MODELS FOR STOCHASTIC MORTALITY WITH PARAMETER UNCERTAINTY

Andrew Cairns

Heriot-Watt University, Scotland

and

The Maxwell Institute, Edinburgh

Joint work with David Blake & Kevin Dowd

Cherry Bud Workshop, 13 March, 2007

Plan

- Introduction
- Approaches to modelling mortality improvements
- A two-factor model for stochastic mortality
- Application
 - The survivor index
- Adding in a cohort effect
- Conclusions

The facts about mortality:

- Life expectancy is increasing.
- Future development of life expectancy is uncertain.

"Longevity risk"

Longevity Risk = the risk that aggregate future mortality rates are lower than anticipated

Focus here: Mortality rates above age 60

STOCHASTIC MORTALITY

n lives, probability p of survival, N survivors

Unsystematic mortality risk:

$$\Rightarrow N|p \sim \text{Binomial}(n,p)$$

 \Rightarrow risk is diversifiable, $N/n \longrightarrow p$ as $n \to \infty$

Systematic mortality risk:

 $\Rightarrow p$ is uncertain

 \Rightarrow risk associated with p is not diversifiable

Where is stochastic mortality relevant?

- Risk management in general
- Pension plans: what level of reserves?
- Life insurance contracts with embedded options.
- Pricing and hedging longevity-linked securities.

England and Wales log mortality rates 1950-2002

Stochastic Models

Different approaches to modelling

- Lee-Carter
- P-splines
- Parametric, time-series models
- Market models

Age-Period-Cohort extensions

Stochastic Models

Limited historical data \Rightarrow

No single model is 'the right one'

limited data ⇒ Model risk

Even with the right model

limited data ⇒ Parameter risk

Case study: England and Wales males, age 60-95

 $q_y =$ mortality rate at age y in 2002

Data suggests $\log q_y/(1-q_y)$ is linear

PARAMETRIC TIME-SERIES MODELS

- $\bullet x = age at time t$
- \bullet t-x= approximate year of birth
- q(t,x) Mortality rates for the year t to t+1 for individuals aged x at t:
- ullet N= number of factors

PARAMETRIC TIME-SERIES MODELS

General class of models

$$\operatorname{logit} q(t, x) = \sum_{i=1}^{N} \beta_{x}^{(i)} \kappa_{t}^{(i)} \gamma_{t-x}^{(i)}$$

"Parametric" $\Rightarrow \beta_x^{(i)}$ is a simple function of x

OR

$$q(t,x) = \frac{\exp\left(\sum_{i=1}^{N} \beta_{x}^{(i)} \kappa_{t}^{(i)} \gamma_{t-x}^{(i)}\right)}{1 + \exp\left(\sum_{i=1}^{N} \beta_{x}^{(i)} \kappa_{t}^{(i)} \gamma_{t-x}^{(i)}\right)}$$

Estimation

- Data: Deaths D(t,x), Exposures E(t,x) \Rightarrow Crude death rates $\hat{m}(t,x) = D(t,x)/E(t,x)$
- Underlying $m(t,x) = -\log[1-q(t,x)]$ (by assumption)
- $\bullet \ D(t,x) \sim \mathrm{independent} \ \mathrm{Poisson} \Big(m(t,x) E(t,x) \Big)$
- Maximum likelihood $\Rightarrow \hat{\beta}_x^{(i)}$, $\hat{\kappa}_t^{(i)}$ and $\hat{\gamma}_{t-x}^{(i)}$

TWO PARAMETRIC TIME-SERIES MODELS

Model 1 (Age-Period model):

$$\log it \ q(t,x) = \kappa_t^{(1)} + \kappa_t^{(2)}(x - \bar{x})$$

Model 2 (Age-Period-Cohort model):

$$\begin{array}{rcl} \text{logit } q(t,x) &=& \kappa_t^{(1)} + \kappa_t^{(2)}(x-\bar{x}) \\ && + \kappa_t^{(3)}[(x-\bar{x})^2 - \sigma_x^2] \\ && + \gamma_{t-x}^{(4)} \end{array}$$

Model 1: Case study - England and Wales males

Age of cohort at the start of 2002

$$\kappa_t^{(1)} \Rightarrow$$
 level $\kappa_t^{(2)} \Rightarrow$ slope

Model 1

2-factor model: Kappa_1(t)=1

2-factor model: Kappa_2(t)

$$\kappa_t = (\kappa_t^{(1)}, \kappa_t^{(2)})'$$

Model: Random walk with drift

$$\kappa_{t+1} - \kappa_t = \mu + CZ(t+1)$$

- ullet $\mu=(\mu_1,\mu_2)'=\mathsf{drift}$
- V = CC' = variance-covariance matrix
- ullet Estimate μ and V
- ullet Quantify parameter uncertainty in μ and V

WHY 2 FACTORS? (i.e. $\kappa_t^{(1)}$ and $\kappa_t^{(2)}$)

Data suggest changes in *underlying* mortality rates are not perfectly correlated across ages.

1 factor (e.g. most Lee-Carter-based models)

 \Rightarrow changes over time in the q(t,x) are perfectly correlated.

Bayesian approach to parameter uncertainty

- ullet Jeffreys prior $p(\mu,V) \propto |V|^{-3/2}$.
- Data: vector $D(t) = \kappa_t \kappa_{t-1}$ for $t = 1, \dots, n$
- ullet MLE's: $\hat{\mu}$ and \hat{V} .
- Posterior:

$$\begin{split} V^{-1}|D &\sim \mathrm{Wishart}(n-1,n^{-1}\hat{V}^{-1}) \\ \mu|V,D &\sim MVN(\hat{\mu},n^{-1}V) \end{split}$$

Application: cohort survivorship

- Cohort: Age x at time t=0
- S(t,x)= survivor index at t proportion surviving from time 0 to time t

$$S(t,x) = (1 - q(0,x)) \times (1 - q(1,x+1) \times \dots \times (1 - q(t-1,x+t-1))$$

$Var[\log S(t,x)]$ for x=65

Cohort Survivorship: General Conclusions

- Less than 10 years:
 - Systematic risk not significant
- Over 10 years
 - Systematic risk becomes more and more significant over time
- Over 20 years
 - Model and parameter risk begin to dominate

The cohort effect: England and Wales

Mortality improvement relative to calendar year average.

The Cohort Effect

2-factor Model: Standardised Residuals

TWO PARAMETRIC TIME-SERIES MODELS

Model 1 (Age-Period model):

$$\operatorname{logit} q(t,x) = \kappa_t^{(1)} + \kappa_t^{(2)}(x - \bar{x})$$

Model 2 (Age-Period-Cohort model):

$$\begin{array}{lll} \text{logit } q(t,x) & = & \kappa_t^{(1)} + \kappa_t^{(2)}(x-\bar{x}) \\ & & + \kappa_t^{(3)}[(x-\bar{x})^2 - \sigma_x^2] \\ & & + \gamma_{t-x}^{(4)} \end{array}$$

Model 1 versus Model 2

Model 2: extra factors

Standardised residuals

Survivor index projections

4% Annuity Values

	Model 1	Model 2	
		$\gamma_{1944}^{(4)}$	$\gamma_{1944}^{(4)}$
		=-0.0398	= 0.0402
x = 60	13.472	13.557	13.350
x = 65	11.449	11.451	
x = 70	9.325	9.354	
x = 75	7.220	7.240	

Conclusions 1

- Stochastic models important for
 - risk measurement and management
 - valuing life policies with option characteristics
- Two models out of many possibilities
- Significant longevity risk in the medium/long term

Conclusions 2

- Parameter risk is important
- Model risk might be important
- The significance of longevity risk varies from one problem to the next:
 - In absolute terms
 - As a percentage of the total risk

Selected References

Cairns, A.J.G., Blake, D., and Dowd, K. (2006) "A Two-Factor Model for Stochastic Mortality with Parameter Uncertainty," *Journal of Risk and Insurance* December 2006.

Blake, D., Cairns, A.J.G., and Dowd, K. (2006) "Living with mortality: longevity bonds and other mortality-linked securities," Faculty of Actuaries Sessional Meeting, 16 January, 2006.

Cairns, A.J.G., Blake, D., and Dowd, K. (2006) "Pricing death: Frameworks for the valuation and securitization of mortality risk," *ASTIN Bulletin* Volume 36.1.

Cairns, A.J.G., Blake, D., Dawson, P., and Dowd, K. (2005) "Pricing the risk on longevity bonds," *Life and Pensions*, October: 41-44.

Lee, R.D., and Carter, L.R. (1992) "Modeling and forecasting U.S. mortality," *Journal of the American Statistical Association*, 87: 659-675.

Olivier, P., and Jeffery, T. (2004) "Stochastic mortality models," Presentation to the Society of Actuaries of Ireland.

See http://www.actuaries.ie/

CMI Mortality Committee (2005) "Working paper 15: Projecting future mortality: towards a proposal for a stochastic methodology," .

CMI Mortality Committee (2006) "Working paper 20: Stochastic projection methodologies: Further progress and P-Spline model features, example results and implications," .

Andrew Cairns

Heriot-Watt University

E-mail: A.Cairns@ma.hw.ac.uk

Internet: www.ma.hw.ac.uk/~andrewc