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The facts about mortality:

e Life expectancy is increasing.

e Future development of life expectancy is uncertain.

“Longevity risk

Longevity Risk = the risk that aggregate future mortality

rates are lower than anticipated

Focus here: Mortality rates above age 60




STOCHASTIC MORTALITY

n lives, probability p of survival, /V survivors

e Unsystematic mortality risk:

= N|p ~ Binomial(n, p)

=> risk is diversifiable, N/n — p asn — o

e Systematic mortality risk:

—> P IS uncertain

—> risk associated with p is not diversifiable




Where is stochastic mortality relevant?

e Risk management in general

e Pension plans: what level of reserves?

e Life insurance contracts with embedded options.

e Pricing and hedging longevity-linked securities.




England and Wales log mortality rates 1950-2002
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Stochastic Models

Different approaches to modelling
o | ee-Carter

e P-splines

e Parametric, time-series models

e Market models

e Age-Period-Cohort extensions




Stochastic Models

Limited historical data =

e No single model is ‘the right one’

limited data = Model risk

e Even with the right model

limited data = Parameter risk




Case study: England and Wales males, age 60-95

60 65 70 75 80 85 90 95

Age of cohort at the start of 2002

g, = mortality rate at age y in 2002

Data suggests log ¢, /(1 — g, ) is linear



PARAMETRIC TIME-SERIES MODELS

e r = age attime ¢

e | — x = approximate year of birth

e ¢(t, x) Mortality rates for the year t to t + 1 for

individuals aged x at t:

e /N = number of factors




PARAMETRIC TIME-SERIES MODELS

General class of models
logit q(t, x) = Zﬁ /{t %w

“Parametric” = ﬁx is a simple function of =

OR

exp (ZL ﬁa@%f)%@x)

q(t,x) =

L oxp (S0 A w1



Estimation

e Data: Deaths D(t,x), Exposures F(t,x)
= Crude death rates m(t,x) = D(t,x)/FE(t, x)

e Underlying m(t,x) = —log|l — q(t, x)|

(by assumption)

e D(t,x) ~ independent Poisson (m(t, r)E(t, x))

o Maximum likelihood = 3", &\" and 4,"

—X




TWO PARAMETRIC TIME-SERIES MODELS

Model 1 (Age-Period model):

logit q(t, x) = /#) +- /<;§2) (x — )

Model 2 (Age-Period-Cohort model):
(2)

logit q(t, x) = H§1)+lit (x — )




Model 1: Case study — England and Wales males
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Age of cohort at the start of 2002
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Model 1

2—factor model: Kappa_1(t)=1 2—factor model: Kappa_2(t)

1960 1970 1980 1990 2000 1960 1970 1980 1990 2000

Year, t Year, t




(1) (2))/

Rt = (/{t y Ry
Model: Random walk with drift

Kt+11 —/{t:/L—|—CZ(t—|—1>

o (1= (pu1, pip)" = drift

o V = C'C'" = variance-covariance matrix
e Estimate ;tand V'

e Quantify parameter uncertainty in ;o and V'




WHY 2 FACTORS? (i.e. k\" and x.\”)

Data suggest changes in underlying mortality rates are

not perfectly correlated across ages.

1 factor (e.g. most Lee-Carter-based models)
=> changes over time in the ¢(t, x) are perfectly

correlated.




Bayesian approqgch to parameter uncertainty

o Jeffreys prior p(p, V) o |V |73/2.

e Data: vector D(t) = ky — ky_1fort =1,....,n

e MLE’s: iand V.

e Posterior:
V=D ~ Wishart(n — 1,n~ 'V 1)
plV, D ~ MVN(ji,n='V)




Application: cohort survivorship

e Cohort: Age x at time ¢ = (

e S(t,x) = survivor index at ¢

proportion surviving from time 0 to time ¢

S(t,z) = (1 —¢q(0,z)) x (1 —q(l,x+1) x...
Lo X (1=qt—1,24+t—1))




90% Confidence Interval (Cl) for Cohort Survivorship
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Cohort Survivorship: General Conclusions

e [ ess than 10 years:

— Systematic risk not significant

e Over 10 years

— Systematic risk becomes more and more significant

over time

e Over 20 years

— Model and parameter risk begin to dominate




The cohort effect: England and Wales
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The Cohort Effect

2—factor Model: Standardised Residuals




TWO PARAMETRIC TIME-SERIES MODELS
Model 1 (Age-Period model):

logit q(t, x) = /#) + k7 T

;. (z— )
Model 2 (Age-Period-Cohort model):

logit ¢(t, ) = /4;751) + /<;§2>




Model 1 versus Model 2

kappa_1(t) kappa_2(t)

—— Model 1
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Model 2: extra factors

kappa_3(t) gamma_4(t)

1960 1970 1980 1990 2000 1870 1890 1910 1930




Standardised residuals

Model 1 Model 2
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Survivor index projections

S(t,x): Mean + 5%, 95% quantiles Variance of log S(t,x)
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4% Annuity Values
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Conclusions 1

e Stochastic models important for
— risk measurement and management

— valuing life policies with option characteristics

e Two models out of many possibilities

e Significant longevity risk in the medium/long term




Conclusions 2

e Parameter risk is important

e Model risk might be important

e The significance of longevity risk varies from one

problem to the next:
— In absolute terms

— As a percentage of the total risk
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