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Plan

« Building models from data » 

I.     Data :        motion computation,  motion textures 

II.    Models :      mixed-state auto-models

III.  More generally:  multi-parameter auto-models 

IV.  Back to the data : some experiments
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I. Data : motion computation from videos

● Current challenges of video analysis in computer vision
➢ Automated analysis via «  dynamic content  » 
➢ Applications:  videos indexing, video summarizing  ...
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a). Motion computation  

● Happening :  dynamic content conveys much information
● Goal:  Representation &  modelisation of motion mesures   

✔ to cope with a large diversity of dynamic contents from videos 
✔ suited for detection, classification or recognition of dynamic contents 

*** Warning  : Quite almost all sample images are under copyright  *** 
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More details  

● I(p,t) = intensity value at pixel p and time t
● A video = {I(p,t), p∈S,  t=1,...,T}
● Unkown:  vector field of motion {v(p,t)}

✔ Optical flow: only part of information recovered 
✔ Inverse problem with missing information: non unique theory
✔ Here: we choose the measurable, normal projections
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b).  Scales of motions 

● 1.  Global motions
✔ Camera, zoom, ....
✔ Model:   parametric 2D polynomials  

➢ Standard choice :  

with                         et

✔ References:
Odobez J.M.  and P. Bouthemy, 1995.  IEEE. Trans. Pattern Analysis  Mach. 

Intelligency. 
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Scale of motions

2.  Local motions (scene depedent) 

Approximation by locally smoothing the normal projections  {v_n(p,t)}
 [Irani et al. 92], [Odobez et Bouthemy 94]

with
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Local motions

Example:
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c). Focus:  modelling of motion textures 

✔ Images as well as motions are spatially homogeneous 
✔ Modelling of spatial dependence 
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Motion textures: examples

➢

Aims:  
✔ spatial modelling of these motion measurements 
✔ Possibly: sptio-temporal modelisation (dynamic spatial models) 
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IV. Experiements with Gaussian mixed-state auto-models  

● Isotropy &  anisotropy

✔   Trees  sequence

✔   Sea-waves   sequence
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● Spatial stationarity 

✔ Sea-Waves  sequence

✔ River sequence 

Experiments:
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Some conclusions

● Random field  modelling for motion measurements is just starting.
● Mixed-state observations are  frequent, 

➢ Need adapted solutions:    time series, Markov chains for these ?
➢ Can avoid the use of a hidden process

● New: multi-parameter auto-models 
➢ In particular, provide a rigourous solution for mixed-state 

observations
● Further researches: 

➢ An estimation theory 
➢ Dynamic mixed-state  auto-models :   

✔ Motion measurements,      daily rainfall data , ...
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Outline Of Part II.

II. Motion measurements are mixed

III. More generally: multi-parameter auto-models

IV. Back to the data: some experiments



Measurements from motion textures: histograms

0 1 2 3 4 5 6 7 8
0

2

4

6

8

10

12

14

16

18
x 10

4

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

4

0 1 2 3 4 5 6 7 8
0

2

4

6

8

10

12
x 10

4

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

Top to bottom, and left to right: grass, foliage, trees and sea-waves.

Observations are mixed :

• A prominent peak at the origin:

−→ regions without motion

• a continuous component

−→ actual motion in the images



Measurements from motion textures: histograms
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Problem :

• Spatial model for motion mixed-state motion measurements

• Solved as a Gaussian specification of a general setting
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Conditionally specified models

Construction of a random field

• Random system {Xi , i ∈ S} , S = {1, . . . , n}
• Its probability distribution µ(dx) to be constructed

• For a site i , let

µi (xi |·) = µi (xi |xj , j 6= i) = p.d.f of Xi | {Xj = xj , j 6= i} ,

• 2D-Markovian construction:
1 Specify the family {µi (xi |·)} ;
2 Check their consistency
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Besag’s auto-models (1974)

• Assume the positivity condition,

µ(dx) = P(x)dx , P(x) = Z−1 expQ(x) ,

• Construction based on:
[A] The spatial dependence is pairwise only

Q(x) =
X
i∈S

Gi (xi ) +
X
{i,j}

Gij (xi , xj ) .

[B] For each site i , the conditional distribution µi (xi |·) belongs to a one
parameter exponential family:

log µi (xi |·) = Ai (·)Bi (xi ) + Ci (xi ) + Di (·) , Ai (·) ∈ R, Bi (xi ) ∈ R.
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Theorem

[Besag, 1974] Assume the random field probability distribution µ and its
energy function Q(x) satisfy Conditions [A]-[B]. Then, there are for all
i , j ∈ S , i 6= j , a family of real constants αi ∈ R and βij such that

Ai (·) = αi +
X
j 6=i

βijBj(xj) . (1)

Consequently the set of potentials is given by

Gi (xi ) = αiBi (xi ) + Ci (xi ) , (2)

Gij(xi , xj) = βijBi (xi )Bj(xj) . (3)

• “Nicely” applied to Gaussian, exponential, Gamma and Poisson schemes
auto-normal, auto-exponential, auto-Poisson models



• Unfortunately, this result inapplicable to mixed-state data!

• Reason: motion measurements belong to a exponential family with more
parameters!

Need extensions!



Mixed-state distributions

A Gaussian mixed-state distribution

• A model Z for one motion measure:
• With probability p, Z = 0
• With probability 1− p, Z = |N (0, σ2)| with density

gs(x) =
2

σ
√

2π
e
− x2

2σ2 = gs(0)e
−sx2

, s = (2σ2)−1.

• Take the reference measure on E = {0}+ (0,∞) :

m(dx) = δ0(dx) + λ(dx) ,

where δ0 = Dirac measure, λ = Lebesgue

• Therefore, Z has a density w.r.t. m(dx),

fθ(x) = pδ(x) + (1− p)δ∗(x)gs(x).
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Exponential family with 2 parameters!

Rewriting:

fθ(x) = pδ(x) + (1− p)δ∗(x)gs(x)

= exp

»
−δ∗(x) log

p

(1− p)gs(0)
− sx2 + log p

–
= exp [〈θ, B(x)〉+ log p]

with

θ = (θ1, θ2)
T =

„
log

(1− p)gs(0)

p
, s

«T

, B(x) = (δ∗(x),−x2)T .

• Name: positive mixed-state Gaussian distribution
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III. Multi-parameters auto-models

Assume

• The positivity condition for the random field

µ(dx) = P(x)dx , P(x) = Z−1 expQ(x) .

[A] The spatial dependence is pairwise only

Q(x) =
X
i∈S

Gi (xi ) +
X
{i,j}

Gij(xi , xj) .

[B2] For each site i , the conditional distribution µi (xi |·) belongs to a
multi-parameter exponential family:

log µi (xi |·) = 〈Ai (·), Bi (xi )〉+ Ci (xi ) + Di (·) , Ai (·) ∈ Rd , Bi (xi ) ∈ Rd .

[C] The family of sufficient statistics {B(xi )} is regular in the sense that

for all i ∈ S , Span{Bi (xi ), xi ∈ E} = Rd .
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Multi-parameters auto-models

Theorem

[Hardouin and Y.,2005] Assume that the random field probability distribution µ
of (6) and its energy function Q(x) satisfy Conditions [A]-[B2]-[C]. Then,
there are for all i , j ∈ S , i 6= j , a family of vectors αi ∈ Rd and a family of
d × d matrices βij satisfying βij = βT

ji , such that

Ai (·) = αi +
X
j 6=i

βijBj(xj) . (4)

Consequently the set of potentials is given by

Gi (xi ) = 〈αi , Bi (xi )〉+ Ci (xi ) , (5)

Gij(xi , xj) = BT
i (xi )βijBj(xj) . (6)

• Such a model is called a multi-parameter auto-model

• Condition [C] is specific to the multi-parameter case



IV. Back to the data

Mixed-state auto-models for motion textures

• Start by assuming

µi (xi |·) ∈ family of mixed-state Gaussian {fθi (·)(xi )}

where
θi (·) = θi (xj , j 6= i).

That is,

log µi (xi |·) = 〈θi (·), B(xi )〉+ log pi (·) , B(x) = (δ∗(x),−x2).



IV. Back to motion textures

Mixed-state auto-models for motion textures

• by the Theorem, there are a family of vectors αi = (ai , bi ) ∈ R2 and 2× 2
matrices

βij =

„
cij dij

d∗ij eij

«
,

satisfying βij = βT
ji , such that

θi (·) = αi +
X
j 6=i

βijB(xj) .

Moreover, the associated energy function is given by

Q(x1, . . . , xn) =
X
i∈S

h
aiδ

∗(xi )− bix
2
i

i
+

X
{i,j}

(δ∗(xi ),−x2
i )βij(δ

∗(xj),−x2
j )T .



Back to the data

A simple specification with the 4NN system

• Sites S = {1, . . . , n} = [1, M]× [1, N]

• each i has 4 neighbours

{ie = i + (1, 0), io = i − (1, 0), in = i + (0, 1), is = i − (0, 1)}

• assume also space homogeneity, spatial cooperation

• The model reduced to 4 parameters

a, b, c1, c2

• Estimation by the pseudo-likelihood method Besag, (1975); Guyon (1989).
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