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01 Theoretical Frameworks of EVA EIF

f 1) Stationary Random Process (Sequence)
- Distribution Ergodicity
- (In)dependent and Identically Distributed
random variables (I.I.D. assumption)
— strict stationarity
* Conventional approach

2) Non-stationary Random Process (Sequence)
- (In)dependent but non-identically Distributed
random variables (non-I.1.D. assumption)
— weak stationarity, non-stationarity

\3) Ultimate (Asymptotic) and penultimate forms



1) I.I1.D. random variable Approach Ef

Ultimate form : Fisher-Tippett theorem (1928)

X, K, X, eF(X),Z, =max{X,,..., X,}

N—>+o0 N—>+00

lim P(an_an gx]: lim F"(a +b x)=G(x) e F

n

F ={ Gumbel, Fréchet, Weibull }

!

GEVD, GPD, POT-GPD + MLM, PWM, MOM etc.

R.A. Fisher & L.H.C. Tippett (1928), Limiting forms of the frequency distribution of the largest or smallest
member of a sample, Proc. Cambridge Philosophical Society, Vol 24, p180~190
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2) non-1.1.D. random variable Approach Ef

X, € F(x),K , X, e F,(x), Z, =max{X,K ,X,]

lim P[an_cn < sz lim [TF,(d, +¢,x)=Q(x) €S
J=1

N—>+00 N—>+00 .
n

FcS

S = { Gumbel, Fréchet, Weibull,.....}

The class of EVD for non-i.i.d. case is much larger.

* Falk et al., Laws of Small Numbers: Extremes and Rare Events, Birkhauser, 1994



3) Ultimate / penultimate form and
finite epoch T In engineering practice ¥

>

In engineering practice, the epoch of interest, T is finite.
e.g. annual maximum value, monthly maximum value and
maximum/minimum pressure coefficients in 10min etc.

As such, the number of independent random variables m
In the epoch T becomes a finite integer, I.e. m<oo, and
consequently, the theoretical framework for ultimate form
IS no longer available regardless i.i.d. or non-i.i.d.case.

Following discussions are restricted on the penultimate d.f.
for the extremes of non-stationary random process
In a finite epoch T.



02 Statement of the Problem E(

Let x(t),te " :=[0,) be the continuous observation record of

a non-stationary continuous stochastic process X(t) and assume
that X(t) is a mean square differentiable process and hold the

following condition.

r(t,7)=E[X@{)X(t+7)]=>r(t,r)logr >0asz—>T

As such, how to estimate the extreme value distribution of X(t)
In an epoch T< oo from the continuous observation record x(t)?



03 Assumptions and Formulation E(

According to the conventional approach in wind engineering, let
assume the non-stationary process X(t) can be partitioned with
a finite epoch T, in which the partitioned process X(t),(i-1)T
[ <iT, can be assumed as an independent stationary random
process, and define the d.f. F,(x) as follows.

F,(X)=P(Z <x; Z:=sup X(t), t[0,T <o0))

Then, by the Glivenko-Cantelli theorem and the block maxima
approach

F, (x) = lim= ZI (Z, —supX(t))—Ilm ZP(Z X)

n—o N

where 1.(x) =1 |f XecelseO



04 i.i.d. random sequence (EQRS) =

- >

approach of P(Z <x) v

By partitioning the interval [(i-1)T,iT) into finite subpartitions
[(j—Dh, jh), 1< j<[T /h]=m. in the manner of that

mi <0

P(Z <Xx)= H P(Z; <X, Z; =sup(X; (). te[(j-Dh, jh)) = F," (x)

the required d.f. F,(x) can be defined as follows.

F,(X) = Iimlzn: F* (%)

nN—o0 n i1
If it is possible to assume that all m;=m, then

F, (X) = !im izn: F ()

~* N



05 lower bound of F,(x) El:\’

From the inequality (geometric mean)<(arithmetic mean), a lower
bound of F,(x) can be defined as follows:

Nn—oo

B (x) = rl]imll[FZri”’”(x) < |im%i () =F, (x)
06 alternative definition of F,(x)

F, (X) = izn: F, (x) m = E"(x)
N5

This definition can be found easily in engineering applications and
may be reasonable for thecaseof F, ; L ; F, .



07 Inequality of quantile functions Ef

Let define quantile functions of each definition as follows.
Q(a) =F;*(a), $a) =B (a), Q@) = F, ()

Then, by the inequality for the means and the comparison of the
distribution of order statistics, 1.e. Z..and Z,.,,

Q(a) < Ha), Q(a) < Ha) for all & <(0,1)

Q(a) <Q(ax) —> (?f’(a) for large «
Q(a) < Q) < H(e) for small «

Therefore, the alternative definition results in smaller variance of
extremes.



Complement for the inequalities of quantile functions F(
-¢ -

@ Zn:n - ﬁ I:im’ ﬁJn:n - (H Fim/nj = ﬁ |:im — Zn:n (a) = 2/On:n (CZ)

i=1

@ 2lon:n - ]j I:im’ Z—n:n - (%g Fijmn , (];i[ Fim/n] <(%g F,j — ion:n(a) > Z—n:n(a)

S Zin ~1_ﬁ(1_ Fim) ! Zn: F" _O(Fzm)1 Z—1:n - 1_(1— F" )n ) nn{-l Zn: F" —O(Fzm)
- - i—1
= Z1:n (0[) < Z—lzn (0[)
@ Zl:n ~l_ﬁ(1_ Fim)’ iol:n ~1_(1_ﬁFim/nj )
=L i=1

n

ﬁ(l—ﬁ”‘)<(1— Fm) <[1—H Fj =Z,. (@) <2 (@)

i=1



08 Numerical example F(x)=N(0,1)
( m=10,000, n=5,000, iteration=100 )

e A

X. ~ N(0,1) X. ~N(0,5,), o. ~ N(1,0.05)
T T T T & Tr T r ‘-
—eerfmsandf> o qpa] ctree—— (mean d.f)™ E
e mean of (df)™ 9 N3 ' mean of (df)™ #
Bt mean af 100 MCS e gt mean of 100 MCS
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: s i s
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09 practical application:
Annual maximum wind speed in Japan 3

1) Observation records and Historical annual maximum
wind speeds at 155 sites in Japan

Observation Records: JMA records (CSV format)
1961~1990 : 10 min average wind speed per 3 hours
1991~2002 : 10 min average wind speed per hour

Historical annual maximum wind speeds record:
1929~1999 : A historical annual max. wind speed data set
compiled by Ishihara et al.(2002)
2000~2002 : extracted from JMA records (CSV format)

T. Ishihara et al. (2002), A database of annual maximum wind speed and corrections for anemometers in Japan,
Wind Engineers, JAWE, N0.92, p5~54 (in Japanese)



09 practical application:

Annual maximum wind speed in Japan ¥

2) The effect of different observation recording format on
the basic statistics

Base on the recently opened continuous 1 min average wind
speed records (1997. 3~2002. 2), calculating every 10 min
average wind speeds, 10 min average per hour and 3 hours,
and comparing the basic statistics for each recording format,
then the effect of different recording format becomes to be
clear.
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3) Examples of non-stationarity :

S

the basic statistics (1961~2002) g
Coefficient of Variations (C.0.V)
Site
H o /1 g,

Abashiri 5.1% 5.0% 11.7% 14.4%
Katsuura 5.81% 8.87% 24.06% 26.71%
Kobe 5.71% 8.25% 12.55% 16.31%
Kumamoto 7.62% 5.93% 14.19% 32.36%
Makurazaki 4.60% 6.07% 25.97% 47.98%
Morioka 6.99% 4.43% 12.09% 11.55%
Oita 3.42% 8.41% 16.49% 27.41%
Shionomisaki 4.34% 4.07% 19.36% 30.10%
Tokyo 5.90% 8.06% 18.90% 17.88%
Minimum 3.42% 4.07% 11.72% 11.55%
Maximum 7.62% 8.87% 25.97% 47.98%
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Morioka (1961~2002)

Moricka ;annual data sets from 1961 to 2002
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Kobe (1961~2002)

dbr—w

Kobe ;annual data sets from 1961 to 2002
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Shionomisaki (1961~2002)

Shionomisaki .annual data sets from 1961 to 2002 Shionomisaki ‘annual data sets from 1961 to 2002
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Makurazaki (1961~2002)

i Makurazaki :annual data sets from 1961 to 2002
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Naha (1964~2002)

Naha ‘annual data sats from 1961 to 2002
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09 practical application:
Annual maximum wind speed in Japan 3

4) Approximation of the annual wind speed distribution
Based on the probability integral transformation,

D(z,)=F, (x,)=F (9(z,))=a
x =9(z,)=a+bz, +cz’ +dz’

= F (x,)=0(g7(x,))

The coefficients a,b,c and d can be estimated from the given
basic statistics of annual wind speed, i.e. mean, standard
deviation, skewness and kurtosis (Choi & Kanda 2003).

H. Choi and J. Kanda (2003), Translation Method: a historical review and its application to simulation on non-Gaussian
stationary processes, Wind and Struct., 6(5), p357~386



5) Estimation by Monte Carlo Simulation (MCS) EIF,

5.1) Simulation methods

@ Based on the Spectral representation theorem for
stationary stochastic process

—Using a given spectral density function, discrete
stationary stochastic process is simulated.

—time consuming method

@ Based on equivalent i.i.d. random sequence (EQRS)

— A stochastic process, which can be approximated
by Poisson process, is modeled as an i.i.d. random
sequence having same quantile function.

—time effective method



5.2) Required information for MCS based on EQRS EIF,

@ m : the number of Independent rv
— approximated by mean zero crossing rate

(Normal process)

From Rice theorem and Poisson approximation, normal
quantile function is given as follows:

Z = \/Z{IOQ U, T+ yT}
in whcih £ : mean zero crossing rate, y, =—log(—log «)
From ©%(z,),

Z \/Z{Iog(m/47z)+ Vb ©
By comparison,

m; 4zu,T

* Choi & Kanda (2004), A new method of the extreme value distributions based on the translation method, Summaries
of Tech. Papers of Ann. Meet. of AlJ, Vol. B1, p23~24 (in Japanese)



standard normal variate z
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(non-Normal process) k

To Rice formula for the expected number of crossings, i.e. &
V(X) = jO“’)&. f (& X = x)d&= f (x)- j:)&. f (Qd&

applying translation function g(z)
) )&exp{ ()&/o-&-g’(z))Z/Z}
v(X) = ()|¢(g ()], N TIPT

_ %%, exp[ {g° ()} ]_Vo.exp(_{gléx)}z] x

27

dx

From Poisson approximation

KXo = g(za) =0 (\/Z{Iog(voT) + Yr })
With the same manner
m; 4xzv,T

* The distribution of dx/dt is assumed as normal distribution and the assumption is reasonable.
e.g. H. Choi (1988), Characteristics of natural wind for wind load estimation, Master Thesis, Univ. of
Tokyo (in Japanese)




Practical example (T=1 year)

S

¥

v, I estimated from long term observation records in
Tokyo (1985~1987, Choi 1988)

Height 45 45 46 48 58
(m)
Vv, T 2883 2665 2545 2739 2307
Height 63 79 93 187
(m)
Vol 3124 2586 3115 2384

m = 4zv,T =4z (2300 ~ 3000) — 30,000



5.2) Required information for MCS based on EQRS EIF,

@ parent distribution function for each year
—Generalized bootstrap method +
Translation method (Probability Integral Transform)

For the year I,
F(x=0;(2) =®(2), 9,(2) =& +bz+2° +d,2°

{aﬂbicid}i :\Ij(ll’li’gi’yli’}/Zi)
maX(Xl,K 1Xm)i:1,K,n — gi(max(zl,K ’Zm)izl,K,n)



nen—Gaussian variates x

non—Gaussian variates x

Example : Tokyo (1961~2002)

simulated and historical annual mean simulated and historical annual rms
4 24
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O Estimated from historical records = Monte Carlo Simulation



S

L
Correlation between the basic statistics (Tokyo)
H o /1 V2
H 1.000 0.242 -0.372 -0.315
O 0.242 1.000 0.541 0.433
/1 -0.372 0.541 1.000 0.946
)2 -0.315 0.433 0.946 1.000

Such correlation characteristics between the basic statistics are regenerated
by Cholesky decomposition of correlation matrix.




Regeneration of correlation characteristics

S

L
correlation coefficients of simulated ones and given values
H O /1 I
1 1.000 0.242 -0.389 -0.343
(0.242) | (-0.372) | (-0.315)
o 0.242 1.000 0.565 0.476
(0.242) (0.541) (0.433)
2 -0.389 0.565 1.000 0.958
(-0.372) | (0.541) (0.946)
-0.343 0.476 0.958 1.000
% (-0.315) | (0.433) | (0.946)

(+): given correlation coefficient



simulated annual rms

No. of Simulation:n=100 year x 1000 times k

correlation between annual mean and rms

b
B

T
(]
T

]
T

1.8

1.6

1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6
simulated annual mean

O :annual mean and standard dev. from historical records



simulated annual kurtosis

No. of Simulation:n=100 years x 1000 times k

correlation between annual skewness and kurtosis
8 I 1 I | T
0 1 1 I i I
0.8 1 L2 1.4 1.6 1.8 2

simulated annual skewness

O :skewness and kurtosis from historical records
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6) Comparison of the quantile functions from MCS
and historical records in normalized form

Comparison of the normalized annual maximum wind speed
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normalized maximum wind speed

Comparison of the normalized annual maximum wind speed
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normalized maximum wind speed

Comparison of the normalized annual maximum wind speed
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/) Comparison of the quantile functions from MCS
and historical records in full scale

comparison with simulation results based on non—iid scheme (Aomori :575, M=74)
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comparison with simulation results based on non—iid scheme (Sendai :590, M=74)
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comparison with simulation results based on non-iid scheme (Tokyo :662, M=74)
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c&r}nparisun with simulation results based on non—iid scheme (Kobe :770, M=74)

Kobe

=] 2 G2
o o= o
T T T

=
{==]
T

annual maximum wind speed (m/s)

reduced variates



comparison with simulation results based on non-iid scheme (Shionomisaki :778, M=74)
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comparison with simulation results based on non-iid scheme (Makurazaki :831, M=74)
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cgglparison with simulation results based on non—iid scheme (Naha :936, M=58)
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from historical data

8) Comparison of the attraction coefficients from
MCS and the historical records
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9) Defect of the alternative definition IfZ (x) = F™(x)

comparison between simulation results and LL.D. scheme (Aomori :575, M=74)
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comparison between simulation results and LLD. scheme (Sendai :590, M=74)
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comparison between simulation results and LL.D. scheme (Tokyo :662,
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comparison between simulation results and LLD. scheme (Kobe :770, M=74)
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comparison between simulation results and LI.D. scheme (Shionomisaki :778, M=74,

35 T T T T T T T
Shionomisaki
Mean of 1000 MCS
o 30t R . -
E | ceeeeeeen - m :
~ F, (x)=F"(x) gia °
o o > S
@ 25| = A _
- | .S
s 1 &
s (&
E
j -
E2f 7 :
2 | P
E |
®
g
€ 15f .
IU 1 | 1 | 1 1 i
-2 -1 0 1 2 3 4 5 6

reduced variates



comparison between simulation results and LLD. scheme (Makurazaki :831, M=74)
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comparison between simulation results and LI1.D. scheme (Naha :936, M=58)
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from historical records

10) Comparison of the attraction coefficients ‘F(
from the alternative definition and the o
historical records
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10 The cult of isolated statistics and %
The law of large number

How many extreme values should be used to
estimate an extreme value distribution?
( case study for max/min pressure coefficients)*

* Choi & Kanda (2004), Stability of extreme quantile function estimation from relatively short records
having different parent distributions, Proc. 18" Natl. Symp. Wind Engr., p455~460 (in Japanese)
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Which one Is the best estimation?
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10 The cult of isolated statistics and k
he law of large number 4

We never be free from the law of large number.

The statistician and the scientists/technologist need to understand
that models are necessarily simplifications of the system being
modelled; that they are , an absolute sense, wrong; that they are
certainly provisional, but nonetheless are useful and necessary
for successful quantitative thinking.

from J.A. Nelder (1986), Statistics, Science and Technology — The address of the president, delivered to the
Royal Statistical Society on Wednesday, April 16™, 1986, J. R. Statist. Soc. A 149(2), p109~121
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