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Basic HMM

Model description
First proposed by Zucchini & Guttorp (1991)

o Generalized to a nonhomogeneous HMM
Hughes et al. (1994)

Observed process: Y = (Y (1),...,Y (K))

o Y(k)UR" :rainfall during day t at location k
Existence of “weather type”

o High pressure systems, frontal systems, ...

...Introduced as a hidden process S L{1...0}
o Common to all locations




Basic HMM
Model description

Conditional independence assumptions

o Temporal structure (HMM)
PS)|Y,...Y, , S,....8, )=P(S|S, )
P(Y)Y,...Y, ,S,...8)=P(Y|S)

> Dynamics induced only by /S

o Spatial structure (conditional independence)
pY(),Y(2)...Y(K)|S)

=p(Y(D|S) p(Y(2)|S)... p(Y(K)|S)
~ Spatial dependence induced only by {S




Basic HMM

Model description
Conditional distributions p(Y (k)|S,=s)
o Two components .
Y, (k)=0 if no rainfall occurs 0.7
Y, (k)>0 if a rainfall occurs 0.6
o Mixed discrete-continuous
distribution 03

0 .
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Marginal distribution of {Y, (k)}
(Winchmore, New Zealand)



Basic HMM
Model description

Conditional distributions p(Y (k)|S =s)

1-p if 0Udy

P(Y (k)UdyS, =S)={ S .
p. f(yv;a”,B")dy if 00dy

o po0lol], a¥>0 , B >0

I C A LS (al) 5V e )

3KO+Q(0-1) parameters




' Basic MM
Data

= Rainfall data in New
Zealand
o Daily rainfall
o [/ locations

o 26 years
= Focus on April
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Basic HMM

Parameter estimation

EM algorithm

Model selection
o First selection with AIC and BIC

Q 1 2 3 4 5 6
AIC 17404 {14317 {13436 | 13213 | 13144 {12990
BIC 17502 {14523 {13760 {13663 13731 | 13722

o Final selection according to

Meteorological interpretability

Ability to simulate realistic rainfalls
o Focus on the model with Q=4




Basic HMM

Meteorological interpretability

PIY>0|S,~1] E[Y|S=1,Y>0]

® 9%

Regime 1
*Low probability of rainfall occurrence
Low amount, higher at location 3




Basic HMM

Meteorological interpretability

PIY>05,~2] E[Y)S,=2,Y>0]

Regime 2

*Moderate probability of rainfall occurrence,
higher in the west part

*Moderate amounts in the west part, low in
the south-east

0 49




Basic HMM

Meteorological interpretability

P[Y>0[S,=3] E[Y|S=3,Y>0]

Regime 3

*High probability of rainfall occurrence,
higher in the south-east

Moderate amounts,

lower in the south-east




Basic HMM

Meteorological interpretability

P[Y>0[S,~4] E[YS=4,Y>0]

Regime 4
*High probability of rainfall occurrence
*High amounts




Basic HMM

Meteorological interpretability

Transition matrix, stationary distribution, mean durations

0.70 [0.15 |0.09 [0.05 0.56 3.33
049 |0.18 |0.20 (012 0.20 1.22
0.35 [|0.31 |0.17 |0.16 0.14 1.20
0.21 [0.29 |10.25 [0.25 0.10 1.33
Summary:

o Regime 1: dry conditions, long persistence

o Regime 2 and 3: intermediate patterns, regional differences,
higher rainfall in regime 3, short persistence

o Regime 4: heavy rainfall

Similar meteorological interpretation for other datasets



Basic HMM

Realism of simulated sequences

= Univariate marginal distributions (location 1, Winchmore)
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Basic HMM

Realism of simulated sequences

= Spatial pair-wise correlations
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Basic HMM

Realism of simulated sequences

Autocorrelation functions
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Basic HMM

Realism of simulated sequences

= Dry/wet durations
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Basic HMM

Conclusion

Meteorological interpretation
Reproduces marginal distribution

Falils to reproduce...

o Spatial structure

o Dynamics at some locations

...Need for a more sophisticated model
o Focus on spatial aspects in the next part



Extensions

Conditional independence assumption unrealistic

I1
Empirical correlation matrices S— EE—
in the different weather types regime 3 regime 4 1o

(identified via the Viterbi algo.)
I02

Residual spatial structure within the weather types

regime 1 regime 2

2 4 6 2 4 6



Extensions

Add spatial structure in the emission probabilities
o Need model for multivariate mixed discrete-continuous data

Markov random fields

For the binary occurrence/non-occurrence process
0 Autologistic model (Hughes et al. (1999))
0 Chow-Liu trees (Kirshner (2005))

Generalization to include positive amounts?

Introducing a “local” weather type to relate
regional patterns to local rainfall
Thompson et al. (2005)

Truncated Gaussian random fields
Allcroft et al. (2003) ( without Markov switching)



HMM with truncated Gaussian fields
Model description

If § =s then
Y (k) = max(Z, (k),0)

with

- Zt = (Zt (1)9“‘9Zt (K))': ILI(S) + S(S)Et
0 ﬂ(S) I:IRK ’ (s) — S(s)S(s),D RK*K

. E~N(0,])iid



HMM with truncated Gaussian fields
Model description

0.6 1 0.6r
*1Y (k)=0 Y (K)=Z|(k) 50
0.4} 0.4}
0.3 0.3t
0.2} 0.2r
0.1} 0.1t
0 0

0 0.5 1 15 2 2.5

Conditional distribution of Z (k) Conditional distribution of Y (k)




HMM with truncated Gaussian fields
Model description

Assumptions on the covariance matrices
> = diag(0®),....,(0')?) (HMMCI)
2V(i,j)=0"0" exp(=A" dist (x,x))  (HMMdist)

>V, j)=0"0 exp(=AY A dist (x,,x)) (HMMloc)



HMM with truncated Gaussian fields

Parameter estimation

Weather type
*Not observed
*Finite values

Conditionally Gaussian
Partially observed
«Continuous values

Precipitation
*Observed
Mixed continuous-discrete




HMM with truncated Gaussian fields

Parameter estimation

E-step (Forward-Backward algorithm)
o Computation of p(Y,=y |S,=s,; ©)
a0 1fy,=(0,....0,(k+1),..,(K) with y(k+1)>0,..., y(K)>0
p(Y,=y[S =s50)
= [ o S Ceenz, ¥, (k+ 1),y (K 7,2z, . d2,
M-step

o Computation of E/Z|Y =y,S,=s; O] and cov(Z|Y =y,S,=s; O
o ...integral expression



HMM with truncated Gaussian fields

Parameter estimation

Monte Carlo integration

o Ify=0,..,0yk+1),..y(K)), then

Simulate N samples from the multivariate Gaussian
distribution

PZ(1),...Z2(k)| Z(k+1)=y (k+1),....Z(K)=y (K), £, 519
Deduce approximate values for the integrals. For ex.:
p(Y,=y|[S =s50)
_ Nbof samp.withall comp.< 0

N
MCEM algorithm

Xp(y (k+1),...,y (K); ", Z")



HMM with truncated Gaussian fields

2" =diag((0")’,....(0."))

|

5 (i,j) = Ji(s)gjs) exp(—jw dist (x,. X, )) \

HMMCI |HMMdist |HMMIloc | HMMfull
(4 states) | (4 states) | (4 states) | (4 states)
loglik -6837 -6441 -6383 -6311
numpar |68 72 96 152
AlIC 13811 13029 12959 12928
BIC 14130 13367 13409 13641
7

2V, j)=0"c " exp(=A A dist (x,,x))




HMM with truncated Gaussian fields
Meteorological interpretability (HMMloc)

PY,>018=1] EY,|8=1] aY|S=1]

Corrd5=1) Regime 1

*Low probability of rainfall
Low amount
05 *High spatial correlation

1




HMM with truncated Gaussian fields
Meteorological interpretability (HMMloc)

P[Y>0/S,=2]

Corr(Y|S,=2)

E[Y)S,=2] oY,|s,=2]

Regime 2

*Moderate probability of rainfall occurrence,
higher at location 3

Low amounts, higher at location 3

*Moderate spatial correlation, low correlation
between locations 3 and 7 and other locations




HMM with truncated Gaussian fields
Meteorological interpretability (HMMloc)

P[Y>0/S,=3] E[Y)S;=3] oYS,=3]

Corr(¥|5=3) Regime 3

*Moderate probability of rainfall occurrence
*Moderate amounts, higher in the west
*Moderate spatial correlation, low correlation
between location 3 and other locations




HMM with truncated Gaussian fields
Meteorological interpretability (HMMloc)

P[Y>0|S,=4]

E[Y|S=4] aY|S=4]

Corr(Y|S,=4)

Regime 4

*High probability of rainfall occurrence

*High amount

*High spatial correlation, except between
*|location 3 and locations in the east
slocation 7 and other locations




HMM with truncated Gaussian fields

Meteorological interpretability (HMMloc)

Transition matrix, stationary distribution , mean durations

0.73 |0.18 |0.06 |0.01 0.48 3.78

029 (042 |0.27 |0.03 0.29 1.71

023 [0.32 |0.36 |0.08 0.18 1.55

0.06 |0.42 |0.23 |0.28 0.05 1.40
Summary:

Q
Q

Regime 1: low rainfall

Regime 2 and 3: intermediate patterns, regional differences,
higher rainfall in regime 3, short persistence

Regime 4: high rainfall

Location 3 and 7 have specific behaviors



HMM with truncated Gaussian fields
Realism of simulated sequences (HMMloc)

= Marginal distribution (location 1, Winchmore)

Regime 1
— Regime 2
—— Regime 3
—— Regime 4
= Model
== Data

Distribution of {Z (1)}

0.1r-

Distribution of {Y (1)}
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‘ HMM with truncated Gaussian fields
Realism of simulated sequences (HMMloc)

= Marginal distribution (location 1, Winchmore)

Regime 1
— Regime 2
—— Regime 3
—— Regime 4
= Model
=== Data

|
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HMM with truncated Gaussian fields
Realism of simulated sequences (HMMloc)

= Marginal distribution (location 1, Winchmore)
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HMM with truncated Gaussian fields

Realism of simulated sequences (HMMloc)

= Pair-wise spatial correlations (amounts)

Model
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HMM with truncated Gaussian fields
Realism of simulated sequences (HMMloc)

= Pair-wise spatial correlations (occurrence)
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HMM with truncated Gaussian fields

Realism of simulated sequences (HMMloc)
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HMM with truncated Gaussian fields
Realism of simulated sequences (HMMloc)
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Conclusion & perspectives

HMM with conditional spatial independence
assumption cannot reproduce the spatial structure

HMM with truncated correlated Gaussian distribution
better reproduces the spatial structure

Dynamics still not well reproduced
o Add an autoregressive part?

Explore other possibilities
o Markov random fields, local weather types,...

Seasonality, inter-annual variability....
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