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« Building models from data »

|. Data: motion computation, motion textures
II. Models:  mixed-state auto-models

1. Moregenerally: multi-parameter auto-models
V. Back tothe data : some experiments



|. Data : motion computation from videos

* Current challenges of video analysisin computer vision
> Automated analysis via « dynamic content »
- Applications: videosindexing, video summarizing ...

F————




a). Motion computation

°* Happening: dynamic content conveys much information

* Goal: Representation & modelisation of motion mesures

v to cope with alarge diversity of dynamic contents from videos
v suited for detection, classification or recognition of dynamic contents

*** Warning : Quite almost all sample images are under copyright ***



More details

* |(p,t) = intensity value at pixel p and timet
* Avideo={l(pt), pUS t=1,...,T}
* Unkown: vector field of motion {v(p,t)}

v Optical flow: only part of information recovered
v Inverse problem with missing information: non unique theory

v Here: we choose the measurable, normal projections
v (p)

oy Li(p) YV I(p) V VI(p)
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b). Scales of motions

* 1. Global motions
v Camera, zoom, ....
v Modd: parametric 2D polynomials

- Standard choice : a1 + ar>x + a3y
Wg(p) — ( aq + asx + agy >

with p = (zv,y) e 0= (&1,&2,&3,&4,&5,@6)

v References:

Odobez JM. and P. Bouthemy, 1995. |IEEE. Trans. Pattern Analysis Mach.
Intelligency.
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Scale of motions

2. Local motions (scene depedent)

Approximation by locally smoothing the normal projections {v_n(p,t)}
[Irani et al. 92], [Odobez et Bouthemy 94]

S IVI(g, D)2 - [vi (g, 1)

_ q€F (p)
vres(p,t) = 1
NJ—“(p) ek (G%’La Wquf(p) ||VI(Q7t)||2>
with DFDg (p)
res 1) = — t
) = TG,

DFDg (p) = I(p + wg,(p),t + 1) — I(p, 1)



Local motions

Example:
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c). Focus: modelling of motion textures

v Images as well as motions are spatially homogeneous
v Modelling of spatial dependence
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Motion textures. examples

Aims:;
v gpatial modelling of these motion measurements
v Possibly: sptio-temporal modelisation (dynamic spatial models)
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V. Experiements with Gaussian mixed-state auto-models

° |sotropy & anisotropy

v Trees seguence

v Seawaves sequence

S— —— s

Modele complet a b c1 co
-5.8049 | 3.0435 | 3.0568 | 2.9541
Modele isotrope a b c
-5.7813 | 3.0441 | 3.0000
Modele complet a b c1 co
-7.9412 | 0.3697 | 5.7920 | 1.4219
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Experiments:

* Spatial stationarity

v Sea-Waves sequence
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a b c1 co
B -9.30205 0.29694 5.87898 2.13676
Bo -9.39952 0.32878 5.46864 2.72478
B3 -9.04816 0.34152 7.23150 1.14051
By -9.60199 0.32897 7.33581 1.36095
Bs -8.91001 0.37100 5.65410 2.04668
Bg -7.35726 0.39963 5.74128 1.10768
B7 -7.57434 0.43946 5.24632 1.71629
Bg -7.47818 0.58794 5.08877 1.85792
Bg -8.30468 0.36271 6.36993 1.18090
Big -7.61364 0.30174 6.41590 0.70918
Bi11 -8.86299 0.28625 7.59329 0.65160
B2 -8.87836 0.32870 5.83942 1.85034
\ Ecart-type \ 0.8220 0.0830 0.8403 0.6203 \
a b c1 co
B3 -10.02623 0.36189 4.76893 3.48537
B> -8.39303 0.44575 5.71362 1.93230
B3 -7.10429 0.69088 3.51732 3.46525
By -5.69048 0.87768 3.22945 2.40213
Bs 17.13015 0.11962 21.95125 10.82028
Bg 8.17958 0.11417 13.38513 7.91897
By 8.27053 0.10669 13.18007 8.31032
Bg 8.18484 0.12814 13.56948 8.01166
Bg -11.78903 0.11195 9.79198 1.06964
Big 8.04156 0.07512 13.68093 7.89088
B11 -3.50982 0.09938 11.51522 -4.15503
Bjio -12.91980 0.11302 4.74714 5.13039
‘ Ecart-type | 10.1118 0.2690 5.6741 4.1530 |
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Some conclusions

* Random field modelling for motion measurementsis just starting.

* Mixed-state observations are freguent,
> Need adapted solutions.  time series, Markov chains for these ?
> Can avoid the use of a hidden process

* New: multi-parameter auto-models

- |n particular, provide arigourous solution for mixed-state
observations

* Further researches:
> An estimation theory
> Dynamic mixed-state auto-models:

v Motion measurements, daily rainfall data, ...

15



Motion texture modelling and multi-parameter auo-models
(Part I1.)

Jian-feng YAaO

Joint works with P. BOUTHEMY , G. PIRIOU and C. HARDOUIN

Cherry Bud Workshop 2006, Building Models from Data



Outline Of Part II.

[I. Motion measurements are mixed
I1l. More generally: multi-parameter auto-models
IV. Back to the data: some experiments



Measurements from motion textures: histograms

Top to bottom, and left to right:  grass, foliage, trees and sea-waves.



Measurements from motion textures: histograms

Top to bottom, and left to right:  grass, foliage, trees and sea-waves.

Observations are mixed :
e A prominent peak at the origin:
— regions without motion
e a continuous component

—— actual motion in the images



Problem :

e Spatial model for motion mixed-state motion measurements



Problem :

e Spatial model for motion mixed-state motion measurements

e Solved as a Gaussian specification of a general setting



Conditionally specified models

Construction of a random field

e Random system {X;,i € S} , S={1,...,n}
e Its probability distribution p(dx) to be constructed
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Conditionally specified models

Construction of a random field

e Random system {X;,i € S} , S={1,...,n}
e Its probability distribution p(dx) to be constructed

e For a site i, let

pi(xil-) = pi(xilx;, j # i) = p.dfof Xi | {X; =x,j # i},

e 2D-Markovian construction:

@ Specify the family {ui(xi|-)} ;
® Check their consistency



Besag's auto-models (1974)

e Assume the positivity condition,

u(dx) = P(x)dx , P(x) = Z 'exp Q(x) ,



Besag's auto-models (1974)

e Assume the positivity condition,

u(dx) = P(x)dx , P(x) = Z 'exp Q(x) ,

e Construction based on:
[A]  The spatial dependence is pairwise only

QM) = Gi(x) + >, Gjlxi,x) -
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Besag's auto-models (1974)

e Assume the positivity condition,

u(dx) = P(x)dx , P(x) = Z 'exp Q(x) ,

e Construction based on:
[A]  The spatial dependence is pairwise only

Q) =Gl + Y Gj(xix) -
i€s {ij}
[B]  For each site i, the conditional distribution p;(x;|-) belongs to a one
parameter exponential family:

log pi(xi|-) = Ai(1)Bi(x;) + Ci(x;) + Di() , Ai(*) € R, Bj(x;) € R.



Theorem

[Besag, 1974] Assume the random field probability distribution u and its
energy function Q(x) satisfy Conditions [A]-[B]. Then, there are for all
i,j €S, i #j, afamily of real constants a; € R and (3 such that

A() =i+ > BiBi(x) - (1)
i
Consequently the set of potentials is given by
Gi(x) = aiBi(x;) + Gi(xi) , (2)
Gij(xi, x;) = BijBi(xi) Bi(x;) - (3)

o “Nicely” applied to Gaussian, exponential, Gamma and Poisson schemes
auto-normal, auto-exponential, auto-Poisson models



o Unfortunately, this result inapplicable to mixed-state datal

e Reason: motion measurements belong to a exponential family with more
parameters!

Need extensions!



Mixed-state distributions

A Gaussian mixed-state distribution

e A model Z for one motion measure:
e With probability p, Z =0
o With probability 1 — p,  Z = |N(0,0?)| with density
_ 2 2
e 27 =g, (0)e ™, s=(202)"L




Mixed-state distributions

A Gaussian mixed-state distribution

e A model Z for one motion measure:
e With probability p, Z =0
o With probability 1 — p,  Z = |N(0,0?)| with density

2
B() = e 5 —m@e >, 5= (207
e Take the reference measure on E = {0} + (0, 00) :

m(dx) = do(dx) + \(dx) ,

where dp = Dirac measure, )\ = Lebesgue



Mixed-state distributions

A Gaussian mixed-state distribution

e A model Z for one motion measure:
e With probability p, Z =0
e With probability 1 — p, Z = |N(0, o?)| with density

2
gs(x) = ﬁeiﬁ = gs(O)efsxz 5 (20_2)71'
e Take the reference measure on E = {0} + (0, c0) :
m(dx) = do(dx) + \(dx) ,
where dp = Dirac measure, )\ = Lebesgue

e Therefore, Z has a density w.r.t. m(dx),

fo(x) = pd(x) + (1 = p)d" (x)gs(x).



Exponential family with 2 parameters!

Rewriting:
fa(x) = po(x)+(1—p)d*(x)gs(x)
* P 2
= exp {—5 (x) log A= P& sx“ +logp
= exp[(6, B(x)) + log p]
with

6= (61,6,)7 — (lg%) L B(x) = (6°(x), ) .



Exponential family with 2 parameters!

Rewriting:
fa(x) = po(x)+(1—p)d*(x)gs(x)
* P 2
= exp {—5 (x) log A= P& sx“ +logp
= exp[(6, B(x)) + log p]
with

6= (61,6,)7 — (lg%) L B(x) = (6°(x), ) .

e Name: positive mixed-state Gaussian distribution



[1l. Multi-parameters auto-models

Assume

e The positivity condition for the random field
u(dx) = P(x)dx , P(x) = Z "exp Q(x) .
[A]  The spatial dependence is pairwise only
QM) =D Gi(x)+ > Gi(xi, %) -
i€s {i,j}

[B2]  For each site i, the conditional distribution w;(x;|-) belongs to a
multi-parameter exponential family:

log 11i(xi|-) = (Ai("), Bi(xi)) + Gi(x:) + Di(-) , Ai(*) € R?, Bi(x;) € RY.



[1l. Multi-parameters auto-models

Assume

e The positivity condition for the random field
u(dx) = P(x)dx , P(x) = Z "exp Q(x) .

[A]  The spatial dependence is pairwise only

Q(x) = Z Gi(xi) + Z Gij(xi, xj) -

i€S {ij}

[B2]  For each site i, the conditional distribution w;(x;|-) belongs to a
multi-parameter exponential family:

log 11i(xi|-) = (Ai("), Bi(xi)) + Gi(x:) + Di(-) , Ai(*) € R?, Bi(x;) € RY.

[C]  The family of sufficient statistics {B(x;)} is regular in the sense that

for all i € S, Span{Bi(x;),x € E} =R?.



Multi-parameters auto-models

Theorem

[Hardouin and Y.,2005] Assume that the random field probability distribution p
of (6) and its energy function Q(x) satisfy Conditions [A]-[B2]-[C]. Then,
there are for all i,j € S, i # j, a family of vectors a; € R? and a family of

d x d matrices (j satisfying Bij = ﬁJT such that

Ai()=ai+ Y BiBi(x) . (4)
J#i
Consequently the set of potentials is given by
Gi(xi) = (ai, Bi(xi)) + Gi(xi) , (5)
Gii(xi, ) = B (x1)B5Bi(x) - (6)

e Such a model is called a multi-parameter auto-model

e Condition [C] is specific to the multi-parameter case



IV. Back to the data

Mixed-state auto-models for motion textures
e Start by assuming
pi(xi|-) € family of mixed-state Gaussian {fy,.)(xi)}

where
0i(-) = 0i(xj,j #1).
That is,

log ui(xi-) = (6:(-), B(x)) +log pi(-) ,  B(x) = (67(x), —x*).



IV. Back to motion textures

Mixed-state auto-models for motion textures

e by the Theorem, there are a family of vectors o = (a;, b;) € R? and 2 x 2

matrices
g, = (G i
U/ * .. )
d’J €ij

satisfying [ = Bj,-T, such that
0i(-) = @i + Y BiB(x) -
J#i

Moreover, the associated energy function is given by

Q(x, .- -, ,,):Z[a(S Xi fbx,]JrZ —x?)B(5" (%), —x2) T .

i€eS {iJj}



Back to the data

A simple specification with the 4NN system

e Sites S ={1,...,n} = [1,M] x [1, N]

e each i has 4 neighbours

{ie=1i41(1,0),io =i—(1,0),in =17+ (0,1),is =i —(0,1)}
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e assume also space homogeneity, spatial cooperation
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e assume also space homogeneity, spatial cooperation

e The model reduced to 4 parameters

a, b, ca, @



Back to the data

A simple specification with the 4NN system

e Sites S ={1,...,n} = [1,M] x [1, N]

e each i has 4 neighbours

{ie=1i41(1,0),io =i—(1,0),in =17+ (0,1),is =i —(0,1)}

e assume also space homogeneity, spatial cooperation

The model reduced to 4 parameters

a, b, ca, @

Estimation by the pseudo-likelihood method Besag, (1975); Guyon (1989).



