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Part I — A simple HMM for circular-valued time series
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2. Von Mises-HMMs
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4. Modelling speed and change of direction

Part II — Extensions of the simple HMM

1. Wind direction at Koeberg

2. A categorical-valued HMM

3. A discretized von Mises HMM

4. Modelling change of direction (cod)
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Larval movement of the fly Drosophila

Drosophila melanogaster

Objective: Assess whether larvae that have been modified (mutants)
behave differently from normal larvae (wild), and how.

Data: Max Suster, McGill Centre for Research in Neuroscience
— 30 wild larvae with up to 180 observations each,
— 15 mutant larvae with up to 500 observations each.
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Observations: Positions: (x1,y1), (x2,¥2), ...

Larva 1 (wild)
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The movements don’t correspond to Brownian motion.

X-lncrements

Larva 1 (mutant)

x—increments — kernel density & normal distribution

Larva 1 (mutant)

Observed

Expected
x—increments — Normal QQ-plot
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The increments are not the appropriate variables to model.

More promising is the bivariate time series (speed, change of direction).

variable units type
speed mm per second linear continuous—valued
change of direction radians circular—valued

Modelling the time series change of direction (cod)

Time series: ai,as9,...,ar

Change of direction - Larva 1 (wild) Change of direction - Larva 1 (mutant)
3 ] 3 —
- A ﬂ -
Ty I
=] [}
E 0 MM P.]I.MI\U"AAHM. nhn‘j i Lhall T |
; T T 4 Wu T Yv Vu an = 0 il
g 3
§ 17 & 1
-2 2
-3 3
T T T T T T T T T T T T
0 100 200 300 400 500 0 100 200 300 400 500

time {seconds) time (seconds)

Cherry Bud Workshop, Keio University, 28 March 2006




Histograms of change of direction
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Von Mises distribution: f(a) =

Fitted von Mises distributions:
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The wrapped normal and wrapped Cauchy also fit poorly.
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Larva 1 {wild)

There are two types of movement:

type speed cod angle
turning (head-swinging) low large 2 1
linear high  small .

=20

Mixture of two von Mises distributions:

40 -

f1is vM(01, k1) with probability 6;, (state 1) S
fo is VM(02, k2)  with probability do, (state 2)

X
Path over 180 seconds

pdf of A:  f(a) =d1f1(a) +02f2(a), 01402 =1

The observations, aq,as,...,ar, are generated in two stages:
parameter process: Ch1,C5,...,Cr determine the states,
state-dependent process: A, As,...,Ar observations, given the states.
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Mixture of two von Mises distributions

Wild Mutant
1.5 1.5
1.0 1.0
0.5 0.5
00 =9 I I I I I ] 00 =5 I I I I I ]
3 2 1 0 1 2 3 3 2 1 0 1 2 3
angle (radians) angle (radians)
fi: vM(—0.28, 1.65) 4, = 0.42 fi: vM( 1.91,0.12) & = 0.79
for vM( 0.02,42.96) 5 = 0.58 far VM(—=0.03,7.68) &, =0.21

The mixture (black) fits the marginal distribution much better.
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Mixture of 3 von Mises distributions.

f1is vM(01, k1)
f2 1S VM(@Q, /€2)
f2 18 VM((93, 113)

f(a) =01 f1(a) + d2fa(a) + 03 f3(a),

One-state-model

angle (radians)

with probability o1,

(state 1)

with probability 6o, (state 2)
with probability o3, (state 3)
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O N 3 0

Histograms of circular means

wild (n=30)

mean (radians)

Mutant (n=13)
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It makes little difference whether or not one sets 8 = 0.

The serial circular correlation® is small but there is serial dependence.
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Fisher and Lee (1994)
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More examples

cacf of angle -- wild larva 2
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An HMM is a special kind of dependent mixture:

e Parameter process: Cq,C5,---  m-state Markov chain
e State-dependent process: Aq, Ay, .-+ Observed process
e Assume conditional independence

@ @ @ @ Parameter process (hidden)
@ @ @ @ Observed state-dependent process

Definition of an HMM

Pr(C; |C(¢~1) = Pr(Cy|Cy—1) Markov property
Pr(A, | A¢=D Cc®) = Pr(4,|C;)  Conditional independence

all values up to time t — 1.
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parameter process state-dependent process transition prob. matrix

state 1 state 2 f4 f, r— < 0.66 0.34 >
01=0.42 02=0.58 : — , 0.25 0.75
T 5
observations
@) o
-n ' T ~0.40
0;25/ 0.75 TO
o N
© . . . 0.52
0.25 0.75 o 1 T
@ @)
' ! ! 0.78
- 0 T
0.66 0.34 T
® © -1.37

0
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O ® éT ! 0.25
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hidden
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Parameters of a three-state stationary von Mises-HMM

Y1 Yz Tas 01, k1 Stationary distribution:
I = Y21 Yoz Tas & 02, ko 5 — o7
Va1 Va2 Tas 93a K3 -
m — state case : m(m — 1) + 2m =m?+m

Properties: Convenient expressions for

e Marginal distributons = moments, likelihood
e Conditional distributons of the observations = residuals, forecasts
e Conditional distributons of the states = decoding, state prediction

The likelihood LT = §B1 BQ ce BEBt-l-l ce BT ]_/ with o = ) 3 6,% = 1/.

(077 /52
arT"P(a)l m
Forecast Pr(AT+h, —a | AT) — a(T)) _ 2T (/ ) _ Z & fz(a>
distribution arl i=1
Methods e Parameter estimation — Baum-Welch or direct maximization,
e Standard errors, — e.g. parametric bootstrap,

e Model selection — classical and Bayesian,
e Model checking — quantile residuals,
e Global decoding — Viterbi algorithm.
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Observations: a1 as as - ar

Likelihood: 6 T'P(a;) TP(az) TP(az) --- T'Plap) 1

Y11 Y12 V13 fi(a, 01, k1) 0 0
I'P(a) = | 721 722 o3 0 fa(a, 02, ko) 0

Y31 Y32 Y33 0 0 fa(a,0s, k3)

1. Baum-Welch Algorithm (EM)
Regard the hidden states, C1, Cs, ..., Cr, as missing observations.

Apply the Expectation-Maximization (EM) algorithm.

2. Direct maximization of the likelihood function, L
Use an algorithm to maximize the likelihood function directly.

Parameter constraints need to be respected.
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Some issues — both cases

e Scaling is needed to avoid numerical underflow.

e These algorithms find a local maximum of the likelihood.

Baum-Welch Algorithm

¢ Popular: Used more often than direct maximization.
@® Seems to be less sensitive to starting values'.

¢ Guaranteed increase in the likelihood at each iteration.

© Needs a numerical “fix” to fit a stationary model. (¢ is estimated separately.)

Direct maximization of the likelihood function

@ Faster convergence when approaching a maximum®.

@ Flexibility: Easy to adapt for fitting new, or non-standard, models.

© One has to take care of parameter constraints, e.g. via reparameterization.

1Berzel and Bulla (2006)
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Conditional distributions of the unobserved states

ar(T"" e t>T state prediction
Pr(C; =i| AT =a™) x Ly =< ar(i) t="T filtering
o (1) B¢ (1) 1 <t<T smoothing

Notation: Be; denotes the 1th column of the matrix B.

Local decoding: the a posteriori most probable state at time ¢ is

iy = argmax Pr(Cy; =i|AT) =aT)), ¢t=1,2,...,T
1€{1,...,m}

Global decoding: the a posteriori most probable sequence of states

(41, ...,ir) = argmax PI’(Clzh,...,CT:iT\A(T) :a(T))
i1,..,07€{1,2,....m}

Computed using the Viterbi algorithm (dynamic programming)
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Estimates for wild 1

P ( 0.66 0.34 )

0.25 0.75 2
50 & s
0.42 —0.28 1.65 &
0.58 0.02 41.96
Estimates for mutant 1
s_ (086 0.14 -
—\ 054 0.46 [
5 6 & -
0.79 1.91 0.12 &

0.21 —-0.03 7.68
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Defining appropriate residuals for hidden Markov models

e The conditional distribution of
A given a1 ...,a;_1,0441,...,a7 changes for every ft.

e So does that of A; given aq,...,a;_1.

e Ordinary residuals: e; = a;— “conditional expectation”
each have quite different distributions.

e We need other quantities to construct residual plots, qqplots, etc.,
for example quantile residuals.

e Forecast normal quantile residual: r; = CD_l(F (at)),

where F(a f fi(x)de t=1,2,...,T.
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Two observations

Area=0.19

and their forecast distributions

Area =0.81

Area =0.89 Area=0.11

-0.35

Area=0.19
Standard

normal

Residuals:
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Area=0.81

0.74

Area=0.89 Area=0.11
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Forecast quantile residuals and a non-parametric smooth
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Sample Quantiles
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Modelling speed and change of direction.

Speed and change of direction are negatively correlated®.

d
speed vs. cod speed vs. 1-cos(%5%)
1.0
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o
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)
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©

Mutant 1 3 =
(@)
(&)

00 05 10 15 20 00 05 1.0 15 20

speed speed

1 For correlation between linear and circular variables see Mardia (1976).
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Model

Bivariate HMM assuming contemporaneous conditional independence:

flag,se|Ce=1) = f(a|[Ce =1) [(s:[|Cr = 1)

The state-dependent distributions

von Mises: f(a) = m e cos(a—0) —r<a<T
Gamma; f(s) = F’{;) sV lesA s>0

fit the series for most, but not all, individuals quite well.

Note: Contemporaneous conditional independence 75> independence.
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Contemporaneous conditional independence 75> independence.

Markov Chain %@ % %@ —> —> —
Lol !

State 1 (j:) (j:) (jg) }: independent

State 2 (j;) (j:) }: independent
! !

Observed (o) G (o) (o) (42) Phdependent

e Markov chain = serial dependence,

e Unequal state—dependent distributions = contemporaneous dependence.
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Selected estimates
for all larvae:

Von Mises parameter k

wild less dispersed in both states

Gamma distribution mean

wild faster in both states

Stationary dist. of Markov Chain

wild spend less time in state 1
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State 1

turning /head—swinging
large cods, low speed

State 2

speedy linear locomotion

Small cods, high Speed

K1 Ko
wild wild
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Wind direction at Koeberg

FPelindaha East
walindaba)
elindaha g Pretoria
Johanneshury Circle
F acilities
(Advena)

SOUTH O

AFRICA

@vastrap

Data:

Period:
Length:
Observations:
Code:
Objective:

4
M

Copyright B 1999 honterey Insbtute of 0 . 400 Kilometers
Intzmational Studies. Al ights resered. 0 A00 Miles

Average hourly wind direction
01.05.1985 — 30.04.1989

35064 observations

One of 16 compass directions

N=1, NNE=2, ..., NNW=16
One-hour-ahead forecast of direction
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Models for the hourly series

0. First-order Markov chain — baseline model
1. Categorical-HMM
2. Seasonal categorical-HMM

Models for the daily series

0. First-order Markov chain — baseline model
1. Categorical-HMM
2. Circular—valued HMM

Models for change in direction

1. Von-Mises—HMM
2. Von-Mises—HMM with wind speed as covariate - version 1
3. Von-Mises—HMM with wind speed as covariate - version 2

Cherry Bud Workshop, Keio University, 28 March 2006

~31-




Categorical-HMM and its likelihood function

Observations:  a; = (a1, G42, - - -, At16)
here q.. — 1 if the wind direction is j at time ¢,
W 97 0 if it isn't.

Example a; = (1,0,0,...,0) indicates j = 1 (North) at time .

]

State—dependent distribution: Pr(direction j | state i) = m;;

Likelihood: 6T'P(ay)T' P(azx)T' P(a3)---T' P(ar)1’

where P(a;) is a diagonal matrix with i—th entry

— — 7\ — at1 at2 . atie
Pr(A; = ay| Cy = i) = n{'% 7y} 164
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Estimates for two-state categorical-HMM

State—dependent model:

Pr(A, =j| C; = 1) :{ i1

52,

State 1

P 0.964 0.036 057
~\ 0.031 0.969 ]

03 -
02

oA

5 _ [ 0462 01
—\ 0.538 00 -

N NE E SE S SW W NwW N

State 2

0.5
04
03
02
0.1

0.0
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for:=1
for 1 = 2

“North—westerly”

“South—easterly”
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WANG N AITECHIONN AT INGEELZ = IOy SErEs
Three-state model — state-dependent distributions
State 1
05
0.4
03

02 “North—westerly”

Nl= == EEEEEE

State 2

0.5

0.4

0.3
0.z

01

o0 -

N B E s E W “South—easterly”
State 2 is split in two.

0.5
0.4
0.3

0.2

01

0.0 -
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Wind direction by time of day
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Wind direction by month (23:00-24:00)

January February March April May June

N N N N
W%E W%EW%EW%EW%EW E
s s s s s s

July August September October November December
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Seasonal categorical-HMM

Pr(A;, =j| C, =1) =

&

State—dependent model:

Y12(t)
Yoo(t)

Y11 (%)
Yo1(t)

Transition probabilities
are functions of time.

: 27t . (27t
logit(y12(t)) = a1 + bicos (2—1) + c1sin (%) + dicos (
2 2
logit(7y21(t)) = a2 + bacos (2i4t> + cosin (2i4t> + dacos (

\ . 4 \ .

fori=1
for 1 =2

41,
52,

{

)

27t

8766

> + e1sin <
) + essin (

27t

8766

Vs

daily cycle
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~

annual cycle
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Seasonal categorical-HMM — estimates

: . w1, fori=1

State—dependent model: Pr(X; =j| C¢=1) = { It :
T, fori =2
Parameters of I'(t) g Direction 71 ;52
. . 1 N 0.127  0.000
=1 1 =2 2 NNE 0.047 0.000
a; -3.349 -3.523 3 NE 0.057 0.002
b, 0197 -0.272 4 ENE  0.027  0.040
& -0.695  0.801 6 BSE 0001 0076
d; -0.208  0.082 7 SE  0.001 0.179
e -0.401  -0.089 8 SSE  0.000 0.317
9 S 0.001 0.183
General pattern is very similar to ' 1(1) Sgg 882; 85;%
that of the simple two—state HMM. 19 WSW  0.114  0.003
13 W 0.145 0.000
14 WNW 0.128 0.000
15 NW 0.135 0.000
16 NNW  0.147 0.000
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Model selection criteria

model #(pars) -log(lk)/1000 AIC/1000 BIC/1000
Markov chain 240 48 97 99
2-state HMM 32 76 152 152
3-state HMM 51 70 139 140
2-state seasonal HMM 40 76 151 152

e The HMM models don’t even come close to beating the
first—order Markov chain. (Sad but true.)

e Reason: The HMMs don’t take previous direction into account.

Cherry Bud Workshop, Keio University, 28 March 2006 -39 -




Circular-valued HMM

Regard the observations as interval-censored von Mises random variables.

27 (j—0.5)
16

Pr(direction = j) = 7; = fom(a)da, j=1,...16.

27 (j+0.5)
16

Observed values ~ Multinomial(1,71, 7o, ..., 7T16)

The 16 values 7; are determined by the 2 parameters 0 and «.

Two-state von Mises(6;, x;)-HMM

State 1: m™1,7T215...,7161 are determined by 01,/11
State 2: T12,722,...,T162 A€ determined by 02, K92

Cherry Bud Workshop, Keio University, 28 March 2006
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Observed directions and fitted mixtures

0.3 0.3

m =1 m=2
0.2 7 02 - f\
0.1 - 0.1 -
00 - _’_‘_‘7 00 _

N NE E SE S SW W NW N NE E SE S SwW w NW

0.3 0.3 7

m=3 m=4
0.2 /\ 0.2 ,\

0.0 - 00 -
N NE E SE S Sw W Nw N NE E SE S SW W NwW

Hour 23:00 — 24:00
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0.3

0.2

0.1

0.0 -

0.3 7

0.2

0.1 7

Estimated (scaled) state-dependent densities in 4-state model

prob=045 7 m=2

/‘\ 0.2 7

prob =0.12

o]

00 -

S SwW W NwW

prob = 0.20

0.1
H—m—c 0o Rcl_l_l_ |
N NE E SE S SW W NwW N NE E SE
_ _ 0.3 7 _
m=3 prob = 0.23 m=4
0.2
l - 0.1
=11 E=unlll 00
N NE E SE S SW W NwW N NE E SE

Hour 23:00 — 24:00
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S Sw W NwW
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Daily series

Average direction over the hour 23:00 — 24:00 (1461 observations).

model #(pars) -log(lk)/10 AIC/10 BIC/10
1-state von Mises-HMM 2 393 787 788
2-state von Mises-HMM 6 361 723 726
3-state von Mises-HMM 12 354 710 716
4-state von Mises-HMM 20 349 701 712
2-state multinomial-HMM 32 346 699 716
Saturated Markov chain 240 329 707 833

The von Misess-HMM is not much better here. (Nice try, but no cigar.)

General point:

This example illustrates that one can fit HMMs when

e the observations are interval-censored,
e some observations are interval-censored, some are not,
e some observations are missing (at random) — extreme censoring!

Cherry Bud Workshop, Keio University, 28 March 2006
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HMM with speed as covariate

Observations: hourly speed (cm/sec) and direction (degrees).

New objective: model the change of direction.

Scatterplot of lagged speed vs. changes of direction

3_
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©
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Smooth fitted to:

— positive changes only

— all changes of direction

negative changes only

[ [ [
0 500 1000

lagged speed (cm/sec)

Cherry Bud Workshop, Keio University, 28 March 2006

[
1500

[
2000

- 44 -




Version 1: Speed affects the Markov Chain

High speed makes the transitions between states less likely.

Covariate (\/speed) @ @ @
State process »@_;’_y@_;

State-dependent process
(change of direction)
Model: von Mises-HMM with transition probability matrix:

[(si_1) = ( y1(si-1)  72(se-1) )

’721(815—1) ’722(815—1)

e’

with 7, (s) = = and logT;; = m4/s, i,7=1,2,...

eTik
k=1

Cherry Bud Workshop, Keio University, 28 March 2006
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Version 2: Speed affects the von-Mises dispersion parameter

High speed reduces the dispersion.

State process —P’—V@—V @—V

—>
State-dependent process @

Covariate (y/speed ) ‘ @ @

Model: von Mises-HMM with speed-dependent dispersion paremeters

State 1: At ~ VM(Ql, /{1), K1 = 60401+0411\/8t—1
State 2: At ~/ VM(@Q, /432)’ Ko = eo‘02‘|‘a12\/3t—1

Cherry Bud Workshop, Keio University, 28 March 2006
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Model comparison

model  covariate m  #(pars) -log(lk)/100 AIC/100 BIC/100

1 none 1 2 218 436 437
2 6 86 172 173

3 12 70 140 141

4 20 68 136 137

2 Speed affects the 2 8 68 136 136
Markov chain 3 15 56 112 113

4 25 54 108 110

3 Speed affects the 1 3 104 209 209
dispersion parameter 2 5 52 104 104

3 7 50 101 101

e Models for change of direction lead to much more accurate

one-hour-ahead forecasts than models for direction.

e Forecasts improve if one uses speed as a covariate.

e Model 3 has a nasty likelihood surface — estimation is tricky!
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Model 3: State-dependent von Mises densities for four (lagged) wind speeds
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Using speed as a covariate improves the forecasts substantially.
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Circular-valued HMMs

e The circular nature of the data presents no problems.
e Covariates can be included in different ways.

e Censored and missing observations can be dealt with precisely.

e They can model — multivariate series,
— bivariate linear-valued and circular-valued series,
— series with multimodal marginal distributions.

e They are satisfyingly flexible.

Of course, like any other models, they don’t fit everything!

Iloilo aligatoh gozaimaschta!
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