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Business cycle theory [2]

• Important topic in macro-economics

• Periodic fluctuation is essential characteristic

• Low dimensional dynamical systems

– Stable model (Periodic point)
[Gap exists, even if dynamics look similar]

– Chaotic model

⇓

How to bridge the gap ?



Purpose [3]

Clearly recognize chaotic behavior by
unstable periodic orbits (UPOs)
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Preparation [4]

‘Chaos’: No single definition

Deterministic behavior with two properties;

• Instability

• Reccurence

→ Chaotic

⇓ Special solution
Unstable periodic solution

‘Chaos’↔UPOs

• Chaotic attractor: Infinite number of UPOs are
(densely) embedded

• Chaotic orbit: ‘UPO of infinite period’



Chaotic Analysis by UPOs [5]

Detection of UPOs: Difficult ⇒ A few studies

Background
UPO analysis of fluid turbulence
(Kawahara & Kida(2001), Kato & Yamada(2003))

Small number of UPOs (Only one or two)
⇓

Coherent structure, Turbulent statistics

Our study
Two country chaotic business cycle model

⇓
Numerically detect 1000 sorts of UPOs [using PC
cluster (40 CPUs)]

⇓
Characterize various chaotic behaviors by UPOs



Plan [6]

1. Chaotic business cycle model

2. Chaotic Analysis based on UPOs

– Regime and Regime transitions
– Statistical properties
– Growth rate of the number of UPOs

3. Summary



Two country business cycle model [7]

Skeleton of the model

• Three agents in each country

– Capitalists
– Workers
– Government with Keynesian fiscal policy

• Investment interaction between two countries

• The only difference between two countries is their
Keynesian fiscal policies

⇓

Six dimensional ODEs (i = 1, 2)

• Labor share rate ui

• Employment rate vi

• Expected rate of inflation πe
i

Mutual action parameter between countries: η
(η = 3.5: usual)



Model (Keyenes·Goodwin type) [8]

The first country [weak Keynesian policy]
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�

Yoshida & Asada (2001))



Chaotic attractor [9]

Bounded & Positive Lyapunov exponent(0.099)
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2nd country)
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Classification of typical dynamics [10]

Regime: Time period in which local maxima in u1 are
monotone increasing Regime n: Regime which has n
oscillations
Regime transition m → n: Regime m → Regime n
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Chaotic analysis by UPOs [11]

Detection

Newton-Raphson-Mees method with modification

9000 UPOs are numerically detected
⇓ Remove indistinguishable UPOs

1000 sorts of UPOs are identified

Most of UPOs with short period are covered !



UPOs with only one Regime [12]

UPOn: UPO with n oscillations making a single Regime n
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Figure: Time development of u1 along UPOn (T ≈ 25n)

Seven types of UPOs (UPO1, · · · , UPO7) are de-
tected (NO UPO8 is found)

⇓
This corresponds to the main Regimes appearing
in a chotic orbit



UPOs with several Regimes [13]

Ex)UPOn.m [composed of Regime n and Regime m]
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(Regime transition 3 � 5)

Ex)UPOn.m.l
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Regime transitions of chaos and UPOs [14]

From\To 1 2 3 4 5 6 7 8 9
1 C U C U C U
2 C U C U C U
3 C U C U C U C U C U C U
4 C U C U C U C U C U C U C U
5 C U C U C U C U C U C U C U C U
6 C U C U C U C U C U C U C U C U
7 C U C U C U C U C U C U C U C U
8 C U C U C U
9

Table
�
Regime transitions observed in a chaotic orbit

(C) and UPOs (U)

All Regime transitions in a chaotic orbit are
recognized by UPOs

Ex) Chaos: Existence of Regime transition 4→6, Regime
transition 6→8 and Regime transition 8→4

l consistent
UPO: Existence of UPO4.6.8

Ex) Chaos: Non-existence of Regime transition 8 → 8
l consistent

UPO: Non-existence of UPO8



Bifurcations of periodic orbits [15]

Change of interaction between two countries (η)
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η = 3.5 (usual)
�

UPO1, · · · , UPO7 exist
η = 2.6

�
UPO1, · · · , UPO5 exist



UPOs embedded in the attractor and chaos
(η = 2.6) [16]
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• η = 2.6
�
Regime 1 and 2 are mainly observed

↔ UPO1, · · · , UPO5 are detected.
But only UPO1, UPO2 are embedded



UPOs embedded in the attractor and chaos
(η = 3.5: Usual) [17]
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• η = 3.5
�
Regime1 · · · 7 are mainly observed

↔ UPO1 · · · 7 are embedded in the attractor

UPOs are to be embedded in the attractor
for capturing chaotic behavior



UPO2 is embedded in the attractor at var-
ious η [18]
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0 ≤ η . 2.5 : UPO2 itself becomes the attractor
⇓

UPO2 is embedded in the attractor at various η
(0 ≤ η ≤ 3.5)

⇓
UPO2 constructs the skeleton of economic behavior
at various η



Statistical property (Time average along
UPO) [19]
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Figure � Time averages of six variables along UPOs with period
T (Line: Chaotic orbit)

We can roughly estimate the time average of a chaotic
orbit by one of any UPOs



Statistical correspondence between chaotic
orbits and UPO2 [20]
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Statistics along a chaotic orbit and UPO2: Similar



Number of UPOs [21]

Topological variations of chaotic orbits can be esti-
mated by variations of UPOs
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Conclusion [22]

Two-country chaotic business cycle model

• Several characteristics of the model are captured
by various UPOs.

– Typical structure (Regime, Regime transition) of
a chaotic business cycle

– Statistical property (Time average)
– Complexity of chaos (Growth rate of number of

UPOs)

• Macroscopic character is captured by
only one of any UPOs (e.g. UPO2).

• UPO2 is still embedded in the attractor with
weaker interactions between two countries

⇓
**********************************************
UPO2 is the skeleton of the attractor over a range of
η

→ The macroscopic structure of business cycle is
not affected by the change of interaction parameter.
**********************************************



Remarks [23]

Business cycle theory

• Important topic in macro-economics

• Periodic fluctuation is essential characteristic

• Low dimensional dynamical systems

– Stable model (Periodic point)
[Gap exists, even if dynamics look similar]

– Chaotic model

Our study
Chaotic business cycle model

⇓
Characterized by unstable periodic orbits

⇓
Bridge the gap through periodic orbit

[Details ⇒ Please see our papers !]
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Future work [25]

Construct and analyze more realistic economic model
by UPOs

• Non-hyperbolic structure [Quasi-stationary state]

• ‘Multiple attractor’

• Chaotic no-attractor [Chaotic transient]

(Chian et al. (2006))

Collaboration

Let’s try UPO analyses about some chaotic model !
Please E-mail me ! ⇒saiki@ms.u-tokyo.ac.jp
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Validity of periodic orbits [A1]

Numerical error grows exponentially by time

rounding off error
�
δ = 10−16

stability exponent
�

λ = 0.03
permitted error

�
err = 10−8

Maximum value of t (tmax) satisfying

δeλt ≤ err (1)

is

tmax ≈ 613 (2)

• Chaotic orbit
�
Numerically invalid in general

• Detected periodic orbit
�
Numericaly valid

⇓
Big advantage



Numerical method for detecting unstable
periodic orbits [A2]
(Newton·Raphson·Mees method + damping)

{φt(X)}t∈R: the orbit passing through X(∈ Rn) at
t = 0 of
dx

dt
= f (x) (x ∈ Rn) (3)

Periodic is identified by the zeros of

H(X, T ) = φT (X) − X.

n + 1 unknowns: one point X
∗ + period T ∗.

Algorithm (Newton method):

∆H(X, T ) ≈ DXH(X, T )∆X +DTH(X, T )∆T

Determine ∆X and ∆T satisfying

H(X, T ) + ∆H(X, T ) = 0. (4)

Additional constraint : Modified vector ∆X is
orthogonized by the orbit;

< f (X), ∆X >= 0.

⇓ n + 1 constraints
Introducing damping coefficient m

(X ′, T ′) = (X, T ) + 2−m(∆X , ∆T )

(2−m ∼ 1/eλT (λ
�
stability exponent))



Criterion of convergence [A3]

•
∣

∣

∣
φ

T (i)(X
(i)) − X

(i)
∣

∣

∣
(Practical error)

•
∣

∣

∣
(∆X

(i), ∆T (i))
∣

∣

∣
(Absolute value of modified

vecor)

are sufficiently small (order: 10−9, 10−7)

Detecting unstable periodic orbit

More than 9000 periodic orbits are numerically de-
tected

⇓(remove overlapped orbits)
1000 sorts of UPOs



Damping coefficient [A4]
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needed to detect each periodic orbit and
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This corresponds to the fact that Floquet exponent
of periodic orbits are between 0.02 and 0.03.



Validity of periodic orbit (time step) [A5]
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Goodwin type growth cycle model [A6]

Class conflict between capitalists and labors

• Goodwin(1967)
�
continuous, conservative (stable

(center)) periodic orbit

• Desai(1973)
�
continuous, dissipative (limit cycle

�

Expected rate of inflation)

• Pohjola(1981)
�

discrete (chaos)

• Wolfstetter(1982)
�
continuous, dissipative (fixed

point, limti cycle
�

Keynes type finantial policy)

• Sportelli(1995)
�
continuous, dissipative (limit cycle

�

price rigidity)

• Yoshida & Asada(2001)
�
continuous, dissipative

(Choas
�
time lag in policy)

• Ishiyama & Saiki(2005)
�
continuous, dissipative

(Chaos
�
two countries)

Harvie(2000)
�
Empirical research (OECD ten coun-

tries)



Skelton of the model [A7]

(Agents
�
capitalists, labors � government)

Labor share rate u ≡
wL

pY

(

=
w

pa

) [

du

dt
= (ŵ − (p̂ + â))u

]

Employment rate v ≡
L

N

(

=
Y

aN

) [

dv

dt
= (Ŷ − (â + N̂))v

]

Expected rate of inflation πe

[

dπe

dt
= θ (p̂ − πe)

]

Variable
w: Nomial wage rate
L: Labor level
p: Price level
Y : Gross national output

(=Gross national income=Gross national expenditure)
N : Labor supply
[a(≡ Y/L): Labor productivity]
[p̂(≡ ṗ/p): Actual inflation rate]

Constant
α(≡ â): Technical progress rate
β(≡ N̂): Growth rate of labors
θ: Adaptive speed of worker’s expectation

• Y is effected by the mutual action between countries

• x̂ means the growth rate of x (ẋ/x)



Details of the model [A8]

Wage bargaining ŵi = fi(vi, π
e
i ),

∂fi

∂vi
> 0,

∂fi

∂πe
i

> 0,

Price fluctuation p̂i = γi(ŵi − αi),

(Elasticity coefficient γi=0.5, Technical progress rate
αi=0.02)

Output plan Ŷi = εi

(

Ii + Gi + Ci − Yi

Yi

)

,

(Output adjustment coefficient εi = 0.1)

Private investment Ii = hi(ui, uj)Yi,

∂hi

∂ui
< 0,

∂hi

∂uj
> 0, j = 1, 2, j 6= i.

Government expenses Gi = δiYi + µi(v
∗ − vi)Yi

(Income tax rate δi=2/7, Reaction coefficient of the gov-
ernment µ1 = 1.25, µ2 = 6.0)

Consumption Ci = ci

(

(1 − δi)((1 − ui)Yi + riBi) − qi
dBi

dt

)

+ (1 − δi)uiYi

(Consumption coefficient of capitalists ci=0.3)

************************

Phillips curve fi(vi, π
e
i ) = 0.1

(

1

1 − vi
− 4.8

)

+ πe
i

Investment function hi(ui, vj) = 1.5(1 − ui)
5+η(uj − ui)

3,
η > 0



Statistical value of UPO [A9]
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Figure � Time average of u1 along UPO with period T (u1) and
(0.246 + (0.052/NT )(T − 24.87NT ))

Any UPOs seem to have macroscopically similar
structure



New knowledges about the UPO analysis
[A10]

• Detection of UPO: Damping coeffiiceint is impor-
tant [General]

• Various chaotic behavior: classified by UPOs [Gen-
eral (Hyperbolic)]

• UPO sometimes becomes out of the attractor by
the change of parameter [General]

• Deformation of chaotic attractor corresponds to the
change of variations of UPOs embedded in the at-
tractor [General]

• Exponential growth rate of UPOs can be es-
timated by detected UPOs [Hyperbolic (‘Single
global structure’)]

• Statistics of UPOs with the same Poincare map
periods have smooth dependence on the period of
UPO [Hyperbolic (‘Single global structure’)]

• Statistical values of chaos are approximated by
one of any UPOs [Hyperbolic (‘Single global struc-
ture’)]

• UPO with long period does not necesarily well ap-
proximate the statistical value of chaos [General]


