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Basic HMM

Model description

� First proposed by Zucchini & Guttorp (1991)

� Generalized to a nonhomogeneous HMM

� Hughes et al. (1994)

� Observed process:

� : rainfall during day t at location k

� Existence of “weather type”

� High pressure systems, frontal systems, …

� …Introduced as a hidden process

� Common to all locations
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Basic HMM

Model description

� Conditional independence assumptions

� Temporal structure (HMM)
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� Dynamics induced only by {S
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� Spatial structure (conditional independence)
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� Spatial dependence induced only by {S
t
}



Basic HMM

Model description

� Conditional distributions p(Y
t
(k)|S

t
=s)

� Two components
� Y

t
(k)=0 if no rainfall occurs

� Y
t
(k)>0 if a rainfall occurs

� Mixed discrete-continuous

distribution
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Basic HMM

Model description

� Conditional distributions p(Y
t
(k)|S

t
=s)

� ,             ,

�

� 3KQ+Q(Q-1) parameters
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Basic HMM
Data

� Rainfall data in New 

Zealand

� Daily rainfall

� 7 locations 

� 26 years

� Focus on April
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Basic HMM
Parameter estimation

� EM algorithm

� Model selection

� First selection with AIC and BIC

� Final selection according to

� Meteorological interpretability

� Ability to simulate realistic rainfalls

� Focus on the model with Q=4

137221373113663137601452317502BIC

129901314413213134361431717404AIC

654321Q



Basic HMM
Meteorological interpretability
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Basic HMM
Meteorological interpretability
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•Moderate probability of rainfall occurrence,
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•Moderate amounts in the west part, low in
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Basic HMM
Meteorological interpretability
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lower in the south-east

σ[Yt|St=3,Yt>0]

P[Yt>0|St=3] E[Yt|St=3,Yt>0]



Basic HMM
Meteorological interpretability
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Basic HMM
Meteorological interpretability

� Transition matrix, stationary distribution, mean durations

� Summary:

� Regime 1: dry conditions, long persistence

� Regime 2 and 3: intermediate patterns, regional differences, 

higher rainfall in regime 3, short persistence

� Regime 4: heavy rainfall

� Similar meteorological interpretation for other datasets
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Basic HMM

Realism of simulated sequences

� Spatial pair-wise correlations
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Basic HMM

Realism of simulated sequences

� Autocorrelation functions

Occurrence

Location 1 (Winchmore) Location 3 (Coleridge)
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Basic HMM

Realism of simulated sequences

� Dry/wet durations

Dry durations

Wet durations

Location 1 (Winchmore) Location 3 (Coleridge)
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Basic HMM
Conclusion

☺ Meteorological interpretation

☺ Reproduces marginal distribution

� Fails to reproduce…

� Spatial structure 

� Dynamics at some locations

� …Need for a more sophisticated model

� Focus on spatial aspects in the next part 



0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−0.2

0.4

1

Extensions

� Conditional independence assumption unrealistic

� Residual spatial structure within the weather types

Empirical correlation matrices 

in the different weather types 

(identified via the Viterbi algo.)
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Extensions

� Add spatial structure in the emission probabilities
� Need model for multivariate mixed discrete-continuous data

� Markov random fields
� For the binary occurrence/non-occurrence process

� Autologistic model (Hughes et al. (1999))

� Chow-Liu trees (Kirshner (2005))

� Generalization to include positive amounts?

� Introducing a “local” weather type to relate 
regional patterns to local rainfall

� Thompson et al. (2005)

� Truncated Gaussian random fields
� Allcroft et al. (2003) ( without Markov switching)



HMM with truncated Gaussian fields
Model description
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HMM with truncated Gaussian fields
Model description
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HMM with truncated Gaussian fields
Model description

� Assumptions on the covariance matrices

(HMMCI)

(HMMdist)

(HMMloc)
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HMM with truncated Gaussian fields
Parameter estimation
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……Weather type

•Not observed

•Finite values

Conditionally Gaussian

•Partially observed

•Continuous values

Precipitation

•Observed

•Mixed continuous-discrete



HMM with truncated Gaussian fields
Parameter estimation

� E-step (Forward-Backward algorithm)
� Computation of p(Yt=yt|St=s;Θ)
� If yt=(0,…,0,yt(k+1),…yt(K)) with yt(k+1)>0,…, yt(K)>0

� M-step
� Computation of E[Zt|Yt=yt,St=s;Θ] and cov(Zt|Yt=yt,St=s;Θ)
� …integral expression
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HMM with truncated Gaussian fields
Parameter estimation

� Monte Carlo integration

� If yt=(0,…,0,yt(k+1),…yt(K)), then

� Simulate N samples from the multivariate Gaussian 
distribution

P(Z(1),…,Z(k)|Z(k+1)=yt(k+1),…,Z(K)=yt(K);µ(s),Σ(s))
� Deduce approximate values for the integrals. For ex.:

� MCEM algorithm
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HMM with truncated Gaussian fields
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HMM with truncated Gaussian fields

Meteorological interpretability (HMMloc)

Regime 1

•Low probability of rainfall 

•Low amount

•High spatial correlation

P[Yt>0|St=1]

Corr(Yt|St=1)

E[Yt|St=1] σ[Yt|St=1]



P[Yt>0|St=2]
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HMM with truncated Gaussian fields

Meteorological interpretability (HMMloc)

E[Yt|St=2] σ[Yt|St=2]

Corr(Yt|St=2) Regime 2

•Moderate probability of rainfall occurrence,

higher at location 3

•Low amounts, higher at location 3

•Moderate spatial correlation, low correlation   

between locations 3 and 7 and other locations
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HMM with truncated Gaussian fields

Meteorological interpretability (HMMloc)

E[Yt|St=3] σ[Yt|St=3]P[Yt>0|St=3]

Corr(Yt|St=3) Regime 3

•Moderate probability of rainfall occurrence

•Moderate amounts, higher in the west

•Moderate spatial correlation, low correlation     

between location 3 and other locations
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•High probability of rainfall occurrence

•High amount

•High spatial correlation, except between 

•location 3 and locations in the east

•location 7 and other locations

HMM with truncated Gaussian fields

Meteorological interpretability (HMMloc)
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HMM with truncated Gaussian fields

Meteorological interpretability (HMMloc)

� Transition matrix, stationary distribution , mean durations

� Summary:

� Regime 1: low rainfall

� Regime 2 and 3: intermediate patterns, regional differences, 

higher rainfall in regime 3, short persistence

� Regime 4: high rainfall

� Location 3 and 7 have specific behaviors
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Realism of simulated sequences (HMMloc)

� Marginal distribution (location 1, Winchmore)
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HMM with truncated Gaussian fields

Realism of simulated sequences (HMMloc)

� Marginal distribution (location 1, Winchmore)
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HMM with truncated Gaussian fields

Realism of simulated sequences (HMMloc)

� Marginal distribution (location 1, Winchmore)
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HMM with truncated Gaussian fields

Realism of simulated sequences (HMMloc)

� Pair-wise spatial correlations (amounts)
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HMM with truncated Gaussian fields

Realism of simulated sequences (HMMloc)

� Pair-wise spatial correlations (occurrence)
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Realism of simulated sequences (HMMloc)
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Conclusion & perspectives

� HMM with conditional spatial independence 

assumption cannot reproduce the spatial structure

� HMM with truncated correlated Gaussian distribution 

better reproduces the spatial structure

� Dynamics still not well reproduced

� Add an autoregressive part?

� Explore other possibilities

� Markov random fields, local weather types,…

� Seasonality, inter-annual variability….
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