HIDDEN MARKOV MODELS FOR CIRCULAR-VALUED TIME SERIES

Walter Zucchini

Institute for Statistics and Econmetrics University of Göttingen

Joint work with: Hajo Holzmann & Axel Munk, University of Göttingen, Iain MacDonald, University of Cape Town.

Hidden Markov Models for circular-valued time series

OUTLINE

Part I – A simple HMM for circular-valued time series

- 1. Larval movements of Drosophila
- 2. Von Mises-HMMs
- 3. Some properties, methods to fit HMMs, and to assess the fit
- 4. Modelling speed and change of direction

Part II – Extensions of the simple HMM

- 1. Wind direction at Koeberg
- 2. A categorical-valued HMM
- 3. A discretized von Mises HMM
- 4. Modelling change of direction (cod)
- 5. Modelling cod using speed as a covariate

Larval movement of the fly Drosophila

Drosophila melanogaster

Objective: Assess whether larvae that have been modified (mutants) behave differently from normal larvae (wild), and how.

Data: Max Suster, McGill Centre for Research in Neuroscience

- 30 wild larvae with up to 180 observations each,
- 15 mutant larvae with up to 500 observations each.

Observations: Positions: $(x_1, y_1), (x_2, y_2), \dots$ (resolution =1 sec)

Larva 1 (wild)

Larva 1 (mutant)

The movements don't correspond to Brownian motion.

Larva 1 (mutant)

x-increments - kernel density & normal distribution

Larva 1 (mutant)

y-increments

Larva 1 (mutant)

y-increments - kernel density & normal distribution

Larva 1 (mutant)

The increments are not the appropriate variables to model.

More promising is the bivariate time series (speed, change of direction).

variable	units	type
speed	mm per second	linear continuous-valued
change of direction	radians	circular–valued

Modelling the time series change of direction (cod)

Time series: a_1, a_2, \ldots, a_T

Histograms of change of direction

Von Mises distribution:
$$f(a) = \frac{1}{2\pi I_0(\kappa)} e^{\kappa \cos(a-\theta)} - \pi \le a < \pi$$

Fitted von Mises distributions:

Wild

$$\hat{\theta} = -0.08 \quad \hat{\kappa} = 3.27$$
 $\theta = 0 \quad \hat{\kappa} = 3.22$

Mutant

$$\hat{\theta} = 0.22 \quad \hat{\kappa} = 0.37$$

$$\theta = 0 \qquad \hat{\kappa} = 0.36$$

The wrapped normal and wrapped Cauchy also fit poorly.

There are two types of movement:

type	speed	cod angle
turning (head-swinging)	low	large
linear	high	small

Mixture of two von Mises distributions:

$$f_1 ext{ is } ext{vM}(\theta_1, \kappa_1) ext{ with probability } \delta_1, ext{ (state 1)}$$

 $f_2 ext{ is } ext{vM}(\theta_2, \kappa_2) ext{ with probability } \delta_2, ext{ (state 2)}$

pdf of A:
$$f(a) = \delta_1 f_1(a) + \delta_2 f_2(a)$$
, $\delta_1 + \delta_2 = 1$

The observations, a_1, a_2, \ldots, a_T , are generated in two stages:

parameter process: C_1, C_2, \dots, C_T determine the states, state-dependent process: A_1, A_2, \dots, A_T observations, given the states.

Mixture of two von Mises distributions

$$f_1$$
: vM(-0.28, 1.65) $\delta_1 = 0.42$
 f_2 : vM(0.02, 42.96) $\delta_2 = 0.58$

$$f_1$$
: vM(1.91, 0.12) $\delta_1 = 0.79$
 f_2 : vM(-0.03, 7.68) $\delta_2 = 0.21$

The mixture (black) fits the marginal distribution much better.

Mixture of 3 von Mises distributions.

$$f_1$$
 is $vM(\theta_1, \kappa_1)$ with probability δ_1 , (state 1)
 f_2 is $vM(\theta_2, \kappa_2)$ with probability δ_2 , (state 2)
 f_2 is $vM(\theta_3, \kappa_3)$ with probability δ_3 , (state 3)

$$f(a) = \delta_1 f_1(a) + \delta_2 f_2(a) + \delta_3 f_3(a), \quad \delta_1 + \delta_2 + \delta_3 = 1$$

Histograms of circular means

It makes little difference whether or not one sets $\theta = 0$.

The serial **circular correlation**¹ is small but there is serial **dependence**.

 $[\]overline{{}^{1}}$ Fisher and Lee (1994)

More examples

cacf of angle -- wild larva 2

cacf of |angle| -- wild larva 2

cacf of angle -- mutant larva 5

cacf of |angle| -- mutant larva 5

Hidden Markov Model

An HMM is a special kind of dependent mixture:

• Parameter process: C_1, C_2, \cdots m-state Markov chain

 A_1, A_2, \cdots Observed process • State-dependent process:

• Assume conditional independence

Observed state-dependent process

Definition of an HMM

$$\Pr(C_t | C^{(t-1)}) = \Pr(C_t | C_{t-1})$$
 Markov property
$$\Pr(A_t | A^{(t-1)}, C^{(t)}) = \Pr(A_t | C_t)$$
 Conditional independence

all values up to time t-1.

parameter process

state-dependent process

transition prob. matrix

0.78

0.52

-0.40

 $\dot{\pi}$

Two-state von Mises-HMM

hidden

observations

-0.40

0.52

0.78

-1.37

0.25

Parameters of a three-state stationary von Mises-HMM

$$\Gamma = \begin{pmatrix} \gamma_{11} & \gamma_{12} & \gamma_{13} \\ \gamma_{21} & \gamma_{22} & \gamma_{23} \\ \gamma_{31} & \gamma_{32} & \gamma_{33} \end{pmatrix} & & \begin{pmatrix} \theta_1, \kappa_1 \\ \theta_2, \kappa_2 \\ \theta_3, \kappa_3 \end{pmatrix}$$
 Stationary distribution:
$$\delta = \delta \Gamma$$

$$m - \text{state case}:$$
 $m(m-1)$ $+$ $2m$ $= m^2 + m$

$$2m = m^2 + n$$

Properties: Convenient expressions for

- Marginal distributons \Rightarrow moments, likelihood
- Conditional distributions of the observations \Rightarrow residuals, forecasts
- Conditional distributions of the states \Rightarrow decoding, state prediction

The likelihood $\mathbf{L}_T = \underbrace{\delta \mathbf{B}_1 \mathbf{B}_2 \cdots \mathbf{B}_t}_{\alpha_t} \underbrace{\mathbf{B}_{t+1} \cdots \mathbf{B}_T \mathbf{1}'}_{\beta_t'}$ with $\alpha_0 := \delta$, $\beta_T' := \mathbf{1}'$.

Forecast distribution

$$\Pr(A_{T+h} = a \mid A^{(T)} = a^{(T)}) = \frac{\alpha_T \Gamma^h \mathbf{P}(a) \mathbf{1}'}{\alpha_T \mathbf{1}'} = \sum_{i=1}^m \xi_i f_i(a)$$

Methods

- Parameter estimation Baum-Welch or direct maximization,
- Standard errors, e.g. parametric bootstrap,
- Model selection classical and Bayesian,
- Model checking quantile residuals,
- Global decoding Viterbi algorithm.

Maximum liklelihood estimation

Observations: $a_1 \quad a_2 \quad a_3 \quad \cdots \quad a_T$ Likelihood: $\delta \quad \Gamma \mathbf{P}(a_1) \quad \Gamma \mathbf{P}(a_2) \quad \Gamma \mathbf{P}(a_3) \quad \cdots \quad \Gamma \mathbf{P}(a_T) \quad \mathbf{1}'$ Observations:

 $\Gamma \mathbf{P}(a) = \begin{pmatrix} \gamma_{11} & \gamma_{12} & \gamma_{13} \\ \gamma_{21} & \gamma_{22} & \gamma_{23} \\ \gamma_{31} & \gamma_{32} & \gamma_{33} \end{pmatrix} \begin{pmatrix} f_1(a, \theta_1, \kappa_1) & 0 & 0 \\ 0 & f_2(a, \theta_2, \kappa_2) & 0 \\ 0 & 0 & f_3(a, \theta_3, \kappa_3) \end{pmatrix}$

1. Baum-Welch Algorithm (EM)

Regard the hidden states, $C_1, C_2, ..., C_T$, as missing observations.

Apply the Expectation-Maximization (EM) algorithm.

2. Direct maximization of the likelihood function, L_T

Use an algorithm to maximize the likelihood function directly.

Parameter constraints need to be respected.

Maximum liklelihood estimation

Some issues — both cases

- Scaling is needed to avoid numerical underflow.
- These algorithms find a *local* maximum of the likelihood.

Baum-Welch Algorithm

- \oplus Popular: Used more often than direct maximization.
- \oplus Seems to be less sensitive to starting values¹.
- Guaranteed increase in the likelihood at each iteration.
- Θ Needs a numerical "fix" to fit a stationary model. (δ is estimated separately.)

Direct maximization of the likelihood function

- \oplus Faster convergence when approaching a maximum¹.
- Flexibility: Easy to adapt for fitting new, or non-standard, models.
- ⊖ One has to take care of parameter constraints, e.g. via reparameterization.

¹Berzel and Bulla (2006)

Local and global decoding

Conditional distributions of the unobserved states

$$\Pr(C_t = i \mid A^{(T)} = a^{(T)}) \times \mathbf{L}_T = \begin{cases} \alpha_T(\Gamma^{t-T})_{\bullet i} & t > T & \text{state prediction} \\ \alpha_T(i) & t = T & \text{filtering} \\ \alpha_t(i)\beta_t(i) & 1 \le t < T & \text{smoothing} \end{cases}$$

Notation: $B_{\bullet i}$ denotes the ith column of the matrix B.

Local decoding: the a posteriori most probable state at time t is

$$i_t^* = \underset{i \in \{1, ..., m\}}{\operatorname{argmax}} \Pr(C_t = i | A^{(T)} = a^{(T)}), \quad t = 1, 2, ..., T$$

Global decoding: the a posteriori most probable sequence of states

$$(i_1^*, \dots, i_T^*) = \underset{i_1, \dots, i_T \in \{1, 2, \dots, m\}}{\operatorname{argmax}} \Pr(C_1 = i_1, \dots, C_T = i_T \mid A^{(T)} = a^{(T)})$$

Computed using the Viterbi algorithm (dynamic programming)

Parameter estimates and local decoding

Estimates for wild 1

$$\hat{\Gamma} = \left(\begin{array}{cc} 0.66 & 0.34 \\ 0.25 & 0.75 \end{array}\right)$$

$$egin{array}{cccc} \hat{\delta} & \hat{ heta} & \hat{\kappa} \\ \hline 0.42 & -0.28 & 1.65 \\ 0.58 & 0.02 & 41.96 \\ \hline \end{array}$$

Most likely state - Wild 1

Estimates for mutant 1

$$\hat{\Gamma} = \begin{pmatrix} 0.86 & 0.14 \\ 0.54 & 0.46 \end{pmatrix}$$

$$egin{array}{c|cccc} \delta & \theta & \hat{\kappa} \\ \hline 0.79 & 1.91 & 0.12 \\ 0.21 & -0.03 & 7.68 \\ \hline \end{array}$$

Most likely state - Mutant 1

Defining appropriate residuals for hidden Markov models

- The conditional distribution of A_t given $a_1 \ldots, a_{t-1}, a_{t+1}, \ldots, a_T$ changes for every t.
- So does that of A_t given a_1, \ldots, a_{t-1} .
- Ordinary residuals: $e_t = a_t \text{``conditional expectation''}$ each have quite different distributions.
- We need other quantities to construct residual plots, qqplots, etc., for example quantile residuals.
- Forecast normal quantile residual: $r_t = \Phi^{-1}(\tilde{F}(a_t))$, where $\tilde{F}_t(a) = \int_{-\pi}^a \tilde{f}_t(x) dx$ t = 1, 2, ..., T.

Two observations and their forecast distributions

Forecast quantile residuals and a non-parametric smooth

mutant 1

Modelling speed and change of direction.

Speed and change of direction are negatively correlated¹.

¹For correlation between linear and circular variables see Mardia (1976).

Model

Bivariate HMM assuming contemporaneous conditional independence:

$$f(a_t, s_t | C_t = i) = f(a_t | C_t = i) f(s_t | C_t = i)$$

The state-dependent distributions

von Mises:
$$f(a) = \frac{1}{2\pi I_0(\kappa)} e^{\kappa \cos(a-\theta)} \qquad -\pi \le a < \pi$$
 Gamma:
$$f(s) = \frac{\gamma^{\nu}}{\Gamma(\nu)} s^{\nu-1} e^{-s\lambda} \qquad s \ge 0$$

fit the series for most, but not all, individuals quite well.

Note: Contemporaneous conditional independence \Rightarrow independence.

Contemporaneous conditional independence

Contemporaneous conditional independence \Rightarrow independence.

- Markov chain \Rightarrow serial dependence,
- Unequal state-dependent distributions \Rightarrow contemporaneous dependence.

Selected estimates for all larvae:

Von Mises parameter κ

wild less dispersed in both states

Gamma distribution mean

wild faster in both states

Stationary dist. of Markov Chain

wild spend less time in state 1

State 1

turning/head-swinging large cods, low speed

speedy linear locomotion Small cods, high Speed

Wind direction at Koeberg

Wind direction at Koeberg

Data: Average hourly wind direction

Period: 01.05.1985 - 30.04.1989

Length: 35 064 observations

Observations: One of 16 compass directions

Code: N=1, NNE=2, ..., NNW=16

Objective: One-hour-ahead forecast of direction

Wind direction at Koeberg

Models for the hourly series

- 0. First-order Markov chain baseline model
- 1. Categorical–HMM
- 2. Seasonal categorical—HMM

Models for the daily series

- 0. First-order Markov chain baseline model
- 1. Categorical–HMM
- 2. Circular–valued HMM

Models for change in direction

- 1. Von-Mises-HMM
- 2. Von-Mises-HMM with wind speed as covariate version 1
- 3. Von-Mises-HMM with wind speed as covariate version 2

Categorical-HMM

Categorical—HMM and its likelihood function

Observations: $a_t = (a_{t1}, a_{t2}, \dots, a_{t16})$

where $a_{tj} = \begin{cases} 1 & \text{if the wind direction is } j \text{ at time } t, \\ 0 & \text{if it isn't.} \end{cases}$

Example $a_t = (1, 0, 0, \dots, 0)$ indicates j = 1 (North) at time t.

State-dependent distribution: $Pr(direction j \mid state i) = \pi_{ji}$

Likelihood: $\delta\Gamma P(a_1)\Gamma P(a_2)\Gamma P(a_3)\cdots\Gamma P(a_T)\mathbf{1}'$

where $P(a_t)$ is a diagonal matrix with i-th entry

$$\Pr(A_t = a_t | C_t = i) = \pi_{1i}^{a_{t1}} \ \pi_{2i}^{a_{t2}} \ \cdots \ \pi_{16i}^{a_{t16}}$$

Wind direction at Koeberg - hourly series

Estimates for two-state categorical—HMM

State-dependent model:
$$\Pr(A_t = j \mid C_t = i) = \begin{cases} \pi_{j1}, & \text{for } i = 1 \\ \pi_{j2}, & \text{for } i = 2 \end{cases}$$

$$\hat{\Gamma} = \left(egin{array}{ccc} 0.964 & 0.036 \\ 0.031 & 0.969 \end{array}
ight)$$
 $\hat{\delta}' = \left(egin{array}{c} 0.462 \\ 0.538 \end{array}
ight)$

$$\hat{\delta}' = \left(\begin{array}{c} 0.462\\ 0.538 \end{array}\right)$$

"North-westerly"

"South-easterly"

Wind direction at Koeberg - hourly series

Three-state model — state-dependent distributions

Wind direction at Koeberg

Wind direction by time of day

Wind direction at Koeberg

Wind direction by month (23:00–24:00)

July August September October November December

Wind direction at Koeberg - hourly series

Seasonal categorical—HMM

State-dependent model:

$$\Pr(A_t = j \mid C_t = i) = \begin{cases} \pi_{j1}, & \text{for } i = 1\\ \pi_{j2}, & \text{for } i = 2 \end{cases}$$

Transition probabilities are functions of **time**.

$$\Gamma = \left(egin{array}{cc} \gamma_{11}(t) & \gamma_{12}(t) \ \gamma_{21}(t) & \gamma_{22}(t) \end{array}
ight)$$

$$logit(\gamma_{12}(t)) = a_1 + b_1 cos\left(\frac{2\pi t}{24}\right) + c_1 sin\left(\frac{2\pi t}{24}\right) + d_1 cos\left(\frac{2\pi t}{8766}\right) + e_1 sin\left(\frac{2\pi t}{8766}\right)$$

$$logit(\gamma_{21}(t)) = a_2 + b_2 cos\left(\frac{2\pi t}{24}\right) + c_2 sin\left(\frac{2\pi t}{24}\right) + d_2 cos\left(\frac{2\pi t}{8766}\right) + e_2 sin\left(\frac{2\pi t}{8766}\right)$$

daily cycle

annual cycle

Wind direction at Koeberg - hourly series

Seasonal categorical-HMM — estimates

State-dependent model:
$$\Pr(X_t = j \mid C_t = i) = \begin{cases} \pi_{j1}, & \text{for } i = 1 \\ \pi_{j2}, & \text{for } i = 2 \end{cases}$$

Parameters of $\Gamma(t)$

	i = 1	i = 2
$\overline{\hat{a}_i}$	-3.349	-3.523
\hat{b}_i	0.197	-0.272
\hat{c}_i	-0.695	0.801
\hat{d}_i	-0.208	0.082
\hat{e}_i	-0.401	-0.089

General pattern is very similar to that of the simple two–state HMM.

j	Direction	π_{j1}	π_{j2}
1	N	0.127	0.000
2	NNE	0.047	0.000
3	NE	0.057	0.002
4	ENE	0.027	0.040
5	${ m E}$	0.004	0.052
6	ESE	0.001	0.076
7	SE	0.001	0.179
8	SSE	0.000	0.317
9	S	0.001	0.183
10	SSW	0.007	0.121
11	SW	0.059	0.026
12	WSW	0.114	0.003
13	W	0.145	0.000
14	WNW	0.128	0.000
15	NW	0.135	0.000
16	NNW	0.147	0.000

Wind direction at Koeberg - hourly series

Model selection criteria

model	#(pars)	$-\log(\mathrm{lk})/1000$	AIC/1000	BIC/1000
Markov chain	240	48	97	99
2-state HMM	32	76	152	152
3-state HMM	51	70	139	140
2-state seasonal HMM	40	76	151	152

- The HMM models don't even come close to beating the first-order Markov chain. (Sad but true.)
- Reason: The HMMs don't take previous direction into account.

Wind Direction at Koeberg

Circular-valued HMM

Regard the observations as interval-censored von Mises random variables.

$$\Pr(\text{direction} = j) = \pi_j = \int_{\frac{2\pi(j-0.5)}{16}}^{\frac{2\pi(j-0.5)}{16}} f_{\text{vM}}(a) \, da \,, \quad j = 1, \dots 16.$$

Observed values $\sim \text{Multinomial}(1, \pi_1, \pi_2, \dots, \pi_{16})$

The 16 values π_i are determined by the 2 parameters θ and κ .

Two-state von Mises (θ_i, κ_i) -HMM

State 1: $\pi_{11}, \pi_{21}, \ldots, \pi_{161}$ are determined by θ_1, κ_1

State 2: $\pi_{12}, \pi_{2,2}, \ldots, \pi_{162}$ are determined by θ_2, κ_2

Wind direction at Koeberg - daily series

Observed directions and fitted mixtures

Hour 23:00 - 24:00

Wind direction at Koeberg - daily series

Estimated (scaled) state-dependent densities in 4-state model

Hour 23:00 - 24:00

Wind direction at Koeberg - daily series

Daily series

Average direction over the hour 23:00 - 24:00 (1461 observations).

model	#(pars)	$-\log(lk)/10$	AIC/10	BIC/10
1-state von Mises-HMM	2	393	787	788
2-state von Mises-HMM	6	361	723	726
3-state von Mises-HMM	12	354	710	716
4-state von Mises-HMM	20	349	701	712
2-state multinomial-HMM	32	346	699	716
Saturated Markov chain	240	329	707	833

The von Misess-HMM is not much better here. (Nice try, but no cigar.)

General point:

This example illustrates that one can fit HMMs when

- the observations are interval-censored,
- some observations are interval-censored, some are not,
- some observations are missing (at random) extreme censoring!

HMM with speed as covariate

Observations: hourly speed (cm/sec) and direction (degrees).

New objective: model the change of direction.

Scatterplot of lagged speed vs. changes of direction

Version 1: Speed affects the Markov Chain

High speed makes the transitions between states less likely.

Model: von Mises-HMM with transition probability matrix:

$$\Gamma(s_{t-1}) = \begin{pmatrix} \gamma_{11}(s_{t-1}) & \gamma_{12}(s_{t-1}) \\ \gamma_{21}(s_{t-1}) & \gamma_{22}(s_{t-1}) \end{pmatrix}$$

with
$$\gamma_{ij}(s) = \frac{e^{\tau_{ij}}}{\sum_{k=1}^{m} e^{\tau_{ik}}}$$
 and $\log \tau_{ii} = \eta_i \sqrt{s}$, $i, j = 1, 2, \dots, m$.

Version 2: Speed affects the von-Mises dispersion parameter
High speed reduces the dispersion.

State process C_4 C_5 C_6 C_7 C_7 State-dependent process C_4 C_5 C_6 C_7 C_7 C_8 $C_$

Model: von Mises-HMM with speed-dependent dispersion paremeters

State 1: $A_t \sim vM(\theta_1, \kappa_1)$, $\kappa_1 = e^{\alpha_{01} + \alpha_{11}\sqrt{s_{t-1}}}$ State 2: $A_t \sim vM(\theta_2, \kappa_2)$, $\kappa_2 = e^{\alpha_{02} + \alpha_{12}\sqrt{s_{t-1}}}$

Model comparison

model	covariate	m	#(pars)	$-\log(lk)/100$	AIC/100	BIC/100
1	none	1	2	218	436	437
		2	6	86	172	173
		3	12	70	140	141
		4	20	68	136	137
2	Speed affects the	2	8	68	136	136
	Markov chain	3	15	56	112	113
		4	25	54	108	110
3	Speed affects the	1	3	104	209	209
	dispersion parameter	2	5	52	104	104
		3	7	50	101	101

- Models for change of direction lead to much more accurate one-hour-ahead forecasts than models for direction.
- Forecasts improve if one uses speed as a covariate.
- Model 3 has a nasty likelihood surface estimation is tricky!

Model 3: State-dependent von Mises densities for four (lagged) wind speeds

Using speed as a covariate improves the forecasts substantially.

Concluding Remarks

Circular-valued HMMs

- The circular nature of the data presents no problems.
- Covariates can be included in different ways.
- Censored and missing observations can be dealt with precisely.
- They can model multivariate series,
 - bivariate linear-valued and circular-valued series,
 - series with multimodal marginal distributions.
- They are satisfyingly flexible.

Of course, like any other models, they don't fit everything!

Iloilo aligatoh gozaimaschta!