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1. Background

Part of a research programme on Climate-related risks for energy

supply and demand.

Aims: To construct suitable forecasting models of rainfall in hydro

catchments which

• reliably estimate rainfall–related risk over forecast horizons of

months to years;

• provide realistic scenarios of future rainfall variability over di-

verse spatial and temporal scales;

• account for seasonality, ENSO, IPO and other external forc-

ings.



Starting point

Wilks (1998) multisite daily rainfall generation model used within

NIWA on an operational basis over the last 5 years.

This model has been

• reformulated as a (partially) hidden Markov model (HMM),

rather than a simulation model;

• embedded within a more general HMM framework and its

stochastic properties determined;

• fitted to selected New Zealand rainfall data using suitable sta-

tistical estimation procedures;

• evaluated and further potential improvements identified.



2. HMM model framework

Consider a small network of K rainfall stations and observations

Rt(k) = accumulated rainfall over day t

at rainfall station k.

Associate a local rainfall state St(k) with each measurement Rt(k)

where

• St(k) =


0 (Dry at time t)
1 (Light rain at time t)
2 (Heavy rain at time t)

• the St(k) are hidden with the exception of the dry state.

Only the rainfall amounts Rt(k) are observed.



Key assumptions:

• Rainfall Rt = (Rt(1), . . . , Rt(K)) on day t depends only on the
hidden states St = (St(1), . . . , St(K)) for that day; i.e.

P (r ≤ Rt < r + dr|S) = P (r ≤ Rt < r + dr|St)
where S = (S1, . . . ,ST ).

• The Rt are independent given S.

Commonly used (e.g. Katz (1977), Zucchini and Guttorp (1991),
Wilks (1998) etc).

Advantages: Can separately model the

• distribution of rainfall amounts Rt(k) within rainfall states;

• dynamics of rainfall patterns (persistence) through the St(k).



2.1 A conditional model for rainfall Rt(k)

If St(k) is known, assume that

Rt(k) = βSt(k)(k)Xt(k)

where the Xt(k) are temporally independent exponentials with

E(Xt(k)) = 1 and β0(k) = 0 < β1(k) < β2(k).

If St(k) is unknown, the unconditional distribution of Rt(k) is a

mixture of two exponentials with a point mass at 0.

This simple parsimonious specification was adopted by Wilks (1998),

but other distributions could be used (e.g. lognormal, gamma).



Model contemporaneous spatial dependence of the Xt(k) by

Xt(k) = − log(Φ(Vt(k))

where Φ(.) is the standard Gaussian cdf, the Vt = (Vt(1), . . . , Vt(K))
are iid and

Vt ∼ N(0,Ψ).

The correlation matrix Ψ determines the degree of spatial depen-
dence between rainfall amounts. It does not depend on the local
weather state St(k).

This specification

• was proposed by Wilks (1998);

• is consistent with exponentials at each location;

• builds a relatively flexible joint distribution from the exponen-
tial marginals using a meta–Gaussian copula.



2.2 A model for rainfall states St(k)

At each location St(k) is assumed to follow a stationary 3–state

Markov chain with

P (St(k) = j|St−1(k) = i) = Pij(k) (i, j = 0,1,2).

The transition probability matrix P(k) is parameterised as

P(k) =

 p0(k) α0(k)(1− p0(k)) (1− α0(k))(1− p0(k))
p1(k) α1(k)(1− p1(k)) (1− α1(k))(1− p1(k))
p2(k) α2(k)(1− p2(k)) (1− α2(k))(1− p2(k))



where the probabilities pi(k), αi(k) satisfy

αi(k) = P (St(k) = 1|St(k) > 0, St−1(k) = i)

pi(k) = P (St(k) = 0|St−1(k) = i).



If St−1(k) = i then the outcome of St(k) can be represented by

St−1(k) = i

pi(k)

1− pi(k)

Dry St(k) = 0

Wet

αi(k)

1− αi(k)

Light rain St(k) = 1

Heavy rain St(k) = 2

For each location there are 6 parameters pi(k), αi(k) (i = 0,1,2).

This structural model is more general than the Wilks model where

p1(k) = p2(k), α0(k) = α1(k) = α2(k)

and only 3 parameters are needed for each location.



Model contemporaneous spatial dependence of the St(k) by

St(k) =


0 Ut(k) ∈ (−∞, ai(k)]
1 Ut(k) ∈ (ai(k), bi(k)]
2 Ut(k) ∈ (bi(k),∞)

when St−1(k) = i with

ai(k) = Φ−1(pi(k)), bi(k) = Φ−1(pi(k) + αi(k)(1− pi(k))).

Here the Ut = (Ut(1), . . . , Ut(K)) are iid N(0,Ω), independent of

the Vt, and the correlation matrix Ω determines the degree of

spatial dependence between the St(k).

This specification, as before,

• is consistent with the (marginal) Markov chain specification;

• builds a relatively flexible joint distribution from given marginals.



Ut(k)

ai(k) 0 bi(k)

Pi0(k)

St(k) = 0

Pi1(k)

St(k) = 1

Pi2(k)

St(k) = 2

Readily simulated: If St−1(k) = i the Rt(k) are obtained by:

• generating the Gaussian Ut(k) and corresponding St(k);

• independently generating the Gaussian Vt(k) and amounts

Rt(k) = −βSt(k)(k) log(Φ(Vt(k))).



2.3 Wilks model

This is the special case where

p1(k) = p2(k), α0(k) = α1(k) = α2(k).

These imply that St−1(k) and St(k) are independent when

• St−1(k) > 0 (yesterday is wet);

• St(k) > 0 (today is wet).

Possibly too restrictive.

Wilks model is a simple Markov chain for wet and dry occurrences,

with amounts modelled as a mixture of two exponentials.



Calibration of the Wilks model begins by estimating

• p0(k), p1(k) directly from observed wet and dry transitions;

• α0(k), β1(k), β2(k) by fitting an exponential mixture to amounts.

Given these estimates, the spatial correlations

ωjk = cor(Ut(j), Ut(k)), ψjk = cor(Vt(j), Vt(k))

are backed out from

cor(It(j), It(k)), cor(Rt(j), Rt(k)).

where

It(k) =

{
0 (Rt(k) = 0)
1 (Rt(k) > 0)

= rainfall occurrence

and correlations are estimated from simulated Rt(j), Rt(k).

Computationally very intensive.



Calibration of Wilks model for January rainfall at Coleridge and Rangiora
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Left plot: cor(It(j), It(k)) as function of ω with other parameters held fixed.

Right plot: cor(Rt(j), Rt(k)) as function of ψ with other parameters held fixed.

Horizontal lines show observed sample correlations.

Restricted ML estimates were ω̃ = 0.66 and ψ̃ = 0.52.



3. Model fitting

Model fitted using maximum likelihood.

Strategy adopted.

• Use EM algorithm to explore marginal log–likelihoods (spatial

independence) to obtain a range of initial estimates.

• Starting from initial estimates, use numerical optimisation to

directly maximise the full log–likelihood.

• Fit a range of reduced dynamic models to the states St(k).

• Examine the resulting estimates, AIC values, graphical diag-

nostics, etc to assess goodness of fit.



Comments

• Takes advantage of EM’s robustness to choice of initial values.

• Likelihood values and EM depend on

γt(s) = P (St = s|R)

where R denotes available observations. Calculated using
computationally efficient recursions.

• The γt(s) are also used to identify likely rainfall states and to
estimate hidden quantities such as the stochastic mean

E(βSt|R)

and to forecast risk parameters such as

P (RT+t(k) > r|R)

where T + t denotes some future time point.



4. Results

Simulation studies show that

• full maximum likelihood (ML) performs best;

• marginal ML performs almost as well;

• both are significantly better than method of moments calibra-

tion in terms of accuracy and computational cost;

• sampling properties of ML estimators well approximated by

asymptotic theory.



New Zealand rainfall data drawn

from a small Canterbury network

of 7 rainfall stations.

Focus on Coleridge and Rangiora

rainfall for January and April over

the period 1972–1997.



Coleridge and Rangiora daily rainfall for April

Coleridge
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Upper plots: daily rainfall with green indicating points classified as heavy rain.

Lower plots: probability of heavy rain given the data.



Coleridge and Rangiora daily rainfall for April

Coleridge
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Histograms of daily rainfall on wet days with fitted exponential mixture distri-

butions superimposed.



Coleridge and Rangiora daily rainfall for April
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Histograms of dry and wet durations with fitted distributions superimposed.



Coleridge and Rangiora daily rainfall for April
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Autocorrelation functions of rainfall occurrence and amounts with fitted auto-

correlation functions superimposed.



Coleridge and Rangiora daily rainfall for April
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Cross–correlation functions of rainfall occurrence and amounts with fitted

cross–correlation functions superimposed.



Data analysis summary

• AIC rarely supports Wilks model.

• Other reduced models explored, with spatially homogeneous

parameters favoured in many cases.

• Rainfall distributions modelled reasonably well. (Statics)

• Dry durations and cross–correlations not always well–modelled.

(Dynamics)

The above suggest that further structure (time and space) is

needed to better explain the dynamics.



5. Conclusions

Wilks multisite weather generator model has been generalised to

a local weather state HMM with

• copulas used to model spatial dependence;

• efficient statistical estimation procedures.

However need to

• augment the HMM model’s dynamic structure in time and

space so that it more closely reflects the data;

• incorporate stochastic seasonality;

• account for longer–term variation (ENSO, IPO etc).


