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Changes in extremes?

» Likely tfo be slow in environmental applications

» May be difficult to detect because of noise

» Aim Tfo combine the point process approach to
exceedances with smoothing methods to give
a flexible exploratory approach to modelling
changes in extremes




Stations in Swiss Alps
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Winter temperatures at 21 Swiss stations
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Swiss winter temperatures by
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Summary

Climate change and extremes? Need flexible
models

Mix threshold approach to extremal modelling,
semiparametric smoothing, and booftstrap

Brief description of the threshold method
Implementation of spline smoothers
Application to the Swiss Alps data

Discussion




Traditional Method

» The mathematical foundation of EVT is the class
of extreme value limit laws

» X1,X9,...,dreindependent random variables
with common distribution function F and
M, = max{Xy,...,X,}

» for suitable normalising constants a,, > 0 and b,,,
we seek a limit law satisfying

P {M”—_b” < x} = F"(anz + by) — G(x)

an




» There are only 3 fundamental types of extreme
value Iimif laws that can be combined into a
simple GEV distribution

H(:U)exp{ <1+Kw@_bﬂ>+

The parameters —oco < u < 0o, 1 > 0 and
—00 < Kk < oo dre resp. the location, scale and
shape parameters




r-largest Extiremes

» M™ ..., M the r-largest olbservations among
X1,...,X,, To get more information about the
extfremes than the max alone

» The asymptotic joint distrioution of M{*, ..., M

!
atm?,...,m}Is

B 1/k
exp{ (1+/<;m¢“) }x

- m B 1/k—1
L= ¥ (1 TETY M)+
which forms a likelihnood for the parameters




» INn case m years of data are available, the
likelihood is constructed from the r-largest
values in each year, considering data for
different years as independent, an overadll

likelihood is simply The product of such ferms ,
for all years

» Choice of r; bias if r is oo large




Threshold method

Treat occurrences of events over (or under)
threshold « as Poisson process

Numlber of exceedances N over u follows
Nnomogeneous Poisson process, rate A

» Exceedance sizes W; =Y, — v are random
sample from GPD

/

1—(14—/«:@0/0);1/& if k#0
1 —exp(—w/o) if k=0

\

where o and k are scale and shape
parameters




» Use orthogonal parametrization k, v = o(1 + k)
below

» Log likelihood for data splits into two parts

[N k,0) =INA) +lw(k, V)




Semiparametric model

» Generalize previous approach

» lake )\ to be time-varying, where

A=-exp{z'a+ f(t)}

» lake exceedances to be GPD with

k=" B+g(t), v=-exp{z'n+st)}




» f.,gand s are smooth functions of fime ¢, and
parameters can also depend on ordinary
covariates

» Penalize roughness of f, g and s through
second derivatives

» Other link functions possible




Penalized log likelihoods

» For rate of exceedances A\, maximize

v = 5 [ £ 0P

equivalent fo fitting stfandard generalized
additive model

» FOr sizes of exceedances, maximize

hw (K (B, g),u(n,s)}—%% / g”(t)zdt—%% / o (4)2dt




If g, s Are cubic splines, equivalent o
maximizing

1 1

lw {K(B,9),v(n,s)} — 5%9TK9 — ivusTKs

over 3, n, g, s dnd leads to generadlized ridge

regression

» Parameters ~,, v, and ~,, control smoothness of
f.,gand s




Methodology

» Choose forms for A\, k and v and fit

» Choose smoothing parameters ~, efc using
AIC

» Use likelinood ratio statistics/AIC for model
comparisons




» When model correct, residuals

R; = —&; log {1 — &;W;(1 — &;)i;}

are approximately independent unit
exponential variables




Bootstrap uncertainty assessment

Need model-robust assessment of uncertainty

Clustering across stations must be taken into
account

Use bootstrap, either resampling the R;
computed from undersmoothed curves

added to oversmoothed curves
or resample seasons within blocks

Either yields percentile confidence
iIntervals/pointwise bands




Alpine winter temperatures

. Fitted intensity log A = do + f(d,4) + 4(¢,2) ot
Vattis for 1984-5 (left) and for January 1 from
1971-95 (right)
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Fitted model and 20-year return level

log A = ao + f(d,4) + §(t,2),
k= Bo+1072(h—1000)01, log U = flg+Not+5(d, 4)

Rheinfelden Vattis
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Discussion

Inhomogeneous Poisson process A depends on
fime but not location

Shape parameter k varies with altiftude —
exceedances at higher stations have shorter

tails

‘Scale’ parameter v depends on time but not
on altitude

Increase since 1985 is consistent with the
supposed effect of climate change but also
with shorf-term fluctuations (decrease from
1970-851)




Conclusion

» Exceedances over/under thresholds

widely-used approach with natural
INnterpretation

exceedance fimes modelled using existing
code (GAM)

» SMoothing extremes by penalized log
likelihood

convenient and rapid exploration technigque

highlights features of underlying distribution
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