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Al. Risks, Losses and Risk Factors

We concentrate on the following sources of risk.

e Market Risk - risk associated with fluctuations in value of traded
assets.

e Credit Risk - risk associated with uncertainty that debtors will
honour their financial obligations

e Operational Risk - risk associated with possibility of human error,
I'T failure, dishonesty, natural disaster etc.

This is a non-exhaustive list; other sources of risk such as liquidity
risk possible.
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Modelling Financial Risks

To model risk we use language of probability theory. Risks are
represented by random variables mapping unforeseen future states of
the world into values representing profits and losses.

The risks which interest us are aggregate risks. In general we
consider a portfolio which might be

e a collection of stocks and bonds:
e a book of derivatives:
e a collection of risky loans;

e a financial institution’s overall position in risky assets.
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Portfolio Values and Losses

Consider a portfolio and let V; denote its value at time ¢; we assume
this random variable is observable at time ¢.

Suppose we look at risk from perspective of time ¢t and we consider
the time period [t,t 4 1]. The value V; 1 at the end of the time
period is unknown to us.

The distribution of (V11 — V4) is known as the profit-and-loss or
P&L distribution. We denote the loss by L;11 = — (Vi1 — V;). By
this convention, losses will be positive numbers and profits negative.

We refer to the distribution of L;, 1 as the loss distribution.
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Introducing Risk Factors

The Value V; of the portfolio/position will be modelled as a function
of time and a set of d underlying risk factors. We write

V;t — f(tv Zt) (1)

where Zy = (Zt.1,...,Z¢.q)" is the risk factor vector. This
representation of portfolio value is known as a mapping. Examples
of typical risk factors:

e (logarithmic) prices of financial assets
e yields

e (logarithmic) exchange rates
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Risk Factor Changes
We define the time series of risk factor changes by
Xt = Zt — Zt—l-

Typically, historical risk factor time series are available and it is of
Interest to relate the changes in these underlying risk factors to the
changes in portfolio value.

We have
Liyi = —(Viq1 — Vi)
= —(f(t+1,2¢11) — f(t,2Zy))
= —(f(t+1,Z¢ + Xe11) — f(t, Zy)) (2)
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The Loss Operator

Since the risk factor values Z; are known at time ¢ the loss L; is
determined by the risk factor changes X;. .

Given realisation z; of Z;, the loss operator at time t is defined as

l[t](X) = —(f(t+ 1,z +x) — f(t,2¢)), (3)

so that
L1 = l(Xi+1).

From the perspective of time t the loss distribution of L;,q is
determined by the multivariate distribution of X;. .

But which distribution exactly? Conditional distribution of L;4
given history up to and including time ¢ or unconditional distribution
under assumption that (X;) form stationary time series?
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A2. Example: Portfolio of Stocks

Consider d stocks: let a; denote number of shares in stock 7 at time
t and let S; ; denote price.

The risk factors: following standard convention we take logarithmic
prices as risk factors Z; ; = log S;;,1 <1¢ <.

The risk factor changes: in this case these are
X¢y1, = log St41,5 — log St 5, which correspond to the so-called
log-returns of the stock.

The Mapping (1)

d d
Vi = E ;S = E el (4)
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BMW and Siemens Data: 1972 days to 23.07.96.
Respective prices on evening 23.07.96: 844.00 and 76.9. Consider
portfolio in ratio 1:10 on that evening.
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Example Continued
The Loss (2)

d d
Liyr = — E Cvz'ezt“’i—g et
i=1 i=1

d
= Vi) wp (i —1) (5)
i=1

where wy ; = «;S; ;/V; is relative weight of stock i at time ¢.
The loss operator (3)

:_%Zwtz _1

Numeric Example: [;(x) = — (844(e®™ — 1) 4 769(e™ — 1))
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A3. Conditional or Unconditional Loss Distribution?

This issue is related to the time series properties of (X¢):cn, the
series of risk factor changes. If we assume that X;, X;_4,... are iid
random vectors, the issue does not arise. But, if we assume that
they form a strictly stationary multivariate time series then we must
differentiate between conditional and unconditional.

Many standard accounts of risk management fail to make the
distinction between the two.

If we cannot assume that risk factor changes form a stationary time
series for at least some window of time extending from the present
back into intermediate past, then any statistical analysis of loss
distribution is difficult.
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The Conditional Problem

Let F; represent the history of the risk factors up to the present.

More formally F; is sigma algebra generated by past and present risk
factor changes (Xs)s<t.

In the conditional problem we are interested in the distribution of
Liy1 = lp(X¢41) given F, i.e. the conditional (or predictive) loss
distribution for the next time interval given the history of risk factor
developments up to present.

This problem forces us to model the dynamics of the risk factor time
series and to be concerned in particular with predicting volatility.
This seems the most suitable approach to market risk.
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The Unconditional Problem

In the unconditional problem we are interested in the distribution of
Liy1 = l(X) when X is a generic vector of risk factor changes
with the same distribution Fx as X;, X;_1,.. ..

When we neglect the modelling of dynamics we inevitably take this
view. Particularly when the time interval is large, it may make sense
to do this. Unconditional approach also typical in credit risk.

More Formally
Conditional loss distribution: distribution of () under Fix,, |7,

Unconditional loss distribution: distribution of Ij;(-) under Fx.
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A4. Risk Measures Based on Loss Distributions

Risk measures attempt to quantify the riskiness of a portfolio. The
most popular risk measures like VaR describe the right tail of the
loss distribution of L;.1 (or the left tail of the P&L).

To address this question we put aside the question of whether to
look at conditional or unconditional loss distribution and assume
that this has been decided.

Denote the distribution function of the loss L := L;11 by F, so that
P(L <x) = Fr(x).
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VaR and Expected Shortfall

e Primary risk measure: Value at Risk defined as
VaRa = ¢ (F1) = I (), (6)
I.e. the a-quantile of F7..

e Alternative risk measure: Expected shortfall defined as
ESe = E(L| L > VaR,) , (7)
I.e. the average loss when VaR is exceeded. E'S, gives information

about frequency and size of large losses.
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VaR in Visual Terms

Profit & Loss Distribution (P&L)
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Losses and Profits

Loss Distribution
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VaR - badly defined!

The VaR bible is the book by Philippe Jorion.| ].
The following “definition” is very common:

“VaR is the maximum expected loss of a portfolio over a given time
horizon with a certain confidence level.”

It Is however mathematically meaningless and potentially misleading.
In no sense is VaR a maximum |oss!

We can lose more, sometimes much more, depending on the
heaviness of the tail of the loss distribution.
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Ab5. Linearisation of Loss

Recall the general formula (2) for the loss L;11 in time period
[t,t + 1]. If the mapping f is differentiable we may use the following
first order approximation for the loss

d
Ly, =— <ft(t, Z) + Zfzi(t7 Zt)Xt+1,z‘> : (8)

1=1

e « f,. Is partial derivative of mapping with respect to risk factor i
fi is partial derivative of mapping with respect to time

e The term fi(t,Z;) only appears when mapping explicitly features
time (derivative portfolios) and is sometimes neglected.
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Linearised Loss Operator

Recall the loss operator (3) which applies at time ¢. We can
obviously also define a linearised loss operator

d
l[%](x) — ft(ta Zt) T Z fzz'(t7 Zt)xi ) (9)
1=1

where notation is as in previous slide and z; is realisation of Z;.

Linearisation is convenient because linear functions of the risk factor
changes may be easier to handle analytically. It is crucial to the
variance-covariance method. The quality of approximation is best if
we are measuring risk over a short time horizon and if portfolio value
Is almost linear in risk factor changes.
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Stock Portfolio Example

Here there is no explicit time dependence in the mapping (4). The
partial derivatives with respect to risk factors are

fz,(t,2¢) = e, 1 <4 <d,

and hence the linearised loss (8) is

d
Z
t+1 E et Xy, = -V E Wi i Xt41,45

1=1

where wy ; = «;S; ;/V; is relative weight of stock ¢ at time t.
This formula may be compared with (5).

Numeric Example: l[t]( x) = — (844x1 + 769x5)
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A6. Example: European Call Option

Consider portfolio consisting of one standard European call on a
non-dividend paying stock S with maturity T and exercise price K.

The Black-Scholes value of this asset at time ¢ is CP°(¢, S, 7, 0)

where
CP3(t, S;r,0) = SO(dy) — Ke """ ®(dy),

® is standard normal df, r represents risk-free interest rate, o the
volatility of underlying stock, and where

~ log(S/K) + (r+02/2)(T — 1) L —
dl— g\/m and dg—dl O'\/T L.

While in BS model, it is assumed that interest rates and volatilities
are constant, in reality they tend to fluctuate over time; they should
be added to our set of risk factors.
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The Issue of Time Scale

Rather than measuring time in units of the time horizon (as we have
implicitly done in most of this chapter) it is more common when
derivatives are involved to measure time in years (as in the Black
Scholes formula).

If A is the length of the time horizon measured in years
(i.,e. A =1/260 if time horizon is one day) then we have

Vi = f(t,Z;) = CP5(tA, Sy 1y, 04).
When linearising we have to recall that

ft(ta Zt) — CtBS(tA, St, T't, O't)A.
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Example Summarised
The risk factors: Z; = (log S;, r¢, 0¢)’.

The risk factor changes:
X = (10g(5t/5t—1), re —Tt—1,0¢ — Ut—l)/-

The mapping (1)
‘/t — f(t, Zt) — CBS(tA, St, T, O't),

The loss/loss operator could be calculated from (2). For derivative
positions it is quite common to calculate linearised loss.

The linearised loss (8)

3
Ly, =- <ft(t, Z) + Zfzi(t7 Zt)Xt+1,i> :

1=1
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The Greeks
It is more common to write the linearised loss as
Lﬁl = — (CESA + CESStXt—I—l,l + CFSXtH,z + CESXHLS) :
in terms of the derivatives of the BS formula.

o C'5° is known as the delta of the option.
o CB5 is the vega.

o CB?3 is the rho.

o CB5 is the theta.
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B. Standard Statistical Methods for Market Risk

. Variance-Covariance Method
Historical Simulation Method
Monte Carlo Simulation Method
An Example

Improving the Statistical Toolkit
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B1l. Variance-Covariance Method
Further Assumptions

e We assume X;.; has a multivariate normal distribution (either
unconditionally or conditionally).

e We assume that the linearized loss in terms of risk factors is a
sufficiently accurate approximation of the loss. We consider the
problem of estimating the distribution of

LA — l[%] (Xt+1)7
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Theory Behind Method

Assume X1 ~ Ng(p,X2).

Assume the linearized loss operator (9) has been determined and
write this for convenience as

l[] <c+szxz> (c +w'x).

The loss distribution is approximated by the distribution of
LA — l[%] (Xt+1)-

Now since X;11 ~ Ng(p, X)) = w X1 ~ N(w'p, w3w), we have

LA ~ N(—c—w'p, wIw).
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Implementing the Method

1. The constant terms in ¢ and w are calculated

2. The mean vector p and covariance matrix X are estimated from
data Xy_,41,...,X; to give estimates u and X..

3. Inference about the loss distribution is made using distribution
N(—c—wpu,wiw)

4. Estimates of the risk measures VaR, and ES, are calculated from
the estimayed distribution of L~.
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Estimating Risk Measures

e Value-at-Risk. VaR,, Is estimated by

VaR, = —c— Wi+ VwEZw - & (a).

e Expected Shortfall. ES,, is estimated by

- _ 1
ES,=——c—wp+Vwiw- qb(Cf_ (&)).

8

Remark. Forarv Y ~ N(0,1) it can be shown that
EY |Y > @ Ha) =¢(27H(a)/(1 — o)
where ¢ is standard normal density and ® the df.
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Pros and Cons, Extensions

e Pros. In contrast to the methods that follow, variance-covariance
offers analytical solution with no simulation.

e Cons. Linearization may be crude approximation. Assumption of
normality may seriously underestimate tail of loss distribution.

e Extensions. Instead of assuming normal risk factors, the method
could be easily adapted to use multivariate Student t risk factors or
multivariate hyperbolic risk factors, without sacrificing tractibility.
(Method works for all elliptical distributions.)

(©2004 (McNeil, Frey & Embrechts) 34



B2. Historical Simulation Method
The ldea

Instead of estimating the distribution of L = [;;)(X;41) under some
explicit parametric model for X1, estimate distribution of the loss
operator under empirical distribution of data X;_,,11,..., X4.

The Method

1. Construct the historical simulation data

~

{LSZZM(XS) cs=t—mn+1,...,t} (10)

2. Make inference about loss distribution and risk measures using
these historically simulated data: Lt T T Lt.
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Historical Simulation Data: Percentage Losses
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Inference about loss distribution
There are various possibilities in a simulation approach:

e Use empirical quantile estimation to estimate the VaR directly from
the simulated data. But what about precision?

e Fit a parametric univariate distribution to Et_n+1, . ,Zt and
calculate risk measures from this distribution.
But which distribution, and will it model the tail?

e Use the techniques of extreme value theory to estimate the tail of
the loss distribution and related risk measures.
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Theoretical Justification

If X¢_na1,...,X; are iid or more generally stationary, convergence
of empirical distribution to true distribution is ensured by suitable

version of law of large numbers.

Pros and Cons

e Pros. Easy to implement. No statistical estimation of the

distribution of X necessary.

e Cons. It may be difficult to collect sufficient quantities of relevant,
synchronized data for all risk factors. Historical data may not

contain examples of extreme scenarios.
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B3. The Monte Carlo Method

Idea

We estimate the distribution of L = I;;(X;41) under some explicit
parametric model for X, .

In contrast to the variance-covariance approach we do not
necessarily make the problem analytically tractible by linearizing the
loss and making an assumption of normality for the risk factors.

Instead we make inference about L using Monte Carlo methods,
which involves simulation of new risk factor data.
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The Method

1. With the help of the historical risk factor data X;_,,11,...,X;
calibrate a suitable statistical model for risk factor changes and

simulate m new data )N(&)l, s ,)Nigff from this model.

2. anstruct the Monte Carlo data
(Li = lyy(X{), i =1,...,m}.

3. Make inference anout loss distribution and risk measures using the

simulated data Ll,... Lm. We have similar possibilities as for
historical simulation.
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Pros and Cons

e Pros. Very general. No restriction in our choice of distribution for
Xt_|_1.

e Cons. Can be very time consuming if loss operator is difficult to
evaluate, which depends on size and complexity of portfolio.

Note that MC approach does not address the problem of
determining the distribution of X;, .
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B4. An Example With BMW-SIEMENS Data

\"4

Xdata <- DAX[(5147:6146),c("BMW","SIEMENS")]
X <- seriesData(Xdata)

A\

# Set stock prices and number of units
alpha <- cbind(1,10)
Sprice <- cbind(844,76.9)

vV Vv

#1. Implement variance-covariance analysis

weights <- alphax*Sprice

muhat <- apply(X,2,mean)

Sigmahat <- var(X)

meanloss <- -sum(weights*muhat)

varloss <- weights %%} Sigmahat %x), t(weights)

VaR99 <- meanloss + sqrt(varloss)x*qnorm(0.99)

ES99 <- meanloss +sqrt(varloss)*dnorm(qnorm(0.99))/0.01

V V V V V V V

#2. Implement a historical simulation analysis

> loss.operator <- function(x,weights){

—apply ((exp(x)-1) *matrix(weights,nrow=dim(x) [1] ,ncol=length(weights) ,byrow=T),1,sum)}
> hsdata <- loss.operator(X,weights)

> VaR99.hs <- quantile(hsdata,0.99)

> ES99.hs <- mean(hsdatal[hsdata > VaR99.hs])
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Example Continued

#3a. Implement a Monte Carlo simulation analysis with Gaussian risk factors

> X.new <- rmnorm(10000,Sigma=Sigmahat,mu=muhat)
> mcdata <- loss.operator(X.new,weights)

> VaR99.mc <- quantile(mcdata,0.99)

> ES99.mc <- mean(mcdata[mcdata > VaR99.mc])

#3b. Implement alternative Monte Carlo simulation analysis with t risk factors

model <- fit.t(X, nu=NA)

X.new <- rmt (10000, df=model$nu, Sigma=model$Sigma, mu=model$mu)
mcdatat <- loss.operator(X.new,weights)

VaR99.mct <- quantile(mcdatat,0.99)

ES99.mct <- mean(mcdatat[mcdatat > VaR99.mct])

V V V V V

#Draw pictures

hist(hsdata,nclass=20,prob=T)

abline (v=c(VaR99,ES99))
abline(v=c(VaR99.hs,ES99.hs),col=2)
abline (v=c(VaR99.mc,ES99.mc),col=3)
abline (v=c(VaR99.mct,ES99.mct),col=4)

V V V V V
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Comparison of Risk Measure Estimates
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B5. Improving the Statistical Toolkit

Questions we will examine in the remainder of this workshop include
the following.

Multivariate Models

Are there alternatives to the multivariate normal distribution for
modelling changes in several risk factors?

We will expand our stock of multivariate models to include
multivariate normal mixture models and copula models. These will
allow a more realistic description of joint extreme risk factor changes.
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Improving the Statistical Toolkit Il

Monte Carlo Techniques
How can we simulate dependent risk factor changes?

We will look in particular at ways of simulating multivariate risk
factors in non-Gaussian models.

Conditional Risk Measurement

How can we implement a genuinely conditional calculation of risk
measures that takes the dynamics of risk factors into consideration?

We will consider methodology for modelling financial time series and
predicting volatility, particularly using GARCH models.
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On risk management:

e [Crouhy et al., 2001]

e [Jorion, 2001]
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C. Fundamentals of Modelling Dependent Risks

Motivation: Multivariate Risk Factor Data
Basics of Multivariate Statistics

The Multivariate Normal Distribution

Standard Estimators of Location and Dispersion
Tests of Multivariate Normality

Dimension Reduction and Factor Models
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C1. Motivation: Multivariate Risk Factor Data

Assume we have data on risk factor changes X;,...,X,,. These
might be daily (log) returns in context of market risk or longer
interval returns in credit risk (e.g. monthly/yearly asset value
returns). What are appropriate multivariate models?

e Distributional Models. In unconditional approach to risk modelling
we require appropriate multivariate distributions, which are
calibrated under assumption data come from stationary time series.

e Dynamic Models. In conditional approach we use multivariate time
series models that allow us to make risk forecasts.

This module concerns the first issue. A motivating example shows
the kind of data features that particularly interest us.
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Bivariate Daily Return Data
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Three Extreme Days
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C2. Multivariate Statistics: Basics

Let X = (X1,...,Xy) be a d-dimensional random vector
representing risks of various kinds. Possible interpretations:

e returns on d financial instruments (market risk)
e asset value returns for d companies (credit risk)
e results for d lines of business (risk integration)

An individual risk X; has marginal df F;(z) = P(X; < x).
A random vector of risks has joint df

F(x)=F(x1,...,xq) = P(X1 <x1,..., X3 < z4)

or joint survivor function

F(x):F(xl,...,xd):P(Xl>x1,...,Xd>xd).
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Multivariate Models

If we fix F' (or F') we specify a multivariate model and implicitly
describe marginal behaviour and dependence structure of the risks.

Calculating Marginal Distributions
Fi(z;)) =P (X; <x;) = F(o0,...,00,2;,00,...,00),

l.e. limit as arguments tend to infinity.

In a similar way higher dimensional marginal distributions can be
calculated for other subsets of { Xy,..., X4}.

Independence

Xq,...,X 4 are said to be mutually independent if

d
F(X) = HFZ(CUz), Vx € RY,

1=1
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Densities of Multivariate Distributions

Most, but not all, of the models we consider can also be described
by joint densities f(x) = f(x1,...,2q), which are related to the
joint df by

1 L
F(xl,...,xd):/ / f(uy, ..., ug)duy ...dug.

Existence of a joint density implies existence of marginal densities
fi,..., fa (but not vice versa).

Equivalent Condition for Independence

d
f(x)=]]fi(z:), vxeR?
i=1
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C3. Multivariate Normal (Gaussian) Distribution

This distribution can be defined by its density

f(X) _ (QW)_d/Q‘Z‘_l/Q exp {_(X B [1,)/22_1(X B “)} ,

where i € R and ¥ € R%*? s a positive definite matrix.

e If X has density f then E(X) = p and cov (X) = 3, so that p
and > are the mean vector and covariance matrix respectively. A

standard notation is X ~ Ng(pu, X2).

e Clearly, the components of X are mutually independent if and
only if X is diagonal. For example, X ~ Ny(0, ) if and only if

X1,...,Xgareiid N(0,1).

(©2004 (McNeil, Frey & Embrechts) 56



Bivariate Standard Normals
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Properties of Multivariate Normal Distribution

e [he marginal distributions are univariate normal.

e Linear combinations a’X = a; X + - - - agX4 are univariate normal
with distribution a’X ~ N(a’u,a’>a).

e Conditional distributions are multivariate normal.

e The sum of squares (X — )2 HX — ) ~ x2 (chi-squared).

Simulation.
1. Perform a Cholesky decomposition > = AA’
2. Simulate iid standard normal variates Z = (Z1,...,2Z3)’

3. Set X = u + AZ.
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C4. Estimators of Location and Dispersion

Assumptions. We have data Xy,...,X,, which are either iid or at
least serially uncorrelated from a distribution with mean vector ,
finite covariance matrix X and correlation matrix P.

Standard method-of-moments estimators of 1 and X are the sample
mean vector X and the sample covariance matrix .S defined by

1< 1 _ _
X:E;XZ—, S = > (X - X)(X; - X)),

n— 14
1=1

These are unbiased estimators.

The sample correlation matrix has (7, j)th element given by
R;; = Sij/\/S:iiS;;. Defining D to be a d-dimensional diagonal
matrix with ¢th diagonal element S,L-li/2 we may write R = D~ tSD™1.
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Properties of the Estimators?

Further properties of the estimators X, S and R depend on the true
multivariate distribution of observations. They are not necessarily
the best estimators of i, > and P in all situations, a point that is
often forgotten in financial risk management where they are
routinely used.

If our data are iid multivariate normal Ny(p,X) then X and

(n — 1)S/n are the maximum likelihood estimators (MLEs) of the
mean vector g and covariance matrix Y. Their behaviour as
estimators is well understood and statistical inference concerning the
model parameters is relatively unproblematic.

However, certainly at short time intervals such as daily data, the
multivariate normal is not a good description of financial risk factor
returns and other estimators of ; and X may be better.
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C5. Testing for Multivariate Normality

If data are to be multivariate normal then margins must be
univariate normal. This can be assessed graphically with QQplots or
tested formally with tests like Jarque-Bera or Anderson-Darling.

However, normality of the margins is not sufficient — we must test
joint normality. To this end we calculate

(X =) S (Xi—f), i=1,...,n}.

These should form (approximately) a sample from a y3—distribution,
and this can be assessed with a QQplot or tested numerically with,
for example, Kolmogorov-Smirnov.

(QQplots compare empirical quantiles with theoretical quantiles of
reference distribution.)

(©2004 (McNeil, Frey & Embrechts) 61



Testing Multivariate Normality: Normal Data
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Deficiencies of Multivariate Normal for Risk Factors

e Tails of univariate margins are very thin and generate too few
extreme values.

e Simultaneous large values in several margins relatively infrequent.
Model cannot capture phenomenon of joint extreme moves in
several risk factors.

e Very strong symmetry (known as elliptical symmetry). Reality
suggests more skewness present.
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C6. Dimension Reduction and Factor Models

Idea: Explain the variability in a d-dimensional vector X in terms of
a smaller set of common factors.

Definition: X follows a p-factor model if
X =a+ BF +¢, (11)

(i) F = (Fy,..., Fp)" is random vector of factors with p < d,
(ii)) e = (e1,...,&4)" is random vector of idiosyncratic error terms,

which are uncorrelated and mean zero,
(iii) B € R¥¥P is a matrix of constant factor loadings and a € R% a

vector of constants,
(iv) cov(F,e) = E((F — E(F))e’) = 0.
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Remarks on Theory of Factor Models

e Factor model (11) implies that covariance matrix ¥ = cov(X)
satisfies ¥ = BQB’ + ¥, where 2 = cov(F) and ¥ = cov(e)
(diagonal matrix).

e Factors can always be transformed so that they are orthogonal:
> = BB '+ V. (12)
e Conversely, if (12) holds for covariance matrix > of random vector
X, then X follows factor model (11) for some a, F and e.

e |f, moreover, X is Gaussian then F and € may be taken to
be independent Gaussian vectors, so that & has independent
components.
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Factor Models in Practice

We have multivariate financial return data Xy, ..., X,, which are
assumed to follow (11). Two situations to be distinguished:

1. Appropriate factor data F,...,F,, are also observed, for example
returns on relevant indices. We have a multivariate regression
problem; parameters (a and B) can be estimated by multivariate
least squares.

2. Factor data are not directly observed. We assume data X4,...,X,
identically distributed and calibrate factor model by one of two
strategies: statistical factor analysis - we first estimate B and
U from (12) and use these to reconstruct Fy,...,F,; principal
components - we fabricate Fq, ..., F,, by PCA and estimate B and
a by regression.
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D. Normal Mixture Models and Elliptical Models

Normal Variance Mixtures
Normal Mean-Variance Mixtures
Generalized Hyperbolic Distributions

Elliptical Distributions
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D1. Multivariate Normal Mixture Distributions

Multivariate Normal Variance-Mixtures

Let Z ~ N4(0,%) and let W be an independent, positive, scalar
random variable. Let o be any deterministic vector of constants.
The vector X given by

X =p+VWZ (13)

Is said to have a multivariate normal variance-mixture distribution.

Easy calculations give E(X) = p and cov(X) = E(W)X.
Correlation matrices of X and Z are identical: corr(X) = corr(Z).

Multivariate normal variance mixtures provide the most useful
examples of so-called elliptical distributions.
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Examples of Multivariate Normal Variance-Mixtures

2 point mixture

ky with probability p,
W{lWI PTODAbITEY P ky > 0,ky > 0, ky o ko.

ko with probability 1 —p

Could be used to model two regimes - ordinary and extreme.
Multivariate t

W has an inverse gamma distribution, W ~ Ig(v/2,v/2). This gives
multivariate t with v degrees of freedom. Equivalently v/W ~ x2.

Symmetric generalised hyperbolic

W has a GIG (generalised inverse Gaussian) distribution.
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The Multivariate t Distribution
This has density

(v+d)
(x—p)'E" (x - u)) o

14

f(x) =ks.va (1 +

where pu € RY, ¥ € R4 is a positive definite matrix,v is the
degrees of freedom and kyx , 4 is a normalizing constant.

e If X has density f then E(X) = u and cov (X) = -X%53, so that

- v—2
g and X are the mean vector and dispersion matrix respectively.

For finite variances/correlations v > 2. Notation: X ~ t4(v, u, ).

e If X is diagonal the components of X are uncorrelated. They are
not independent.

e The multivariate t distribution has heavy tails.
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Bivariate Normal and t
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Fitted Normal and ¢; Distributions
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Simulating Normal-Mixture Distributions

It is straightforward to simulate normal mixture models. We only
have to simulate a Gaussian random vector and an independent
radial random variable. Simulation of Gaussian vector in all standard

texts.

Example: ¢ distribution

To simulate a vector X with distribution t4(v, w, 32) we would
simulate Z ~ N4(0,%) and V' ~ x2;

we would then set W = v/V and X = u + VW Z.

To simulate generalized hyperbolic distributions we are required to
simulate a radial variate with the GIG distribution. For an algorithm
see [ |; see also work of | ].

(©2004 (McNeil, Frey & Embrechts) 74



D2. Multivariate Normal Mean-Variance Mixtures

We can generalise the mixture construction as follows:
X=p+W~y+vWZ, (14)

where p,v € R? and the positive rv W is again independent of the
Gaussian random vector Z ~ Ny4(0, X).

This gives us a larger class of distributions, but in general they are
no longer elliptical and corr(X) # corr(Z). The parameter vector ~
controls the degree of skewness and < = 0 places us back in the
(elliptical) variance-mixture family.
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Moments of Mean-Variance Mixtures

Since X | W ~ Ny(pu + W=, WY) it follows that

E(X) = E(EX|W))=p+ EW)y, (15)
cov(X) = FE(cov(X |W))+cov(E(X|W))
= E(W)X 4 var(W)~y~/, (16)

provided W has finite variance. We observe from (15) and (16) that
the parameters © and X are not in general the mean vector and
covariance matrix of X.

Note that a finite covariance matrix requires var(W) < oo whereas
the variance mixtures only require E(W) < co.

Main example. When W has a GIG distribution we get generalized
hyperbolic family.
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Generalised Inverse Gaussian (GIG) Distribution

The random variable X has a generalised inverse Gaussian (GIG),
written X ~ N~ (\, x,¢), if its density is

_X_A(\/W)AxA—leX 1 o1 . .
oM G TR ) D

2
where K, denotes a modified Bessel function of the third kind with
index A and the parameters satisfy y > 0,9 > 0 if A < 0;

x>0, >0if A=0and x >0,v >0 if A > 0. For more on this
Bessel function see | .

f(z)

The GIG density actually contains the gamma and inverse gamma
densities as special limiting cases, corresponding to Y = 0 and ¢ =0
respectively. Thus, when v = 0 and ¢ = 0 the mixture distribution
in (14) is multivariate t.
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D3. Generalized Hyperbolic Distributions

The generalised hyperbolic density f(x)

Ky o (VO+ QG i S) (@ + 7S 1) ) exp ((x — p)'S 1)

(
(V(x + Qx5 1, X)) (¢ + '7’2‘1’7))TA

where
Qx; 1, X)) = (x — )T~ H(x — p)
and the normalising constant is

DI

—A

(VX)W + 'S y)
(2m)2|S 2Ky (VXD)
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Notes on Generalized Hyperbolic

e Notation: X ~ GHy(\, x, ¥, @, X2, 7).

e The «class is closed under linear operations (including
marginalization). If X ~ GHg(\, x, ¥, pu, 3,7) and we consider
Y = BX +b where B € R**4 and b € R* then Y ~
GHi(A, x, ¥, B + b, BYB’, BYy). A version of the variance-
covariance method may be based on this family.

e The distribution may be fitted to data using the EM algorithm.
Note that there is an identifiability problem (too many parameters)
that is usually solved by setting |X| = 1. | ]
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Special Cases

If A = 1 we get a multivariate distribution whose univariate margins
are one-dimensional hyperbolic distributions, a model widely used
In univariate analyses of financial return data.

If A\ = —1/2 then the distribution is known as a normal inverse
Gaussian (NIG) distribution. This model has also been used in
univariate analyses of return data; it's functional form is similar to
the hyperbolic with a slightly heavier tail.

If A > 0 and xy = 0 we get a limiting case of the distribution known
variously as a generalised Laplace, Bessel function or variance
gamma distribution.

If \=—v/2, x =v and ¥ = 0 we get an asymmetric or skewed ¢
distribution.
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D4. Elliptical distributions

A random vector (Y71,...,Yy) is spherical if its distribution is
invariant under rotations, i.e. for all U € R%*9 with

U'U=U0U"= 1,

Y iUy,
A random vector (X1, ..., Xy) is called elliptical if it is an affine
transform of a spherical random vector (Y1,...,Y%),
X =AY + b,

A € Ri¥Xk b e R?,

A normal variance mixture in (13) with g =0 and X =1 is
spherical; any normal variance mixture is elliptical.
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Properties of Elliptical Distributions

e The density of an elliptical distribution is constant on ellipsoids.

e Many of the nice properties of the multivariate normal are preserved.
In particular, all linear combinations a1 X7 + ...+ a4X4 are of the
same type.

e All marginal distributions are of the same type.

e Linear correlation matrices successfully summarise dependence,
since mean vector, covariance matrix and the distribution type
of the marginals determine the joint distribution uniquely.
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Elliptical Distributions and Risk Management

Consider set of linear portfolios of elliptical risks
P={Z =3 AXi | i i =1},

e VaR is a coherent risk measure in this world. It is monotonic,
positive homogeneous (P1), translation preserving (P2) and, most
importantly, sub-additive
VaR,(Z1+22) < VaR,(Z1)+VaR(Z2), for Z1,Zs € P, > 0.5.

e Among all portfolios with the same expected return, the portfolio
minimizing VaR, or any other risk measure p satisfying
Pl o(\Z) = Xo(Z), A >0,
P2 o(Z+a)=0(Z)+a, a €R,
Is the Markowitz variance minimizing portfolio.
Risk of portfolio takes the form o(Z) = E(Z) + const - sd(Z).
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E. Copulas, Correlation and Extremal Dependence

Describing Dependence with Copulas

Survey of Useful Copula Families

Simulation of Copulas

Understanding the Limitations of Correlation

Tail dependence and other Alternative Dependence Measures

Fitting Copulas to Data
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El. Modelling Dependence with Copulas

On Uniform Distributions
Lemma 1: probability transform

Let X be a random variable with continuous distribution function F'.
Then F(X) ~ U(0,1) (standard uniform).

PFX)<u)=P(X<Fluw)=FFu)=u VYuec(0,1).
Lemma 2: quantile transform

Let U be uniform and F' the distribution function of any rv X.
Then F~Y(U) £ X so that P(F~1(U) < ) = F(x).

These facts are the key to all statistical simulation and essential in
dealing with copulas.
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A Definition

A copula is a multivariate distribution function C : [0, 1]¢ — [0, 1]
with standard uniform margins (or a distribution with such a df).

Properties
e Uniform Margins
C(1,...,1u;1,...,1)=wu; forallie {1,...,d}, u; € [0,1]

e Fréchet Bounds

d
maX{Zu@-—Fld,O} < C(u) <min{ug,...,uq}.

1=1

d times

e N——
Remark: right hand side is df of (U,...,U), where U ~ U(0, 1).
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Sklar’s Theorem

Let F' be a joint distribution function with margins Fi, ..., Fy.
There exists a copula such that for all z1,..., 24 in [—00, 00]

F(xy,...,zq) = C(F1(x1),..., Fa(xq)).

If the margins are continuous then C' is unique; otherwise C' is
uniquely determined on RanFj x RanFs ... x RankFy.

And conversely, if C is a copula and Fi, ..., F,; are univariate
distribution functions, then F' defined above is a multivariate df with

margins Fi, ..., Fy.
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Ildea of Proof in Continuous Case

Henceforth, unless explicitly stated, vectors X will be assumed to
have continuous marginal distributions. In this case:

F(:El,...,xd) = P(X1<.C131,...,Xd<l‘d)
— P(Fl(Xl) S Fl(CIZl), “ e ,Fd(Xd) S Fd(xd))
— C(Fl(ibl),...,Fd(CEd)).

The unique copula C can be calculated from F|, Fy, ..., F; using

Clut,...,uq) = F (F7 "(w),..., F; (ua)) .
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Copulas and Dependence Structures

Sklar's theorem shows how a unique copula C' fully describes the
dependence of X. This motivates a further definition.

Definition: Copula of X
The copula of (X1,...,Xy) (or F) is the df C of
(Fy(X)),. .. Fa(Xa)).

We sometimes refer to C' as the dependence structure of F'.

Invariance

C' is invariant under strictly increasing transformations of the
marginals.

If Ty, ..., Ty are strictly increasing, then (T1(X1),...,T4(Xy4)) has
the same copula as (X1, ..., Xg).
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Examples of copulas

e Independence
X1,..., X4 are mutually independent <= their copula C satisfies
d
C(ula SRR ,U,d) — Hi:l Uj.
e Comonotonicity - perfect dependence
X; &= Ty(X1), Tjstrictly increasing,i = 2,...,d, <= C satisfies
C(ui,...,ug) = min{uq, ..., uq}.

e Countermonotonicity - perfect negative dependence (d=2)

a.S.

Xy = T(X1), T strictly decreasing, <= C satisfies
C'(u1,u2) = max{u; +ug — 1,0}.
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Parametric Copulas

There are basically two possibilities:

e Copulas implicit in well-known parametric distributions
Recall C'(uq,...,uq) = F (Fy (u1),..., FEy  (uq)).

e Closed-form parametric copula families.

Gaussian Copula: an implicit copula

Let X be standard multivariate normal with correlation matrix P.

CFG’a(ula R 7U’d) = P ((I)(Xl) < U, (I)(Xd) < ’LLd)
= P(X1 <® Nw),..., Xa <P '(ug))

where ® is df of standard normal.
P = I gives independence; as P — J we get comonotonicity.
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E2. Parametric Copula Families

Elliptical or Normal Mixture Copulas

The Gaussian copula is an elliptical copula. Using a similar approach
we can extract copulas from other multivariate normal mixture
distributions.

Examples

e The t copula Cf p

e The generalised hyperbolic copula

The elliptical copulas are rich in parameters - parameter for every
pair of variables; easy to simulate.
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Archimedean Copulas d = 2

These have simple closed forms and are useful for calculations.
However, higher dimensional extensions are not rich in parameters.

e Gumbel Copula

C’g“(ul,ug) = exp (— ((— logu1)” + (— log ug)ﬁ) UB) .

B >1: B =1 gives independence; 5 — oo gives comonotonicity.
e Clayton Copula
_ _ —1/8
Cgl(ul,ug) = (u15—|—u25—1) .
B> 0: B — 0 gives independence ; 3 — oo gives comonotonicity.
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Archimedean Copulas in Higher Dimensions

All our Archimedean copulas have the form

Clur, uz) = ¥~ (Y(u1) + (ug)),

where 1) : |0, 1] — [0, 00| is strictly decreasing and convex with
(1) =0 and lim;_g ¥ (t) = 0.
The simplest higher dimensional extension is

Clut, ..., ua) =¥~ (P(ur) + -+ 1(uq)).
Example: Gumbel copula: 9 (t) = —(log(t))”

1/8
Ogu(ul, .--5Ug) = exp (— ((—logm)ﬁ T+t (—logud)ﬁ) ) :

These copulas are exchangeable (invariant under permutations).
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E3. Simulating Copulas

Normal Mixture (Elliptical) Copulas

Simulating Gaussian copula C'5°

e Simulate X ~ Ny(0, P)

e Set U= (®(X1),...,D(Xy)) (probability transformation)
Simulating ¢ copula C

e Simulate X ~ t4(v,0, P)

e U= (t,(X1),...,t, (X4)) (probability transformation)
t,, is df of univariate ¢ distribution.
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Meta—Gaussian and Meta—t Distributions

It (U,...,Uq) ~C§F and F; are univariate dfs other than univariate
normal then

(£ (Uh), ..., Fg (Ua))
has a meta—Gaussian distribution. Thus it is easy to simulate vectors
with the Gaussian copula and arbitrary margins.

In a similar way we can construct and simulate from meta %,
distributions. These are distributions with copula C}, » and margins
other than univariate ¢,.
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Simulating Archimedean Copulas

For the most useful of the Archimedean copulas (such as Clayton
and Gumbel) techniques exist to simulate the exchangeable versions
in arbitrary dimensions. The theory on which this is based may be
found in Marshall and Olkin (1988).

Algorithm for d-dimensional Clayton copula Cgl

e Simulate a gamma variate X with parameter o = 1/7.
This has density f(z) = 2% te % /T'(«).

e Simulate d independent standard uniforms Uy, ..., Uy.

—1/8 —1/8
o Return ( (1= t) L (1 egl) ),
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E4. Understanding Limitations of Correlation

Drawbacks of Linear Correlation

Denote the linear correlation of two random variables X; and X5 by
p(X1, X3). We should be aware of the following.

e Linear correlation only gives a scalar summary of (linear)
dependence and var(X7), var(Xs) must exist.

e X1, X5 independent = p(X,Y) = 0.
But p(X1, X2) =0 = X7, X5 independent.
Example: spherical bivariate t-distribution with v d.f.

e Linear correlation is not invariant with respect to strictly increasing
transformations 1" of X1, X5, i.e. generally

p(T(X1), T(X2)) # p(X1, X2).
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A Fallacy in the Use of Correlation

Consider the random vector (X1, X5)'.

“Marginal distributions and correlation determine the joint
distribution”.

e True for the class bivariate normal distributions or, more generally,
for elliptical distributions.

e \Wrong in general, as the next example shows.
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Gaussian and Gumbel Copulas Compared

Gaussian Gumbel

X2

Margins are standard normal; correlation is 70%.
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E5. Alternative Dependence Concepts

Rank Correlation (let C' denote copula of X; and X5)
Spearman’s rho

ps(X1,X2) = p(Fi(X1), F2(X2)) = p(copula)

1 1
ps(Xl,XQ) = 12/ /{C(ul,UQ)—U1UQ}dU1dU2.
0 0

Kendall's tau o
Take an independent copy of (X7, X5) denoted (X7, X3).

0 (X1, Xo) = ( ~ X)) (X — Xo) > o) |

pr(X1,X2) = / / (U1, u2)dC(uy, u2) — 1.
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Properties of Rank Correlation

(not shared by linear correlation)

True for Spearman’s rho (pg) or Kendall's tau (p;).

e ps depends only on copula of (X7, X5)'.

e pg Is invariant under strictly increasing transformations of the
random variables.

e ps(Xi,X2) =1 <= Xy, X5 comonotonic.

e ps(X1,X5) =—-1 <= X;, X5 countermonotonic.
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Kendall’s Tau in Elliptical Models

Suppose X = (X1, X3)’ has any elliptical distribution; for example
X ~ ty(v, pu,2). Then
2

pr( X1, Xao) = ;arcsin (p(X1, X2)) . (17)

Remarks:

1. In case of infinite variances we simply interpret p(X1, X3) as

Y12/ 21,182,2.
2. Result of course implies that if Y has copula C}, 5 then

,OT(Yl, YQ) = %arcsin(Pl,g).
3. An estimator of p, is given by

N 1
pr(X1, X2) = 7= > sgn[(Xin — Xj1) (Xi2 — Xj2)]-

(2> 1<i<y<n

(©2004 (McNeil, Frey & Embrechts) 104



Tail Dependence or Extremal Dependence

Objective: measure dependence in joint tail of bivariate distribution.
When limit exists, coefficient of upper tail dependence is

)\u(X]_,XQ) — C}l_)ffi P(X2 > V&RQ(XQ) ’ Xq > V&Rq(Xl)),

Analogously the coefficient of lower tail dependence is

)\g(Xl,XQ) = (%E)I(l)P(XQ S V&RQ(XQ) ‘ X1 S V&Rq(Xl)) .

These are functions of the copula given by

Ay =

Ae =

(©2004 (McNeil, Frey & Embrechts)
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Tail Dependence

Clearly A, € [0,1] and Ay € [0, 1].

For elliptical copulas A, = Ay =: A. True of all copulas with radial
symmetry: (U, Us) d (1—=Up,1—"Us).

Terminology:

Ay € (0,1]: upper tail dependence,

A, = 0: asymptotic independence in upper tail,
A¢ € (0,1]: lower tail dependence,

Ay = 0: asymptotic independence in lower tail.
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Examples of tail dependence

The Gaussian copula is asymptotically independent for |p| < 1.

The t copula is tail dependent when p > —1.

,X:2ﬂ+1(¢u+1wﬂx—@A/TIZ).

The Gumbel copula is upper tail dependent for 3 > 1.

Ay =2 210
The Clayton copula is lower tail dependent for 5 > 0.
Ap = 2_1/6.

Recall dependence model in Fallacy 1b: A, = Ay = 0.5.

(©2004 (McNeil, Frey & Embrechts) 107



Gaussian and t3 Copulas Compared

Normal Dependence t Dependence

X2
0

Copula parameter p = 0.7; quantiles lines 0.5% and 99.5%.
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Joint Tail Probabilities at Finite Levels

P C Quantile

95% 99% 99.5% 99.9%
05 N |12l x1072 1.29x 1073 4.96 x 107% 5.42 x 10~°
0.5 18 1.20 1.65 1.94 3.01
05 t4 1.39 2.22 2.79 4.86
05 t3 1.50 2.55 3.26 5.83
0.7 N [1.95%x1072 267x1072 1.14x 10732 1.60 x 1074
0.7 t8 1.11 1.33 1.46 1.86
0.7 t4 1.21 1.60 1.82 2.52
0.7 t3 1.27 1.74 2.01 2.83

For normal copula probability is given.

For t copulas the factor by which Gaussian probability must be
multiplied is given.
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Joint Tail Probabilities, d > 2

p C Dimension d
2 3 4 5

05 N |[1.29x 1073 3.66x107% 1.49x 10~% 7.48 x 10~°
0.5 18 1.65 2.36 3.09 3.82
05 t4 2.22 3.82 5.66 7.68
05 t3 2.55 4.72 7.35 10.34
07 N |[267x1073 1.28x 1073 7.77x107% 5.35 x 10~
0.7 t8 1.33 1.58 1.78 1.95
0.7 t4 1.60 2.10 2.53 2.91
0.7 t3 1.74 2.39 2.97 3.45

We consider only 99% quantile and case of equal correlations.
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Financial Interpretation

Consider daily returns on five financial instruments and suppose that
we believe that all correlations between returns are equal to 50%.
However, we are unsure about the best multivariate model for these
data.

If returns follow a multivariate Gaussian distribution then the
probability that on any day all returns fall below their 1% quantiles
is 7.48 x 107°. In the long run such an event will happen once every
13369 trading days on average, that is roughly once every 51.4 years
(assuming 260 trading days in a year).

On the other hand, if returns follow a multivariate ¢ distribution with
four degrees of freedom then such an event will happen 7.68 times
more often, that is roughly once every 6.7 years.

(©2004 (McNeil, Frey & Embrechts) 111



E6. Fitting Copulas to Data

Situation
We have identically distributed data vectors X4,...,X,, from a
distribution with unknown (continuous) margins Fi, ..., F; and with

unknown copula C'. We adopt a two-stage estimation procedure.

Stage 1
Estimate marginal distributions either with

1. parametric models Fi, ..., Fy,

2. a form of the empirical distribution function such as
Fj(m):nL-HZ:L:ll{Xi,jgw}? jZl,...,d,

3. empirical df with EVT tail model.
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Stage 2: Estimating the Copula

We form a pseudo-sample of observations from the copula

/

—~ o~ o~ / o~ o~
U, = (Ui,l,...,Uz-,d> - (Fl(Xi,l),...,Fd(Xi,d)) Ci=1,....n

and fit parametric copula C' by maximum likelihood.

Copula density is c(uq,...,uq;0) = 6%1 ce %C’(ul, o ug 0),
where 0 denote unknown parameters. The log-likelihood is

Z(H, 61, ce ,ﬁn) = Zlog C(ﬁi,l, ceey ﬁz’,d; 9)
1=1

Independence of vector observations assumed for simplicity. More
theory is found in Genest and Rivest (1993) and Maschal and Zeevi

(2002).
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BMW-Siemens Example: Stage 1
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The pseudo-sample from copula after estimation of margins.
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Stage 2: Parametric Fitting of Copulas

Copula | p,B | v | std.error(s) | log-likelihood
Gauss | 0.70 0.0098 610.39
t 0.70 | 4.89 | 0.0122,0.73 649.25
Gumbel | 1.90 0.0363 584.46
Clayton | 1.42 0.0541 527.46

Goodness-of-fit.
Akaike's criterion (AIC) suggests choosing model that minimises

AIC = 2p — 2 - (log-likelihood),

where p = number of parameters of model. This is clearly ¢ model.

Remark. Formal methods for goodness-of-fit also available.
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Fitting the ¢ or Gaussian Copulas

ML estimation may be difficult in very high dimensions, due to the
large number of parameters these copulas possess. As an alternative
we can use the rank correlation calibration methods described earlier.
For the t copula a hybrid method is possible:

e Estimate Kendall’'s tau matrix from the data.

e Recall that if X is meta-t with df Cf p(F1,...,Fq) then
p-(X;, X;) = 2arcsin(P; ;). Follows from (17).

e Estimate P; ; = sin (%ﬁT(Xi, Xj)). Check positive definiteness!

e Estimate remaining parameter v by the ML method.
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Dow Jones Example: Stage 1
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The pseudo-sample from copula after estimation of margins.
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Stage 2: Fitting the ¢ Copula

log-likelihood
600 650

550

500

Daily returns on ATT, General Electric, IBM, McDonalds, Microsoft.
Form of likelihood for nu indicates non-Gaussian dependence.
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References

o | ] (dependence and copulas in RM)

o | ] (on dependence in general)

o | | (standard reference on bivariate copulas)

o | | (useful supplementary reading)

o | | (simulation of Archimedean copulas)
o | ] (copula fitting in insurance)

o | | (role of copulas in insurance)

o | ] (theory of copula fitting)

o | ] (copula fitting in finance)

(©2004 (McNeil, Frey & Embrechts) 119



Bibliography

[Abramowitz and Stegun, 1965] Abramowitz, M. and Stegun, |.,
editors (1965). Handbook of Mathematical Functions. Dover
Publications, Inc., New York.

|[Artzner et al., 1999] Artzner, P., Delbaen, F., Eber, J., and Heath,
D. (1999). Coherent measures of risk. Math. Finance, 9:203-228.

[Atkinson, 1982]| Atkinson, A. (1982). The simulation of generalized
inverse gaussian and hyperbolic random variables. SIAM J. Sci.
Comput., 3(4):502-515.

[Barndorff-Nielsen, 1997] Barndorff-Nielsen, O. (1997). Normal
inverse gaussian distributions and stochastic volatility modelling.
Scand. J. Statist., 24:1-13.

(©2004 (McNeil, Frey & Embrechts) 120



[Barndorff-Nielsen and Shephard, 1998] Barndorff-Nielsen, O. and
Shephard, N. (1998). Aggregation and model construction for

volatility models. Preprint, Center for Analytical Finance, University
of Aarhus.

[Crouhy et al., 2001] Crouhy, M., Galai, D., and Mark, R. (2001).
Risk Management. McGraw-Hill, New York.

[Eberlein and Keller, 1995] Eberlein, E. and Keller, U. (1995).
Hyperbolic distributions in finance. Bernoulli, 1:281-299.

[Eberlein et al., 1998] Eberlein, E., Keller, U., and Prause, K. (1998).
New insights into smile, mispricing, and value at risk: the hyperbolic
model. J. Bus., 38:371-405.

|[Embrechts et al., 2001] Embrechts, P.,  McNeil, A, and

(©2004 (McNeil, Frey & Embrechts) 121



Straumann, D. (2001). Correlation and dependency in risk
management: properties and pitfalls. In Dempster, M. and
Moffatt, H., editors, Risk Management: Value at Risk
and Beyond, pages 176-223. Cambridge University Press,
http://www.math.ethz.ch/~mcneil.

[Fang et al., 1987] Fang, K.-T., Kotz, S., and Ng, K.-W. (1987).
Symmetric Multivariate and Related Distributions. Chapman &
Hall, London.

[Frees and Valdez, 1997] Frees, E. and Valdez, E. (1997).

Understanding relationships using copulas. N. Amer. Actuarial
J., 2(1):1-25.

[Genest and Rivest, 1993] Genest, C. and Rivest, L. (1993).

(©2004 (McNeil, Frey & Embrechts) 122



Statistical inference procedures for bivariate archimedean copulas.
J. Amer. Statist. Assoc., 88:1034—-1043.

[Joe, 1997] Joe, H. (1997). Multivariate Models and Dependence
Concepts. Chapman & Hall, London.

[Jorion, 2001] Jorion, P. (2001). Value at Risk: the New Benchmark
for Measuring Financial Risk. McGraw-Hill, New York, 2nd edition
edition.

[Klugman and Parsa.R., 1999] Klugman, S. and Parsa.R. (1999).
Fitting bivariate loss distributions with copulas. Ins.: Mathematics
Econ., 24:139-148.

[Kotz et al., 2000] Kotz, S., Balakrishnan, N., and Johnson, N.
(2000). Continuous Multivariate Distributions. Wiley, New York.

(©2004 (McNeil, Frey & Embrechts) 123



[Lindskog, 2000] Lindskog, F. (2000). Modelling dependence with
copulas. RiskLab Report, ETH Zurich.

[Mardia et al., 1979] Mardia, K., Kent, J., and Bibby, J. (1979).
Multivariate Analysis. Academic Press, London.

[Marshall and Olkin, 1988] Marshall, A. and Olkin, 1. (1988).
Families of multivariate distributions. J. Amer. Statist. Assoc.,
83:834-841.

[Mashal and Zeevi, 2002] Mashal, R. and Zeevi, A. (2002). Beyond
correlation: extreme co—movements between financial assets.
Unpublished, Columbia University.

[McNeil et al., 2004] McNeil, A., Frey, R., and Embrechts, P. (2004).

Quantitative Risk Management: Concepts, Techniques and Tools.
www.math.ethz.ch/~mcneil/book.html.

(©2004 (McNeil, Frey & Embrechts) 124



[Nelsen, 1999] Nelsen, R. B. (1999). An Introduction to Copulas.
Springer, New York.

[Prause, 1999] Prause, K. (1999). The generalized hyperbolic model:

estimation, financial derivatives and risk measures. PhD thesis,
Institut fur Mathematische Statistik, Albert—Ludwigs—Universitat
Freiburg.

[Seber, 1984]| Seber, G. (1984). Multivariate Observations. Wiley,
New York.

(©2004 (McNeil, Frey & Embrechts) 125



