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¢ Introduction

Stylized Facts

e \Volatility clustering
Variance of daily price changes vary over
time (heteroscedasticity)
= Model conditional distribution at time
t given the information F;_1 up to time
t—1

e Low signal-to-noise ratio

e Financial markets are complex; there-
fore financial models are at best only
approximate descriptions of the un-
derlying structure
= Robustness issue



¢ Dynamic Location-Scale Models

{yt}+e7 @ real valued strictly stationary ran-
dom sequence

y¢ has a conditionally Gaussian distribution
yi| Fro1 ~ N (e (6), 07(8)) i.e.

pe(0) + €4(6),

Yt
2(0) = 02(0) +u(0),

where

ui(0) = Elys|F—1] and o7(0) = var[ys| Fr_1]
parameterize the conditional mean and the
conditional variance of y; given the informa-
tion F;_q1 up to time ¢t — 1.



e ARMA Box & Jenkins(1975)

1 () po + P1Ye—1
c2(0) = o2

po €R, |p1] < 1.

e ARCH Engle(1982)

e (0)
o2 (0)

PO+ P1Yt—1
e70) +a15,52_1<9)

= oo+ a1(Yi—1 — po — P1Yi—2)?
po €ER, |p1| <1, ap>0, 0< g < 1.

e GARCH Bollerslev(1986)

pe(6)
a2 (0)

0 (yt =et)
ag + o €t2 s 510752 1(0)

= ao/(1—=01)+ a1 5= 08y2 | _
apg, 1,01 >0, a1 +01 < 1.
GARCH model is an ARCH model with
an infinite number of lagged y variables.
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e Double threshold ARCH

Glosten, Jagannathan, Runkle(1993)
Li & Li(1996) ,

e (0)
a2 ()

po+ (p1+ podii—1)yi—1

ap + (a1 +asdoi_1)

(ye—1 — po — (p1 + p2d1t-2) Yyt—2)°
+azdi -1

with the dummy variable

dl,t—l = 1if po+p1y:—1 > 0 and O othw.
dps—1 =1 if g_1(0) <0 and 0 othw.



Estimation

Conditional moment condition:
Eglv(y1, - ym; a(PPH)| Fm—1] = 0.

For example, ¥ = s, the conditionally
Gaussian score function

S(yl7 ey Ymyy 9) — _kl,m —I_ k2,m fu’m(e)
_l_kl,m um(9)27
um () = em(0)om(0)~1,
L e 1 00z,(0)
Lm == 252 (0) 00

kom “= 55y~ 60

defines a conditionally unbiased estimator of
0.

But non-robust
= More dgeneral ¢ functions
(conditional M-estimators);

Mancini, Ronchetti, Trojani (2005)
J. Am. Stat. Ass. (MATLAB; very fast)
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¢ Estimation and Inference for Single
Factor Models

Data set of Chan et al. (1992):

One-month yields based on the average of
bid and ask prices for Treasury bills normal-
ized to reflect a standard month of 30.4
days. They are monthly observations cover-
ing the period from June 1964 to December
1989, for a total of 307 observations.

Ahn and Gao (1999): McCulloch and Kwon
(1993) dataset over the period from De-
cember 1946 to February for comparability
with the Ahn and Gao (1999) study.
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Figure 1: Short Term Rate and Weights of the Robust GMM Estimator (¢ = 6).
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¢ Single Factor Short Rate Models

Basic Setting

d?“t — ,LL(Tt>dt + U(Tt)th .

where ry IS the short rate at time ¢ and
(Wi);>o is a standard Brownian motion in
R



e Chan, Karolyi, Longstaff, Sanders (1992)
(CKLS), linear drift term

pu(ry) = o+ Bry
glirs) = O’?“;Y

e Ahn and Gao (1999), quadratic drift term

u(ry) = a—+ aire+ aorf
glrel = O'?“S/Q

e Ait Sahalia (1996)

> 1
o+ airt + aory + asr,

Bo + Birt + 527}63

p(re)
o(re)

10



fAlternathe M ,Odelsiof.,thé,shart Ratéz’?f R

- 're'sﬁrict_ions ~

Mo'dé_z = e [3 a
o ‘M eribﬁ-r | | : | | 0 . (O attamable) o
e Vaszcek R ﬁ <0 (0 attalnable) |
‘ C’o:z: Ingersoll Ross N |

o o . , '-»' ,6< 0 and 20420-

. Geometrzc Browman M otzon " B ﬁ. -<'~IO' (O attamable)“'
Brennan Schwartz e | N , ,6’ <0 and o . O
A.'Vamable Rate 4 E 0 0

’. :‘-_C'ons‘t_@nt VEl_a,s-tz'czty'bf Varial’fbcékl - 0 o ﬁ < 0, (0 attamable)'f.:

(O attalnable) s

)

/)
/

¢ 5
L

- 22N atma.l restrlctlons have to be 1mposed on; the parameter Values to ensure that that
the drift is mean 1evertmg at hxgh mterest 1ate vaIues (mﬁmty not attamable) and zero is

unattamable cf Azt Sahaha (1996)



¢ GMM Estimation of CKLS Models

Crude discretization
Tt —Ti—1 = Q-+ Bri_1 + €&
where E(e;) = 0 and E(e2) = 02777,

Orthogonality conditions used in CKLS:

E(e¢) = O
E(eri—1) = 0O
E(n) = O
E(mri—1) = 0

2
where n; = 6152 — azrtjl
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¢ GMM Estimators

X = (Xn)nen Stationary ergodic sequence
defined on an underlying probability space
(2, F,1IP).

Parametric model

P:={Py,0 € ©}, 6 € © C RP.
True parameter vector: fg.
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Method of moments:

1 T
- > X = EgX1 = g1(6)
i=1

1 n
=) X7 = EpXi = g2()
=

i.e.
Egh(X1;0) =0

“where h(X1;0) = (h1(X1;0),ho(X1:0),...)
Orthogonality conditions
13



GMM:

Estimate indirectly some function

a:P — A:=a(P)C R

of parameters of interest by introducing a
function

h:RY x A RH
enforcing a set of orthogonality conditions
Ep,h(X1;a(FPp,)) =0 (1)

on the structure of the underlying model.
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W = (Wn)nen Sequence of weighting sym-
metric positive definite matrices

converdging a.s to Wp, the inverse of the co-
variance matrix of h(X1,a(Fy,)),

Generalized method of moments estimator
(GMME) associated with W:

(a(Pp,))nen solution to (Hansen, 1982)
min By h'(X1;a)WnEg h(X1;a) n € N,
ac A

where Py 1= 3" §x, is the empirical distri-

bution of X1,.., Xy and d, denotes the point
mass distribution at z € RV.
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Under appropriate regularity conditions the
GMME exists, is strongly consistent and asymp-
totically normally distributed with asymp-
totic covariance matrix

29,(Wo) = [Ey, 5
Oh(X1;a(Pp,))

]——l
% da' '
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In our case:

A = (”“t—lﬂ"t)gzo
Orthogonality function h:

h(’CC?y; a? /67 0-7 ’Y) —
Yy—x— o — P

(y —z—a—px)x

(y —z— a— Bx)° — 62527
((y —z — a— Bz)? — o%z?7)z.

h 1S unbounded in z and y;

T he classical GMM estimator and tests cor-

responding to this orthogonality function are
therefore not robust.

17



Vasicek Model (gamma=0) Cox Ingersoll Ross Madel (gamma=0.5)
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Function —h in the Vasicek, the Cox Ingersoll and Ross, the Brennan
Schiwartz and the Variable Rate model of CKLS (v = 0,0.5,1, 1.5 respectively).
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Table II: Classical GMM Estimates of Alternative Models
| for the Short-Term Interest Rate |

The parameters are estimated by the classical GMM induced by the original orthogonality function h;
-statistics are in parentheses. The value of Hansen’s statistics (EG for brevity), are reported with p-values

n parentheses and associated degrees of freedom (d.f.).

Model & B 5 ~ £CG d.f
Unrestricted 0.003402 —0.049345 0.139192 1.499898 - —
| (1.85)  (-1.55)  (0.77) . (5.95) |
Merton'- 0.000458 0.0 0.000035 0.0  6.75910 2
(1.44) (7.27) (0.034)
Vasicek 0.000529 —0.001262 0.000035 0.0 6.79973 1
(0.33) (—0.04) (7.17) (0.009)
Coz et al. 0.001065 —0.010222 0.000620 0.5 4.89890 1
(0.67)  (—0.36)  (7.64) (0.027)
Dothan 0.0 0.0 0.009765 1.0 5.60148 3
(7.97) (0.133)
Geometric Browntan Motion 0.0 0.008427 0.009873 1.0 3.15564 2
(1.50) (8.04) - (0.208)
Brennan & Schwartz 0.002018 —0.026152 0.009880 1.0 2.21381 1
(1.24)  (—0.92) (8.09) (0.137)
Variable Rate 0.0 . 0.0 0.002505 1.5 6.30606 3
(7.83) (0.098)
Constant Elasticity of Variance 0.0 0.008585 0.024516 1.171155 297738 - 1
(1.53) (0.58) (3.59)  (0.084)




Classical Analysis

e Models that allow for values of v > 1 are
not rejected — using Hansen’s statistic —
while models where v € [0,1) are.

e [he estimates v in the corresponding
models are strongly significant.

18



How stable is this analysis?

How reliable are these conclusions?

19



Sensitivity analysis of the p—value of Hansen's
statistic

Change one observation: ¢=1/306=0.3%.

Vary the value corresponding to April 1980
(observed value: 0.0942) from 0.075t0 0.113
by steps of size 0.001.

Variability of the short-term rate changes
around April 1980 is very high: a change
from a 15% to a 9.5% interest rate level
just before April 1980

= the magnitude of the sensitivity analysis
seems to be realistic with respect to the
structure of the short-rate observations over
this particular period.

20
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Classical Hansen’s test

e Very steep p— values curves

e E.g. Merton and Cox et al. models:
a change of the value of the observa-
tion of 40-80 basis points (100 basis
points = 0.01) is sufficient for obtaining
p-values not rejecting the model speci-
fication at a 5% significance value, as
opposed to the results for the uncon-
taminated model.

This analysis shows that it is very difficult
to distinguish — by means of the classical
Hansen's test — the specification properties
of the models, even when only a single ob-
servation is changed in the data.

21



Alternative Analysis: Robust Statistics

24



¢ Robustness in Finance

Two main research fields on robustness:

e Modelling preferences for robustness and
robust decision processes of agents that
take into account some forms of model
misspecification in their decisions

e Developing robust statistics for the econo-
metric analysis of financial time series
using models that are possibly misspec-
ified

25



Wanted

Robust procedures that take into account
model misspecifications both

e Wwhen determining optimal policies in fi-
nancial models

e when estimating the parameter inputs
for a financial model

26



Robust Statistics

e deals with deviations from ideal models
and their dangers for corresponding in-
ference procedures

e primary goal is the development of pro-
cedures which are still reliable and rea-
sonably efficient under deviations from
the model used

27



Key tools
e Influence Function (local stability)

e Breakdown Point (global reliability)

28



Definition

The Influence Function (IF, Hampel (1968,
1974)) of a statistic (functional) T is de-
fined by

IF (z;T, F) = lim LIS Se) B h eaic) s T(H)

el0 €
for all x where the limit exists. A, is the
distribution which puts mass 1 at z.

e [ he IF describes the normalized influ-
ence on the statistic of an infinitesimal
observation at z.

e IF is the Gateaux derivative of T at F
or the integrand in the first term of the
von Mises expansion.

e Examples of "interesting” statistics: an
estimator, its expectation and variance,
the power and the level of a test, a port-
folio allocation, etc.

29



Wanted

Procedures with bounded influence func-
tion

e IF bounded implies a bounded bias of
the statistic in a contaminated neigh-
borhood of the model

e Many modelsin econometrics/finance im-
ply optimal policies/statistics with un-
bounded IF

e Well-known examples: OLS—, TSLS-—
, NLLS—methods, many ML and GMM
statistics; optimal portfolios and indirect

utilities in mean variance optimization
problems

30



e Huber(1981), Wiley

e Hampel, Ronchetti, Rousseeuw, Stahel(1986),
Wiley

31



LLocal stability properties of the GMME &:

]F(:z:; a, PQO) —

Oh (Xq1:a(Py.)) -
—29,(Wo) Ey, 0 Woh(x; a(Py,))

The IF of a GMME is proportional to the
orthogonality function of the model

and is

bounded if and only if the function in-
ducing the orthogonality conditions of
the model is bounded.

Examples of GMME with unbounded or-
thogonality conditions:

e linear and nonlinear LS

e instrumental variables estimators

32



¢ Robust GMM Estimators
GMME with influence bounded by c

Huber function:

He: R — Ry ywe(y),

where we(y) = min(l,m)
New orthogonality function:

BT RN « A 5 RH
W (z,a) 1= H(A[R(z;a) — 7]) (2)

= Alh(z;a) — TJwc(A[h(z; a) — T])

where the nonsingular matrix A €¢ RHEXH and
the vector 7 € RH are determmed by the

Implicit equations:
EQO (Xla CL(PQO)) =0 , (3)

and

By he™™ (X1, a( Py, ) )hé™ (X1, a(Py.)) = I.(4)

33



| -Figure 1. Sketch of the Huber function z - hC( Z).A. o



e 15" can be interpreted as a truncated

version of h. Because of the trunca-
tion, h must be shifted by 7 in order to
satisfy the orthogonality condition (3).
Moreover, (4) ensures that cis an upper
bound on the self-standardized influence
of the corresponding GMME, because —
by construction — the selfstandardized
norm of K2 is equal to its euclidean
norm which itself is bounded by c.

e The GGME a2 associated to the modi-
fied orthogonality function h2>" is a con-
sistent estimator for a(F,) that is asymp-
totically best and robust.
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e \Whereas the original moment conditions
h are usually dictated by economic the-
ory, the truncated version h2"7 takes into
account the realistic case that only the
"majority of the data” can reasonably
fit the original moment conditions. The
weights wc(A[h(z;a) — 7]) assigned to
each observation x can be used to de-
tect outlying points.

e [ heboundimposed on the self-standardized
influence of any GMME cannot be cho-
sen arbitrarily small. Indeed, ¢ > Vv H.

e No further model assumptions are needed
in order to do this construction.

35



Robust Analysis (¢ = 6)

e Robust GMM specifications tests reject
practically all constrained models at a
5% significance level.

e SOme observations are identified as po-
tentially influential (e.g. April 1980).
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This analysis shows that it is very difficult
to distinguish — by means of the classical
Hansen's test — the specification properties
of the models, even when only a single ob-
servation is changed in the data.

A robust Hansen's test should be used if one
is interested in obtaining decisions that are
not primarly determined by a few observa-
tions in the sample.

Models with v > 1 cannot be motivated,
when using robust model selection strate-
gies.

42



¢ Extensions of the CKLS Models

Misspecification of the CKLS models
Need sophisticated multi-factor models or
more complex single factor models?

e Regime-switching models (e.g. as pro-
posed in Cai (1994), Gray (1996), Ang
and Bekaert (2000b))

e Models allowing for nonlinearities in the
drift and diffusion term (e.g. Ait Sahalia
(1996), Stanton (1997), Jiang (1998)
and Ahn and Gao (1999))

e Models adding GARCH and similar fea-
tures (e.g. Brenner, Harjes and Kro-
ner (1996), Koedijk, Nissen, Schotman
and Wolff (1997) and Ball and Torous
(1999))
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Details can be found in ;:

Ronchetti, E. and Trojani, F. (2001)
"Robust Inference with GMM Estimators”
Journal of Econometrics, 101, 37-69.

Dell’Aquila, R., Ronchetti, E., and Trojani,
F. (2003)

"Robust GMM Analysis of Models for the
Short Rate Process”

Journal of Empirical Finance, 10, 373-397.
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¢ Robust Inference for Dynamic
Location-Scale Models

3



¢ RGMM Testing For Conditional
Heteroscedasticity

ARCH(1,1)
Yt = po T P1Yi—1 + orur
Jtz — Ozo—l—alutz_l

where (ut);cn IS a standardized i.i.d sequence
of r.v.

Orthogonality conditions for a GMM esti-
mation of the parameters (ag, a1, Bo, £1):

Ele] =0 Eletys—11=0
Elns—hi =0 Elnme—1] =0 |
where e = y; — po — P1Yt—1 , T = €t2

Orthogonality conditions unbounded!

74



Test oy =0vs a7 >0

Compare level and power of classical and
robust GMM tests under the following dis-
tributions of {u:}

e Standard normal N(O, 1)

e Contaminated normal C'N(e, K2)
e =0.05 K = 10

e Student ¢, , v =5,9

e Double exponential

75



e (po,p1,00) = (0.4,0.3,0.25)
ea; :0-03

e T = 250,500, 1000

e 1000 simulations

e Tuning constant ¢ = 2.09
(e = 10%, max bias level = 4+/ — 0.5%)

76



Table 2: GMM and RGMM Simulation Results
under u; ~ N (0, 1)

Each entry in the Table corresponds to the empirical rejection

frequency of the hypothesis a; = 0 obtained using 5% critical

values for the X2 test. The constant ¢ for the RGMM test was

set to ¢ = 2.09.

GMM RGMM
ay; T | 250 500 1000 | 250 500 1000
0.00 | 0.08 0.08 0.05 | 0.02 0.02 0.02
0.05:1 0,05 - 0.09 0.19 | 0.02 0.06 0.07
0.10 | 0.09 0.28 0.62 | 0.06 0.14 0.29
0.15 | 0.20 0.52 0.90 | 0.12 0.31 0.62
0.20 1 0.32 - 0. 74 0.97 | 0.21 0.51 0.87
0.25 | 0.45 0.84 0.98 | 0.35 Q.¢1 0.95
0.30 | 0.56 0.89 0.98 | 049 0.86 0.99
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Table 5: GMM and RGMM Simulation Results

under wu; ~ ts

Each entry in the Table corresponds to the empirical rejection
frequency of the hypothesis a; = 0 obtained using 5% critical

values for the X? test. The constant ¢ for the RGMM test was

set to ¢ = 2.009.

GMM RGMM

g1; T | 250 500

=
o
o
o
N
o
(@]
6
o
(@]
f—
(@]
@)
o

0.00 | 0.10 0.11 Ue il 02 0.02 0.03
0.05 | 0.05 0.05 0.06 | 0.03 0.07 0.11
0.10 | 0.06 0.10 0.24 | 0.05 0.14 Q:33
0.15 | 0.11 0.18 0.43 | 0.11 0.28 0.61
0.20 | 0.15 0.29 0.69 | 0.17 0.46 0.82
0.25 | 0.21 0.40 0.67 | 0.29 0.64 0.93
0.30 | 0.27 0.48 0.71 | 0.40 0.78 0.97
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Table 6: GMM and RGMM Simulation Results

under u; ~ C'N(0.05,100)

Each entry in the Table corresponds to the empirical rejection
frequency of the hypothesis a3 = 0 obtained using 5% critical

values for the A2 test. The constant ¢ for the RGMM test was

set to ¢ = 2.00.

GMM RGMM
a1, T | 250 500 1000 | 250 500 1000
0.00 | 0.35  0.51 0.48 | 0.02 0.01 0.02
0.05 | 0.16 0.19 0.17 | 0.02 0.03 0.06
0.10 | 0.09 0.08 0.05 | 0.03 0.06 0.14
0.15 | 0.06 0.04 0.02 | 0.06 0.11 0.24
0.20 | 0.04 0.03 0.03 | 0.07 0.16 0.36
0.25 | 0.04 0.03 0.06 | 0.10 0.22 0.48
0.30 | 0.04 0.04 0.11 | 0.13 0.28 0.60
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e Robust test yields stable level and power
across distributions

e Classical test shows a drastic liberal
behavior

e The power advantage of the classi-
cal test under normality is lost for very
small deviations from normality

82



Empirical Application

Apply classical and robust Wald tests for
ARCH structure to weekly exchange rate re-
turns of the Swedish krona against US dollar
Period Nov. 29th 1993 - Nov. 17", 2003:
522 observations (from Datastream).

‘Regular’ time series with no clear outlier.

‘The first ten sample autocorrelations of squared
and absolute returns are not significantly
different from zero. ‘

Moreover, the Jarque-Bera test has a pD-
value of 0.47 not rejecting normality.

Estimates for the parameters
po, P1, &g and a7 of an AR(1)~ARCH(1)
model and (Wald test p-values for the hy-

pothesis that the corresponding parameter
is zero):

83



Classical
0.02 (0.73), —0.030 (0.53), 1.86 (0), 0.06 (0.22)

Robust (¢ = 4)
0.01 (0.88), 0.014 (0.75), 1.64 (0), 0.47 (0).

As in typical financial return series, the con-
ditional mean parameters are not significantly
different from zero.

Moreover, the classical estimate of the ARCH
parameter a4 is also not significant. Hence,

the classical Wald test does not reject the

homoscedasticity hypothesis.

By contrast, the robust estimate of this ARCH
parameter is highly significant, showing that
ARCH effects in the data are possibly ob-
scured by some outlying observations de-
tected by the robust weights.

It is interesting to notice that one would
expect outliers to enhance the ARCH struc-
ture. Instead, because the estimation of the
volatility by classical techniques is inflated,
the potential ARCH structure is hidden by
the presence of a few outlying observations.
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Weekly exchange rate returns of the Swedish
krona vs. US dollar (Nov 29, 1993 - Nov
17,2003 (top panel) and weights implied by
the rob. est. of the AR(1)-ARCH(1) model
with ¢ = 4 (bottom panel).
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