A Poisson cluster model for telecommunications ¹ Thomas Mikosch

University of Copenhagen Laboratory of Actuarial Mathematics Universitetsparken 5 2100 Copenhagen Denmark

www.math.ku.dk/~mikosch

Joint work with Gilles Faÿ, Barbara González-Arévalo, Gennady Samorodnitsky

¹Cherry Bud Workshop, March 27–30, 2006

1. Facts

- Since the beginning of the 1990s models have been proposed for large communication networks (Internet, local area networks,...).
- Classical queuing models for waiting and service times fail to explain typical behavior.
- There is general agreement that the process of active sources at a given time t exhibits $long\ range\ dependence$. This notion only makes sense for stationary processes.
- The integrated process (workload) is believed to be well approximated by a *self-similar* process (such as fractional Brownian motion, stable Lévy motion).
- Although the expected workload is growing roughly linearly through time (such as in classical queuing networks) there are strong deviations from linearity due to erratic behavior.

- Since work by Taqqu, Willinger, Leland,... (1993–) and others the assumption of *heavy tailed distributions* for file sizes, transmission durations, transmission rates,... has been accepted as a reasonable working hypothesis.
- There exists rather convincing evidence that file sizes, transmission durations, transmission rates,... have Pareto like distributions:

$$P(X_t > x) \approx x^{-\alpha}, \quad x \to \infty.$$

• Given the stationarity of the process of active sources, α is often found to be between 1 and 2. (infinite variance)

FIGURE 1. Time series of transmission durations.

FIGURE 2. Mice and elephants plots (S. Marron).

Figure 3. Methods for determining α .

2. Basic models

- Communication networks are too complex to be understood in detail.
- They are run by machines which are very fast (in contrast to human beings) and therefore fail a lot (in contrast to human beings who can use their brains).
- Although we do (perhaps) understand a single machine (car) and we know that the machines' joint behavior (Autobahn) is directed by a protocol (traffic lights) we do not understand their interplay (e.g. traffic jam).
- Therefore any model is nothing but a simplistic proxy to reality.
- But a "realistic" model should to some extent explain the observed facts (self-similarity of workload, long range dependence of activity process, heavy tailed distributions).

2.1. Standard models for the process of active sources.

2.1.1. The ON/OFF process.

- During a transmission, a source transmits at unit rate. Otherwise, it is silent.
- Lengths of ON and OFF periods are described by two independent iid sequences of positive random variables.
- The ON periods have heavy tailed distribution.
- See Taqqu, Willinger, Leland,... (1993-1995), Heath, Resnick, Samorodnitsky (1998), Mikosch, Resnick, Rootzén, Stegeman (2002).
- The activity of the network is understood as the superposition of a large number of iid ON/OFF sources.

- 2.1.2. The infinite source Poisson model.
 - Transmission initiations or connections of sources happen at the points of a rate λ homogeneous Poisson process

$$\cdots < \Gamma_{-1} < \Gamma_0 < 0 < \Gamma_1 < \Gamma_2 < \cdots.$$

- Transmission durations are iid random variables Y_i , independent of (Γ_i) .
- During a transmission a source transmits at unit rate.
- ullet The stationary process of active sources at time t

$$M_t = \sum_{i \in \mathbb{Z}} I_{\{\Gamma_i \le t < \Gamma_i + Y_i\}}, \quad t \ge 0.$$

• Since the points (Γ_i, Y_i) constitute a PRM(λ Leb $\times F_Y$), a simple calculation shows

$$\gamma(h) = \text{cov}(M_0, M_h) = \lambda \int_h^\infty \overline{F}_Y(t) dt.$$

• If $\overline{F}_Y(t) = L(t)t^{-\alpha}$, $\alpha > 1$, for some slowly varying L, by Karamata's theorem,

$$\gamma(h) \sim (\alpha - 1)^{-1} h \, \overline{F}_Y(h) \,, \quad h \to \infty \,.$$

- Non-summability of γ for $\alpha \in (1,2)$ is interpreted as long range dependence. The Hurst coefficient is $H = (3 \alpha)/2 \in (0.5, 1)$.
- The workload process

$$A(t) = \int_0^t M_s \, ds \,, \quad t \ge 0 \,,$$

has stationary increments.

• For $\alpha \in (1,2)$ scaling limits of $(A(Tt))_{t\geq 0}$ converge to spectrally positive α -stable Lévy motion. (infinite variance, independent increments)

FIGURE 4. 1.8-stable sample paths.

• Letting the intensity $\lambda = \lambda_T$ grow sufficiently fast, scaling limits of $(A(Tt))_{t\geq 0}$ converge to fractional Brownian motion B_H with Hurst index $H = (3 - \alpha)/2$ and covariance structure

$$cov(B_H(t), B_H(s)) = 0.5(t^{2H} + s^{2H} - |t - s|^{2H}).$$

- See Mikosch, Resnick, Rootzén, Stegeman (2002).
- Fractional Brownian motion B_H with $H \in (0.5, 1)$ inherits long range dependence for the increment process $B_H(h) B_H(h-1)$.
- Similar results exist for superpositions of ON/OFF processes given the number $M = M_T$ of superimposed processes grows sufficiently fast with T.
- High frequency of arrivals is generated either by increasing the intensity λ_T of the Poisson process or the number M_T of ON/OFF sources.

• If λ_T or M_T increase too slowly α -stable Lévy motion appears in the limit.

3. The Poisson cluster process

- At the points Γ_i of a rate λ homogeneous Poisson process on \mathbb{R} the first packet of the *i*th flow (*i*th activity) arrives.
- The ith flow of packets consists of K_i packets which arrive at times

$$Y_{ik} = \Gamma_i + S_{ik} = \Gamma_i + \sum_{j=1}^k X_{ij}, \quad 0 \le k \le K_i.$$

- $(X_{ik})_{i,k}$ are iid, (K_i) are iid; (X_{ik}) , (K_i) , (Γ_i) are independent.
- The counting process

$$N(B) = \#\{(i,k) : i \in \mathbb{Z}, 0 \le k \le K_i : Y_{ik} \in B\}$$

is stationary.

• Let $0 \le T_1 \le T_2 \le \cdots$ be an enumeration of the points of N.

- For statistical analyses one cannot distinguish between the arrivals $Y_{i0} = \Gamma_i$ and Y_{jk} , $k \ge 1$.
- Notice: The points $(\Gamma_i, K_i, (X_{ik})_k)$ constitute a PRM $(\lambda \text{ Leb} \times F_K \times F_X^{\infty}), N^*$, in $\mathbb{R} \times \mathbb{N}_0 \times \mathbb{R}^{\infty}$.
- \bullet and

$$N(a,b] = \int_{\mathbb{R} \times \mathbb{N}_0 \times \mathbb{R}^\infty} \sum_{j=0}^k I\{\gamma + \sum_{i=0}^j x_i \in (a,b]\} dN^*(\gamma, k, (x_i)).$$

3.1. How can we get long range dependence for the increments N(h, h+1]?

• If $\operatorname{var}(K) < \infty$

$$\int_{1}^{\infty} \gamma_{N}(h) \, dh$$

$$= \lambda E \sum_{k=1}^K (K-k+1) \int_0^1 (x \wedge (2-x)) \overline{F}_{S_k}(x) \, dx < \infty,$$

for the generic renewal process $S_k = X_1 + \cdots + X_k$.

- Long range dependence is impossible unless $var(K) = \infty$ whatever the distribution of X.
- This is in agreement with teletraffic measurements: S_K is large due to a large number K.
- A weighted renewal argument Alsmeyer (1992) yields

$$\gamma_N(h) \sim \lambda (EX)^{\alpha-2} (\alpha - 1)^{-1} h P(K > h),$$

if $P(K > x) = x^{-\alpha}L(x)$ for some $\alpha \in (1, 2)$.

3.2. Where do the heavy tails of S_K come from?

- S_K can be large due to large K or large X.
- $P(X > x) = x^{-\alpha}L(x)$, $EK < \infty$ and P(K > x) = o(P(X > x)). Then

$$P(S_K > x) \sim EK P(X > x)$$
.

• $P(K > x) = x^{-\beta}L(x)$ for some $\beta \ge 0$, $EX < \infty$ and P(X > x) = o(P(K > x)). Then

$$P(S_K > x) \sim (EX)^{\beta} P(K > x)$$
.

• The assumptions are close to necessity.

3.3. Asymptotic results.

- N(t) = N[0, t] satisfies the strong law of large numbers $N(t)/t \stackrel{\text{a.s.}}{\rightarrow} \lambda (EK + 1)$, see figure.
- Scaling limits are either Brownian motion (if $var(K) < \infty$) or α stable Lévy motion (if P(K > x) is regularly varying with index $-\alpha \in (-2, -1)$ and $EX < \infty$).
- This is *disappointing* but similar to the workload in the ON/OFF and infinite source Poisson cases.
- One starts with long range dependent increments (if $var(K) = \infty$) and loses them in the limit: Lévy motion has independent increments.
- One even loses the notion of long range dependence in the narrow sense: the limit has infinite variance.

Figure 5. N(t)/t for 10^7 packet arrivals (245 seconds) at UNC.

FIGURE 6. Sample ACF of the increments of the UNC packet arrival data.

3.4. How can one overcome this problem? Mikosch and Samorodnitsky (2006).

- Partial answer: For a truncated cluster point process $N_0[0,t] \land (K+1)$ with regularly varying P(K>x) with index $-\alpha \in (-2,-1)$, the expected arrivals $ET_n^{(0)}$ have to grow faster than n^{α} .
- Or one has to increase the intensity $\lambda_T \to \infty$ at some rate.

3.5. Can one estimate the parameters of the model?

• Faÿ, Roueff, Soulier (2005) have developed wavelet estimation techniques (local Whittle estimation of α). See also Hohn, Veitch, Abry (2003) for some empirical studies.

• For a bounded real-valued function ψ with support [0,1], the wavelet coefficients are defined as

$$d_{jk} = 2^{-j/2} \int_0^\infty \psi(2^j s - k) N(s) ds, \quad j \in \mathbb{Z}, k \in \mathbb{Z}.$$

The set of available wavelet coefficients:

$$\Delta = \{(j,k) : 0 < J_0 < j \le J_1, 0 \le k \le 2^{J-j} - 1\}$$

The reduced local Whittle contrast function

$$W(\alpha') = \log \sum_{(j,k)\in\Delta} \frac{d_{jk}^2}{2^{(2-\alpha')j}} + \text{const.}(2-\alpha').$$

- In the infinite source model Faÿ, Roueff, Soulier (2005) show consistency of the local Whittle estimate under additional conditions on J_0, J_1, J and derive rates of convergence.
- In the Poisson cluster model the method works well, see figure.

Figure 7. Estimation of α from simulated processes N.

3.6. The distribution of the interarrival times under the Palm measure.

- Under the Palm measure, $T_0 = 0$ a.s. and the interarrival times of the non-decreasing enumeration $0 \le T_1 \le T_2 \le \cdots$ of the non-negative points of N constitute a stationary ergodic process.
- For the distribution F_0 of the interarrival times under the Palm measure, (Palm-Khintchine)

$$P(T_1 > t) = \lambda (EK + 1) \int_1^\infty \overline{F}_0(x) dx$$
$$= \exp\{-\lambda (t + EK \int_0^t \overline{F}_X(x) dx)\}.$$

• After differentiation,

$$\overline{F}_0(t) = \frac{1 + EK \overline{F}_X(t)}{EK + 1} \exp\{-\lambda \left(t + EK \int_0^t \overline{F}_X(x) dx\right)\}.$$

• Notice: \overline{F}_0 is nearly exponential whatever the distribution of X and K.

FIGURE 8. Estimation of λ from UNC data by regression from $\log \overline{F}_n$.

4. Some conclusions

- Models for teletraffic are (too) simple. One would wish to incorporate effects of the protocol or the interaction between different sources.
- At the moment no better models are availabe.
- The phenomenon of heavy-tailed distributions for file sizes, transmission durations, transmission rates, etc., is a well accepted fact and should be part of the model.
- Heavy tails give a plausible explanation of the long-range dependence of the process of active sources.
- The statistics of teletraffic data depend on the models available.
- The statistics inside these models is non-trivial and needs further efforts.
- It would be interesting to investigate whether suitable time series models for telecommunications can be developed.