lead to different dependences.
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2. Fitting Copulas

Three possibilities to fit marginals:
a) fit parametric distributions to the marginals;
b) use the edf F; , to estimate Fj;
c) same as in (b), but add some tail, for exemple GPD tails.

Any of these approaches can go wrong, eg, if we want to estimate
VaR.

Another problem: choice of copula: Archimedian, Gaussian, t,
elliptical, extreme value etc.

Genest et al. (1995), Shi and Louis (1995).
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2. Fitting Copulas

(ii) use empirical copulas. Deheuvels (1978, 1981).

(iii) nonparametric estimation: obtains smooth estimators, without
assuming that the copula belong to some parametric family;
based on kernels, splines, wavelets.

Fermanian & Scaillet (2003), Morettin et al. (2006a,b).

General references: Joe (1997), Nelsen (1999), Cherubini et al.
(2004).
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An n— dimensional copula is a function C from [0, 1]"” to the

interval [0, 1], with the properties:

(i) Cis grounded: for every u = (u1,...,u,) €[0,1]", C(u) =0
if at least one coordinate u; =0, i=1,...,n;

(it) C is n-increasing: for every u and v in [O, 1]”, with u <, the
C-volume V(([u, v]) of the box [u,v] is non-negative;

(i) C(1,...,1,u;,1,...,1) = u;, forall u; €[0,1].

See Nelsen (1999) for the definition of C-volume and further details

on copulas. The following important theorem links the definition of

copula with an n-dimensional distribution function and its marginal
distributions.
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4. Theorem (Sklar).

Let F be an n-dimensional distribution function with margins

Fi,...,F,. Then there exists an n- copula C such that for all
x = (X1,...,Xn) € [-00,00]", we have

F(x1,...,xn) = C(Fi(x1), ..., Fn(xn)). (1)
Conversely, if C is an n-copula and Fy, ..., F, are distribution
functions, the function F defined by (1) is an n-dimensional
distribution function with margins F1, ..., F,. Moreover, if the

margins are all continuous, then C is unique. Otherwise, C is
uniquely determined on RanFy x ... x RanF,.

Therefore, given Sklar's theorem, it is easy to construct the
corresponding copula, namely

Clut, ... up) = F(F7 ), - -, Fyt(un)), (2)
where F 1 (u;) = inf{x; | Fi(x;) > w}, i=1...,n



5. Wavelets

@ Z: the set of all integers

@ .Z: the set of all integers z with z > a

@ .7Zp: the set of all integers z such that a <z < b

0 Z(0)=ZUoZxZ

e 7(0,J) = ZUoZy x Z.
When we write v, 1 € Z(0) we mean that v, = ¢ ,, if n € Z,
and v, = P = Vjk, if 1 € 0Z X Z.

Given an unknown function f we consider its wavelet expansion

Z By, (3)

n€Z(0

where {1, € Z(0)} is a compactly supported wavelet basis.
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5. Wavelets

The wavelet coefficients are given by

By = / fapydL. 4)
Interest: f(x) is a density, supposed to belong to Lo(IR"), where
x = (x1,..., %) . A wavelet expansion similar to (4) for £(x) will

hold, where the wavelets are obtained as products of
one-dimensional wavelets.

We illustrate here the case n = 2.
One possibility: basis with a single scale:
o
fx, ) =coo+ Y, >, >, diV (%), (5)
j=0 k up=hyv,d

with the wavelet coefficients given by

_]k —/f x1, x2)V xl,xz)dxldxz (6)
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5. Wavelets

Another possibility: basis as the tensor product of two
one-dimensional bases with different scales for each dimension.
Here

f(xi, x2) = Zdl,ul (x1,%2), ()

where | = (jl,j2, kl, k2) and ,u,/(Xl,X2) = ¢j1,k1(xl)¢j2,k2(x2)' The
¥j k(- --)'s here include also father wavelets. The two bases imply
different tilings of the time-scale plane.
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6. Wavelet estimators

Consider an n-dimensional process {X;, t € Z}, such that for all t,
X: = (Xi¢, ..., Xnt) has a density f;(x) = f(x) and distribution
function F¢(x) = F(x), with x = (xq,...,x,) . Stationarity is not
assumed.

Observe the process at T time points, obtaining X1,..., X7.

frand F;, i =1,...,n: pdf and cdf of each Xj;, respectively.
Our purpose: estimate F, F; and C in (2) using wavelet methods.

Notation:
o J=(h,...,J), where each J; = Ji(T).

o 17:(771,...,7’],7)/_
° ne:(jfakf)a Orﬁfzkz€Z,€:1,...,n.

° ¢n:¢n1®"'®¢nn-
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6. Wavelet estimators

As an estimator of f;(x;) take

?i,J,-(Xi) - Zﬁmwn;’ (8)
ni
then estimate the d.f. Fi(x;) by
Eulbe) = / i (y)dy. (9)

As an estimator of f(x) take

?J(X) = Z ﬁn¢n(x)- (10)
n
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6. Wavelet estimators

WeA may consider nonlinear estimators by replacing 377 in (10), by
d(By, A), where 6(-, A) is a threshold and A is a threshold parameter
which can be specified in a number of ways.

Examples of thresholds are

Is(x, A) = sgnx(|x| — A+,

On(x, A) = xI{|x| > A},
the so-called soft and hard thresholds, respectivelly.

Instances of the choice of )\ are the universal, SURE, minimax and
Bayesian procedures.
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6. Wavelet estimators

The empirical wavelet coefficients are given by

1
Pn= = ;%(Xt)- (11)

1 T
Frx) = = > X < x}
t=1

is the empirical distribution function, then the estimator (11) can
be written as

Bu= | indFr(o)

It follows that these are unbiased estimators of the corresponding
coefficients.
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6. Wavelet estimators

As an estimator of the distribution function (df) F of X; at x we

take x
Fo(x) = / Sl (12)
Write ,:_J = (":-1,.]17 coog lll_ny-ln),'
By (2), to estimate the copula at some point u = (u1, ..., u,) , we
propose
Cy(u) = Fy(d), (13)

§A= (él, .. ,f,,)/, §A,- = inf{iq clR: IE,',_]’.(X,') >uib, i=1,...,n,
from which it follows that &; is the wavelet estimator of the
quantile of Xj with probability u;, i =1,...,n.
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7. Properties of the estimators

We restrict attention to the case where the densities belong to
L(IR) and Lr(IR™) N Loo(IR"), respectively, for the marginals and
joint distribution.

Let £ s(x,y) be the joint density of X; and X, and f(x) the density
of X, for every t,s. Define, for t # s,

qr.s(x,y) = fes(x,y) = F(x)(y), (14)
and let the wavelet expansion of g s be given by
Ges(xy) = DD A, @ v,(x, y). (15)
mwoop
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7. Properties of the estimators

Assumptions. Mixing conditions in terms of the coefficients 7,(:})5)

of the expansion (13) and in terms of the behavior of the scale
Ji(T),as T — o0, e.g.,
Zt#s |777t 5)| < OO? for a” 'I’],f,
(229) /T — 0, as T — o0
Theorem 1.
(i) E(By) = By
(i) Cov(ﬁn,ﬁg) =
FU Un(e(x)f (x)dx — B e) + 1 Teps vye

(iii) Under the assumpt|ons, the empirical wavelet coefficients are
consistent and asymptotically uncorrelated.
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7. Properties of the estimators

Theorem 2.

(i) The covariance structure of F;(x) is given by:
~ ~ X y ~ ~
ol B =S5 [ [ v vedeCon(dy. po)
n g Yoo

where the sums are for all scales up to and including scale J

(i) Under the assumptions, the estimators F,(-) are consistent

and asymptotically non-correlated, no matter how J — oo, as
T — oo.
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7. Properties of the estimators

Theorem 3. Under the assumptions, we have that

sup |Fy(x) — F(x)] 50, T— 0. (16)

Theorem 4. Under the assumptions, we have that

sup |Cy(u)— Cw)| B0, T— . (17)
O<u<l1
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8. Some simulations

(1) Bivariate VAR(1):
Xt =A + BXt_]_ + €t, (18)

X: = (Xit, X2t), with independent components : C(u1, u2) = uiup
e~ N(0,Z), A=(1,1),
vec(B) = (0.25,0,0,0.75) ,
vec(X) = (0.75,0,0,1.25)’.

Number of Monte Carlo replications : 500, T = 210 = 1024.
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8. Some simulations

Table 1: Bias and MSE of Haar wavelet estimator: independent

case
%104 | C(.01,01) C(.05.05) C(25.25) C(50,.50) C(.75.75) C(.95.95) C(.99,99)
True 1.00 25.00 625.00 2500.00 5625.00 9025.00 9801.00
Bias 0.05103 0.71621 9.06150 25.32195 28.57155 13.56050 5.32317
MSE 5.08978e-7 9.3428e-5 0.015 0.113 0.151 0.032 0.0055
Table 2: Bias and MSE of kernel estimator: independent case
x10~—% | C(.01,.01) C(.05,.05) C(.25.25) C(.50,50) C(.75,.75) C(.95,95) C(.99,.99)
True 1.00 25.00 625.00 2500.00 5625.00 9025.00 9801.00
Bias -0.09 -0.08 0.40 1.12 -0.90 -0.04 4.66
MSE 0.00 0.01 0.25 0.48 0.25 0.01 0.05
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8. Some simulations

‘\
w@}gf&e
RS

o
oortioton s
S
SRS
SESSSS

%

Figure 1: Wavelet estimator for Haar wavelet: independent case.
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8. Some simulations

(2) Components of X; are dependent processes, with

A = (1,1)’, vec(B) = (0.25,0.2,0.2,0.75)’

vec(X) = (0.75,0.5,0.5,1.25) .

X1t and Xy are positively dependent, C(uy, up) > ujun.
500 Monte Carlo replications, the data length T = 1024.

Table 3: Bias and MSE of Haar wavelet estimator: dependent case

x10~% | C(.01,01) C(.05.05) C(.25,25) C(.50,50) C(.75,75) C(.95,.95) _ C(.99,.99)
True 27.08 197.95 1511.74 3747.68 6511.74 9107.95 9827.08
Bias 0.6024 -1.6883 -21.3189 -32.9333 -13.2733 0.2234 16.7489
MSE 0.019 0.11 0.46 0.73 0.49 0.11 0.05
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8. Some simulations

Table 4: Bias and MSE of kernel estimator: dependent case

x10~% [ C(.01,01) C(.05.05) C(.25.25) C(.50,50) C(.75,75) C(.95,95) C(.99,.99)
True 27.08 167.95 1511.74 3747.68 6511.74 9197.95 0827.08
Bias -7.474 -34.88 -130.32 -172.28 -130.53 -35.25 -7.65
MSE 0.01 0.18 1.98 3.36 1.99 0.18 0.01

Figure 2: Wavelet estimator for Haar wavelet: dependent case.
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9. An empirical application

Daily returns of the Sdo Paulo Stock Exchange index (Ibovespa)
and of prices of stocks of the Brazilian oil company, Petrobras, from
January 2, 1995 to February 3, 1999 (T = 1024 observations).

Tibv

Figure 3: Returns for Ibovespa and Petrobras.
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9. An empirical application
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Figure 4: Copula estimate for Ibovespa and Petrobras using Haar wavelet.
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10. Alternative estimators

Assume that the copula C(u,v) € Loo([0,1]?) and consider its
wavelet expansion

Clu,v)=coo+> > >, diVi(uv), (19)

j=0 k p=hv,d

with the wavelet coefficients given by

0,0 —/C u, v)dudyv, k —/C(u v (u, v)dudv. (20)
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10. Alternative estimators

We take as the empirical wavelet coefficients,
/ Co(u, v)V’, (u, v)dudv, (21)

and a similar expression for ¢ g, where C,(u, v) is the empirical
copula.

We have that the corresponding estimator for C(u, v) is then

Cu,v —C00+ZZ(5 i A ’.fk(u,v), (22)

ik u
where (-, A) is a threshold.
Morettin et al. (2006b)
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