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1. FACTS

e Since the beginning of the 1990s models have been proposed for
large communication networks (Internet, local area networks,...).
e (Classical queuing models for waiting and service times fail to ex-

plain typical behavior.

e There is general agreement that the process of active sources at a
given time t exhibits long range dependence. This notion only
makes sense for stationary processes.

e The integrated process (workload) is believed to be well approxi-
mated by a self-similar process (such as fractional Brownian mo-
tion, stable Lévy motion).

e Although the expected workload is growing roughly linearly through
time (such as in classical queuing networks) there are strong devi-
ations from linearity due to erratic behavior.



3

e Since work by Taqqu, Willinger, Leland,... (1993-) and others the assump-
tion of heavy tailed distributions for file sizes, transmission du-
rations, transmission rates,... has been accepted as a reasonable
working hypothesis.

e There exists rather convincing evidence that file sizes, transmission
durations, transmission rates,... have Pareto like distributions:

PX;>z)~z™%, x— 0.
e Given the stationarity of the process of active sources, « is often
found to be between 1 and 2. (infinite variance)
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FIGURE 1. Time series of transmission durations.
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FIGURE 2. Mice and elephants plots (S. Marron).




1

Hill
1.2

|

bt
i
ity

v
|

f

A

|
‘V\yd’d

M
iy
! ',/ e

JERN

Y
ral

M

" »,
RATAC
W 4

500

1500

0.20

T _n(1.3)
0.05 0.10

0.0

5000

FIGURE 3. Methods for determining a.

10000

15000




2. BASIC MODELS

e Communication networks are too complex to be understood in de-
tail.

e They are run by machines which are very fast (in contrast to human
beings) and therefore fail a lot (in contrast to human beings who
can use their brains).

e Although we do (perhaps) understand a single machine (car) and
we know that the machines’ joint behavior (Autobahn) is directed
by a protocol (traffic lights) we do not understand their interplay
(e.g. traffic jam).

e Therefore any model is nothing but a simplistic proxy to reality.

e But a “realistic” model should to some extent explain the observed
facts (self-similarity of workload, long range dependence of activity
process, heavy tailed distributions).
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2.1. Standard models for the process of active sources.
2.1.1. The ON/OFF process.

e During a transmission, a source transmits at unit rate. Otherwise,
it is silent.

e Lengths of ON and OFF periods are described by two independent
1id sequences of positive random variables.

e The ON periods have heavy tailed distribution.

® See Taqqu, Willinger, Leland,... (1993-1995), Heath, Resnick, Samorodnitsky (1998),
Mikosch, Resnick, Rootzén, Stegeman (2002).

e The activity of the network is understood as the superposition of

a large number of iid ON/OFF sources.



2.1.2. The infinite source Poisson model.

e Transmission initiations or connections of sources happen at the
points of a rate A homogeneous Poisson process

< < y<0<i<Ig< -1,

e Transmission durations are iid random variables Y;, independent
e During a transmission a source transmits at unit rate.
e The stationary process of active sources at time t

My = Zz‘eZ liri<i<riayy, t20.

e Since the points (I';,Y;) constitute a PRM(ALeb x Fy), a simple
calculation shows

v(h) = cov(My, My) = )\/hoo Fy(t)dt.
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oIf Fy(t) = L(t)t™%, a > 1, for some slowly varying L, by Kara-
mata’s theorem,
y(h) ~ (= 1) *h Fy(h), h— o0o.
e Non-summability of « for a € (1,2) is interpreted as long range

dependence. The Hurst coefficient is H = (3 — a)/2 € (0.5, 1).
e The workload process

t
A(t):/MSdS, t>0,
0

has stationary increments.

e For a € (1,2) scaling limits of (A(T't)):>¢ converge to spectrally
positive a-stable Lévy motion. (infinite variance, independent in-
crements)
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e Letting the intensity A = Ap grow sufficiently fast, scaling limits of
(A(Tt))s>0 converge to fractional Brownian motion By with Hurst
index H = (3 — «)/2 and covariance structure

cov(By(t), Br(s)) = 0.5(t*" + s — |t — s|*).

® See Mikosch, Resnick, Rootzén, Stegeman (2002).

e Fractional Brownian motion By with H € (0.5,1) inherits long
range dependence for the increment process By (h) — Bp(h — 1).

e Similar results exist for superpositions of ON/OFF processes
given the number M = M7y of superimposed processes grows suf-
ficiently fast with T

e High frequency of arrivals is generated either by increasing the
intensity A of the Poisson process or the number My of ON/OFF
sources.
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o If \p or My increase too slowly a-stable Lévy motion appears in
the limit.

3. THE POISSON CLUSTER PROCESS

e At the points I'; of a rate A homogeneous Poisson process on R the
first packet of the ith flow (ith activity) arrives.
e The ith flow of packets consists of K; packets which arrive at times

k
Yie=Ti+Sp=Li+> Xij, 0<k<K;.
j=1
o (Xir)ix are iid, (K;) are iid; (Xz), (K;), (I';) are independent.
e The counting process
N(B)=#{(i,k) 11 € Z,0<k < K, : Yy € B}
1S stationary.
eLet 0 <T) <Ty<--- bean enumeration of the points of V.
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e For statistical analyses one cannot distinguish between the arrivals
Yz’O — Fz and Y}'}a k 2 1.

e Notice: The points (I';, K;, (X;;)r) constitute a PRM(A Leb x
Fr x FP), N*, in R x N; x R*.

e and

Nab= [ ShoH+ Shew € @UMN (G k z).

3.1. How can we get long range dependence for the incre-
ments N (h,h+ 1]?
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o If var(K) < oo

/1 " (k) dh

K 1
— MBS (K —k+1) / (2 A2 —2))Fs, () de < 00,
k=1 0
for the generic renewal process S, = X1 + - - - + X}.
e Long range dependence is impossible unless var(K') = oo whatever
the distribution of X.
e This is in agreement with teletraffic measurements: Sx s large
due to a large number K.
o A weighted renewal argument Alsmeyer (1992) yields

Yv(h) ~ AN(EX)* *(a—1)"'"hP(K > h),
if P(K > z)=a"“L(x) for some o € (1,2).
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3.2. Where do the heavy tails of Sx come from?

e Sk can be large due to large K or large X.

o PIX >zx)=2“L(x), EK < co and P(K > z) = o(P(X >

z)). Then
P(Sgk >xz)~FEK P(X >1z).
e P(K > z) = 27 PL(x) for some 8 > 0, EX < oo and P(X >
z) =o(P(K > x)). Then
P(Sg > z) ~ (EX)°P(K > z).

e The assumptions are close to necessity.



17

3.3. Asymptotic results.
a.s.

e N(t) = N|0,t] satisfies the strong law of large numbers N(t)/t =
A(EK + 1), see figure.

e Scaling limits are either Brownian motion (if var(K) < 0o) or a-
stable Lévy motion (if P(K > x) is regularly varying with index
—a € (—2,—1) and EX < 00).

e This is disappointing but similar to the workload in the ON/OFF
and infinite source Poisson cases.

e One starts with long range dependent increments (if var(K) =
o0) and loses them in the limit: Lévy motion has independent
Increments.

e One even loses the notion of long range dependence in the narrow
sense: the limit has infinite variance.
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3.4. How can one overcome this problem? Mikosch and Samorod-
nitsky (2006).

e Partial answer: For a truncated cluster point process Ny|0, t] A
(K 4+ 1) with regularly varying P(K > z) with index —a €
(—2,—1), the expected arrivals ETT(LO) have to grow faster than
ne.

e Or one has to increase the intensity Ap — 0o at some rate.

3.5. Can one estimate the parameters of the model?

® Faj, Roueff, Soulier (2005) have developed wavelet estimation techniques
(local Whittle estimation of Oé). See also Hohn, Veitch, Abry (2003) for some

empirical studies.
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e For a bounded real-valued function ¥ with support [0, 1], the wavelet
coefficients are defined as

djkzg—jﬂ/ V(s — k) N(s)ds, jE€Z. ke
0

The set of available wavelet coefficients:
AN={(,k):0< Jy<ji<J,0<k<2/77 -1}
The reduced local Whittle contrast function
d?
N Jk N
W(a') =log Z o) T const .(2 — o).
(7,k)eA

e In the infinite source model Fay, Roueff, Soulier (2005) show consistency of
the local Whittle estimate under additional conditions on Jy, Ji, J
and derive rates of convergence.

e In the Poisson cluster model the method works well, see figure.
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FIGURE 7. Estimation of o from simulated processes V.




23

3.6. The distribution of the interarrival times under the
Palm measure.

e Under the Palm measure, Ty = 0 a.s. and the interarrival times
of the non-decreasing enumeration 0 < 77 < Ty < --- of the
non-negative points of NV constitute a stationary ergodic process.

e For the distribution Fj of the interarrival times under the Palm
measure, (Palm-Khintchine)

P<T1>t) = )\(EK—Fl)/OOFo(ZB)dCIS

= eXp{—/\(t—I—EK/O Fx(z)dx)}.

e After differentiation,

— . L1+ EKFx(t)

Fo(t) = PR exp{—A(zH—EK/O Fx(z)dz)}.
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e Notice: F| is nearly exponential whatever the distribution of X
and K.
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FIGURE 8. Estimation of A from UNC data by regression from log F,.
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4. SOME CONCLUSIONS

e Models for teletraffic are (too) simple. One would wish to incor-
porate effects of the protocol or the interaction between different
sources.

e At the moment no better models are availabe.

e The phenomenon of heavy-tailed distributions for file sizes, trans-
mission durations, transmission rates, etc., is a well accepted fact
and should be part of the model.

e Heavy tails give a plausible explanation of the long-range depen-
dence of the process of active sources.

e The statistics of teletraflic data depend on the models available.

e The statistics inside these models is non-trivial and needs further
efforts.

e [t would be interesting to investigate whether suitable time series
models for telecommunications can be developed.



